

令和5年度 CLT設計者等実務がわかる講習会 「CLT構造設計の手引き講習会」 説明資料

主催 一般社団法人日本CLT協会

テキスト 1 告示第 611 号の解説及び構造規定について

テキスト1

告示第611号の解説 及び 構造規定について

2024年1月12日

1

1. 告示第611号の改正概要

CLTパネル工法を用いた建築物又は建築物の構造部分の構造方法に関する安全上必要な技術的基準を定める等の件の一部を改正する件令和4年11月8日官報にて示された。

該当箇所	改正後	改正前	改正の効果
第一 適用の範囲 第二号	31m以下 6階以下が ルート2で 設計対応可能	31m以下 3階以下が ルート2	4階建~6階建は、構造計算 ルート3となっていたが、ルート2へ緩和された。
第四 床版 第二号ハ 第三号	矩形ではない 四角形の床版 が設計可	矩形のみ設計可	設計の自由度が増した。
第五 壁等 第一号 第十 ルート1 第2項第四号	通し壁が ルート1 ルート2で 設計可	通し壁は ルート3で 設計可	設計の自由度が増した。

該当箇所	改正後	改正前	改正の効果
第八 ルート3 第二号	小幅パネル架構、大版パネル架構①は、構造特性係数は、壁長さに関係な〈Ds=0.4	小幅パネル架構、大版パネル 架構①は、構造特性係数は 壁長さによりDs=0.4~0.55	小幅パネル架構、大版パネル架構①は、壁長さ1.5m超えの耐力壁のDsが緩和された。
第九 ルート2 第二号イ	小幅パネル架構、大版パネル架構①は、最下階の壁パネルと基礎の接合部の応力割増し係数2.0	小幅パネル架構、大版パネル架構①は、最下階の壁パネルと基礎の接合部の応力割増し係数2.5	
	小幅パネル架構、大版パネル架構①は、上下階の壁パネル相互又は壁パネルと床版、小屋組、屋根版の接合部の応力割増し係数は、壁長さに関係なく1.0	小幅パネル架構、大版パネル 架構①は、上下階の壁パネ ル相互又は壁パネルと床版、 小屋組、屋根版の接合部の 応力割増し係数は、壁長さに より1.3~1.8	応力割増し係数が緩和され た。

該当箇所	改正後	改正前	改正の効果
第十 ルート1 第2項 第二号 第四号	開口寸法25cm角 以下なら耐力壁と して評価は可	開口寸法24cm角 以下は開口が 設けられるが 耐力壁と しての評価は不可	開口を設けた壁パネルが耐 力壁として扱えることになっ た。
第十 ルート1 第2項 第七号	壁パネルと小 屋組、屋根版 は終局引張 耐力25kN	壁パネルと小 屋組、屋根版 は終局引張 耐力135kN	終局引張耐力が、135kNから 25kNの接合部になった。

5

2. 告示第611号の解説と構造規定について

第一 適用の範囲

ਸਾ	(地)1102年6日1	
	改正後	改正前
_	高さが六十一メートルを超える建築物 第十一に 指定する耐久性等関係規定(以下単に「耐久性等 関係規定」という。)に適合し、かつ、建築基準法 (昭和二十五年法律第二百一号。以下「法」とい う。)第二十条第一項第一号後段に規定する構造 計算によって安全性が確かめられたものであること。	一改正なし
	・・・・その構造方法は、荷重及び外力によって建築物の各部分に連続的に生じる力及び変形を把握することその他の政令で定める基準に従った構造計算によって安全性が確かめられたものとして国土交通大臣の認定を受けたものであること。	
	指定性能評価機関で性能評価の審査を経て 大臣認定を受ける必要があります。	
		7

第一 適用の範囲

七以上の建築物(耐力壁の構造が第五第三号ハに掲げる基準に適合する場合にあっては、四以上) ■補足説明:ルート3が対象となる建築物の規模架構形式の小幅パネル架構、大版パネル架構①は改正後は階数緩和されています。高さ31m超え61m以下で階数7階以上が適用範囲となります。ただし架構形式の大版パネル架構②の場合は4階以上の規定が適用されるので	改正前
架構形式の小幅パネル架構、大版パネル架構①は 改正後は階数緩和されています。 高さ31m超え61m以下で階数7階以上が 適用範囲となります。 ただし 架構形式の大版パネル架構②の場合は 4階以上の規定が適用されるので	高さが三十一メートルを超え又は地階を除く階数が 四以上の建築物

第一 適用の範囲

改正後	改正前
三 高さが三十一メートル以下又は地階を除く階数が 六以下の建築物(耐力壁の構造が第五第三号ハ に掲げる基準に適合する場合にあっては、三以上)	三 高さが三十一メートル以下又は地階を除く階数が 三以下の建築物
■補足説明:ルート2が対象となる建築物の規模 小幅パネル架構、大版パネル架構①は 高さ31m以下階数6階以下となります。 3階以下が6階以下に緩和されています。 ただし 大版パネル架構②の場合は 3階以下の規定が適用されるので 改正前と同様な適用範囲となります。	

第二 材料 第三 土台

改正後	改正前
第二 材料 (以下略)・・・・ ■補足説明:第一号では、直交集成板は、日本農林規格告示第3079号に規定するもの。又は、法第37条第2号の規定により国土交通大臣が認定し、かつ、許容応力度及び材料強度の数値を指定したもので、ラミナ厚さは、24mm以上から36mm以下と規定してます。第二号では、構造耐力上主要な柱及び間柱、小梁などを除く横架材は、告示第1898号第一号から第六号の基準に適合していることが規定されています。第三号では、接合部に使用する材料を規定しています。	第二 材料 改正なし 一 二 三
第三 土台(以下略)・・・・ ■補足説明:第一号では、土台を設ける場合は基礎 に緊結すること。 第二号では、土台を設ける場合の幅は、上部に設ける 耐力壁の厚さと同寸法以上とすることが規定されてい ます。土台を配置するかしないかは、設計者の判断と なります。	第三 土台 改正なし - ニ

_

第四 床版

改正前
一 改正なし

第四 床版

改正後	改正前
 二 床版に一の直交集成板で次のイからいまでのいずれかに該当するものを使用する場合にあっては、当該直交集成板の外層ラミナの方向は、当該直交集成板の長辺方向又は短辺方向と平行でなければならない。 イ 形状が矩形せあり、かつ、構造上支障のある開口部又は欠き込み(以下「開口部等」という。)は設けないもの 	二 床版に床パネル(一の直交集成板で次のイから ハまでのいずれかに該当するものをいう。以下同 じ。)を使用する場合にあっては、床パネルとして 使用する直交集成板の外層ラミナの方向は、当 該床パネルの長辺方向又は短辺方向と平行でな ければならない。 イ 改正なし
ロ 形状が矩形であるものに開口部等を設けたもので、かつ、開口部等を設けない場合と同等以上の剛性及び耐力を有するように当該開口部等の周囲が補強されているもの ■補足説明:文章が変更されています。 「床パネル」から「直交集成板」となっています。	ロ 改正なし
	12

第四 床版

改正後	改正前
ハ 形状が矩形であるものに開口等を設けたものでかつ、当該直交集成板の剛性及び耐力の低減について特別な調査又は研究の結果に基づき算出した上で構造耐力上主要な部分として構造計算によって構造耐力上安全であることが確かめられたもの	ハ 形状が矩形であるものに開口等を設けたものでかつ、当該パネルの剛性及び耐力の低減について特別な調査又は研究の結果に基づき算出した上で構造耐力上主要な部分として構造計算を行うもの
■補足説明:文章が変更されています。 「行うもの」から「確かめられたもの」となりました。	

第四 床版

<u> </u>	
改正後	改正前
 定	三 床版に床パネルを使用する場合にあっては、床パネルは、平行するふたつの壁又ははりによって、構造耐力上有効に支持しなければならない。ただし、特別な調査又は研究の結果に基づき、安全上及び使用上支障のないことが確かめられた場合にあっては、この限りでない。
	14

改正後	改正前
ー 耐力壁は、壁パネル(次に掲げるものをいう。以下同じ。)を使用したものとし、建築物に作用する水平力及び鉛直力に対して安全であるように釣合いよく配置するとともに、CLTパネル工法を用いる建築物等の最下階の壁パネルを除き、床版(当該耐力壁の構造が第三号イ又は口に掲げる基準に適合する場合にあって、かつ、二以上の階に連続して一の耐力壁を設ける場合にあっては、当該耐力壁の脚部のある階の床版)の上部に配置しなければならない。(以下、略)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	- 耐力壁は、壁パネル(次に掲げるものをいう。以下同じ。)を使用したものとし、建築物に作用する水平力及び鉛直力に対して安全であるように釣合いよく配置するとともに、CLTパネル工法を用いる建築物等の最下階の壁パネルを除き、床版の上部に配置しなければならない。(以下略)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
イ 無開口壁パネル(以下略)・・・・	イ 改正なし
ロ 有開口壁パネル(以下略)・・・・	ロー改正なし
	15

第五 壁等

改正後	改正前
二 壁パネルとして使用する直交集成板の外層ラミナ の方向は、当該壁パネルの長辺方向又は短辺方 向と平行でなければならない。	二 改正なし
三 耐力壁の構造は、次のイ〜ハまでのいずれかに適 合しなければならない。	三 改正なし
イ 次の(1)から(3)までに掲げる基準に適合すること ■補足説明:イは、小幅パネル架構についての 規定です。	イ 改正なし (1) 改正なし
(1) 無開口壁パネルを使用し、有開口パネルを使用しないこと。 ■補足説明: すべての架構を有開口パネルで構成することは不可です。併用は可であるとの規定をしています。	

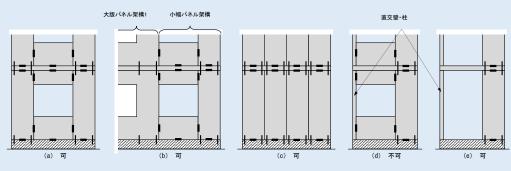
(2)垂れ壁パネル(無開口壁パネルを垂れ壁として使用する場合における当該無開口パネルをいう。以下同じ。)を設ける場合にあっては当該垂れ壁パネルの両側、腰壁パネル(無開口壁パネルを腰壁として使用する場合における当該無開口パネルをいう。以下同じ。)を設ける場合にあっては当該腰壁パネルの両側に、袖壁パネル(無開口壁パネルを袖壁として使用する場合における当該無開口パネルをいう。以下同じ。)(口に適合する耐力壁の構造と同一の方向(張間方向及び桁行方向をいう。以下同じ。)で併用する場合にあっては、袖壁パネル及び有開口壁パネルの袖壁部分)を設け、構造耐力上有効に緊結しなければならない。	改正後	改正前
	使用する場合における当該無開口パネルをいう。 以下同じ。)を設ける場合にあっては当該垂れ壁 パネルの両側、腰壁パネル(無開口壁パネルを 腰壁として使用する場合における当該無開口パ ネルをいう。以下同じ。)を設ける場合にあっては 当該腰壁パネルの両側に、袖壁パネル(無開口 壁パネルを袖壁として使用する場合における当 該無開口パネルをいう。以下同じ。)(口に適合す る耐力壁の構造と同一の方向(張間方向及び桁 行方向をいう。以下同じ。)で併用する場合にあっ ては、袖壁パネル及び有開口壁パネルの袖壁部 分)を設け、構造耐力上有効に緊結しなければな	(2) 改正なし

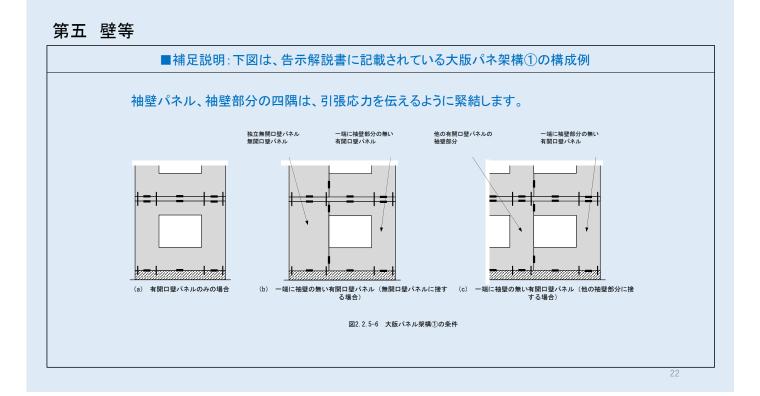
第五 壁等

改正後	改正前
(3)無開口壁パネルは、構造耐力上主要な部分である床版その他の部分と構造耐力上有効に緊結しなければならない。この場合において、無開口壁パネル(垂れ壁パネル及び腰壁パネルを除く。)の上下四隅は、次に掲げる基準に適合しなければならない。	(3) 改正なし
(i)次に掲げる部分を緊結すること。 (イ)CLTパネル工法を用いる建築物等の最下階の 壁パネルと基礎又はこれに類する部分 (ロ)上下階の壁パネル相互又は壁パネルと床版 小屋組若しくは屋根版	(i) 改正なし (イ) (ロ)
(ii)接合部は、当該接合部に生ずる引張応力を伝えるように緊結すること。	(ii) 改正なし

■補足説明:下図は、告示解説書に記載されている小幅パネル架構の構成例

袖壁パネル、袖壁部分の四隅は、引張応力を伝えるように緊結します。




図2.2.5-5 小幅パネル架構の条件

19

第五 壁等

改正後	改正前
□ 次の(1)から(3)までに掲げる基準に適合すること■補足説明:口は、大版パネル架構①を規定しています。	ロ 改正なし
(1)有開口パネル又は有開口パネル及び無開口壁パネル(垂れ壁パネル、腰壁パネル及び袖壁パネルを除く。以下「独立無開口壁パネル」という。)を使用すること。	(1) 改正なし
(2)有開口壁パネルの端に袖壁部分を設けない場合にあっては、当該有開口壁パネルの垂れ壁部分又は腰壁部分(袖壁を設けていない部分に限る。)は、当該有開口壁パネルと同一方向に設けた独立無開口壁パネル(イに適合する耐力壁の構造と同一の方向で併用する場合にあっては、無開口壁パネル(垂れ壁パネル、腰壁パネルを除く。))又はほかの有開口壁パネルの袖壁部分と構造耐力上有効に緊結しなければならない。	(2) 改正なし

(3)独立無開口壁パネル及び有開口壁パネルは、 構造耐力上主要な部分である床版その他の 部分と構造耐力上有効に緊結しなければなら ない。この場合において、独立無開口壁パネ ル及び有開口壁パネルの袖壁部分の上下四 隅は、イ(3)(i)及び(ii)に掲げる基準に適 合しなければならない。	改正後	改正前
	構造耐力上主要な部分である床版その他の 部分と構造耐力上有効に緊結しなければなら ない。この場合において、独立無開口壁パネ ル及び有開口壁パネルの袖壁部分の上下四 隅は、イ(3)(i)及び(ii)に掲げる基準に適	(3) 改正なし

テキスト1 - 11

改正後	改正前
ハ (以下略)・・・・ ■補足説明:以下は、大版パネル架構②を規定して います。	ハ改正なし
(1)(以下略)····· (2)(以下略)·····	(1) 改正なし (2) 改正なし
■補足説明:下図は、告示解説書に記 	或されている大版バネ架構②の構成例 無期ロ壁パネル 一端に袖壁部分の無い 他の有開ロ壁パネルの 一端に袖壁部分の無い
左図の破線部分は 引張応力を伝えるように 緊結していません。 開口部側の上下には 引張応力を伝える緊結は していません。 (a) 有開口壁パネルのみの場合	ロ壁パネル 有関ロ壁パネル 袖壁部分 有関ロ壁パネル (c) 一端に袖壁の無い有関ロ壁パネル (無関ロ壁パネル (無関ロ壁パネル (無関ロ壁パネルに接する場合)
図2.2.5-7 大版パネル	架構②の条件 (破線部に引張接合部を設けないことが大版パネル架構①と異なる)

第五 壁等

改正後	改正前
四 地階の壁は、鉄筋コンクリート造としなければならない。ただし、直接土に接する部分及び地面から三十センチメートル以内の外周の部分以外の壁は、構造耐力上安全なものとした壁パネルを使用することができる。	四改正なし
	24

第六 小屋組等

改正後	改正前
(以下略)・・・・・	改正なし
■補足説明:第六小屋組等は、第四床版 第一号から 第五号に掲げる基準に準拠することを規定しています。	

第七 防腐措置等

改正後	改正前
- 土台及び耐力壁が基礎と接する面の下地には、防水 紙その他これに類するものを使用しなければならな い。	一 改正なし
二 地面から1メートル以内の構造耐力上主要な部分 (床版の屋外にに面しない部分を除く。)に使用する木材には、有効な防腐措置を講ずるとともに、 必要に応じて、しろありその他の虫による害を防ぐ ための措置を講じなければならない。	二改正なし

25

第七 防腐措置等

改正後	改正前
三 構造耐力上主要な部分のうち、直接土に接する部分及び地面からサンジュセンチメートル以内んも外周の部分は、鉄筋コンクリート造若しくは鉄骨造とするか、又は腐朽及びしろありその他の虫による害を防ぐための措置を講じなければならない。	三改正なし
四 腐食のおそれのある部分及び常時湿潤状態となるおそれのある部分の部材を緊結するための金物には、有効なさび止めのための措置を講じなければならない。	四改正なし

改正後	改正前
令第八十一条第二項第一号イに規定する保有水平耐力と同等以上に 安全性を確かめることができる構造計算は、次に定める基準に従った構造計算とする。	
■補足説明:令第八十一条第二項第一号イは、「高さが31mを超える建築物に対して国土交通大臣が定める基準に従った構造計算」を用いることができることを規定しています。	
ー(以下略)・・・・・ ■補足説明:令第三章第八節第二項第一款の二に 定めるところによる構造計算と規定しています。 条文の令第三章第八節第二項第一款の二には 保有耐力計算が規定されています。	一改正なし
	27

第八 保有耐力計算と同等以上に安全を確かめることができる構造計算(ルート3)

改正後	改正前	
二 建築物の各階のDsは、次のイからトまでに定める 基準に適合する場合にあっては次の表の上欄に 掲げる耐力壁の構造に応じてそれぞれ同表の下 欄に掲げる数値以上の数値し、当該基準に適合しない場合にあっては、○.七五以上の数値とする。 ただし、特別な調査又は研究基づき、当該建築物の振動に関する減衰性及び当該階の靭性を適切に評価して算出することができる場合においては、 当該算出によることができる。 ■補足説明:Dsは、耐力壁の構造が、小幅パネル 架構、大版パネル架構①、大版パネル架構②のい	二 建築物の各階のDsは、次のイからトまでに定める 基準に適合する場合にあっては耐力壁の構造並び に無開口パネル(垂れ壁パネル及び腰壁パネルを 除く。)及び有開口パネルの袖壁部分(以下「無開 口壁パネル等」という。)の長さに応じて次の表に掲 げる数値以上の数値とし、・・・・・・(以下、略)	
ずれかに該当している場合は表の数値を採用できます。 架構形式が前記に該当しない場合は、0.75以上を		
用いるか、「設計施工マニュアル第皿部第5章5.2.2」 に示されている増分解析の結果に基づいたDs以上 を用いることになります。	28	
	20	

イ 耐力壁の構造が、次のいずれかに該当するものであること。 (1) 第五第二号及び第三号イ((2)を除く。)又は口((2)を除く。)に掲げる基準に適合すること。 (2) 第五第三号ハ((1) (同号口(2)に係る部分に限る。)を除く。)に掲げる基準に適合すること。 □ 無開口壁パネル(垂れ壁パネル及び腰壁パネルを除く。)及び有開口壁パネルの袖壁部分(以下「無開口壁パネル等」という。)の長さが九十センメートル以上であること。 ■補足説明:文章が追加されています。 ハ 垂れ壁パネル及び有開口壁パネルの垂れ壁部分(以下「垂れ壁パネル及び有開口壁パネルの腰壁部分(以下「腰壁パネル及び有開口壁パネルの腰壁部分(以下「腰壁パネルみび有開口壁パネルの腰壁部分(以下「腰壁パネル等」という。)の長さが七十センチメートル以上四メートル以下であること。	改正後	改正前	
を除く。)及び有開口壁パネルの袖壁部分(以下 「無開口壁パネル等」という。)の長さが九十セン メートル以上であること。 ■補足説明:文章が追加されています。 ハ 垂れ壁パネル及び有開口壁パネルの垂れ壁部分 (以下「垂れ壁パネル等」という。)並びに腰壁パ ネル及び有開口壁パネルの腰壁部分(以下「腰壁パネル及び有開口壁パネルの腰壁部分に以下「腰壁パネルの腰壁部分に対下した。)の長さが七十センチメートル	あること。 (1) 第五第二号及び第三号イ((2)を除く。)又は ロ((2)を除く。)に掲げる基準に適合すること。 (2)第五第三号ハ((1)(同号ロ(2)に係る部分に	イ 改正なし	
ハ 垂れ壁パネル及び有開口壁パネルの垂れ壁部分 ハ <mark>改正なし</mark> (以下 「垂れ壁パネル等」という。)並びに腰壁パネル及び有開口壁パネルの腰壁部分(以下 「腰壁パネル等」という。)の長さが七十センチメートル	を除く。)及び有開口壁パネルの袖壁部分(以下「無開口壁パネル等」という。)の長さが九十センメートル以上であること。		
5	ハ 垂れ壁パネル及び有開口壁パネルの垂れ壁部分 (以下 「垂れ壁パネル等」という。)並びに腰壁パ ネル及び有開口壁パネルの腰壁部分(以下 「腰	ハ 改正なし	

第八 保有耐力計算と同等以上に安全を確かめることができる構造計算(ルート3)

改正後	改正前
ニ 次に掲げる引張応力を負担する接合部(以下「引 張接合部」という。)が、それぞれ次に定める基準 に適合すること。	二 引張応力を負担する接合部(以下「引張接合部」という。)が、その緊結部分に応じて、それぞれ次に定める基準に適合すること。
(1) CLTパネル工法を用いる建築物の最下階の壁パネルと基礎又はこれに類する部分との接合部当該接合部の引張応力に対して有効な部分の終局引張耐力時の変形量が四センチメートル以上で、伸び率(当該接合部の引張応力に対して有効な部分の長さに対する当該部分の終局引張耐力時の変形量の割合をいう。以下同じ。)が十パーセント以上であること。 ■補足説明:文章を変更されています。	(1) 第五第三号イ(3)(i)(イ)に掲げる部分 (以下、略)
	30

改正後	改正前
(2) 上下階の壁パネル相互の接合部又は「壁パネルと床版との接合部 当該接合部の引張応力に対して有効な部分の終局耐力時の変形量が二センチメートル以上で、伸び率が十パーセント以上であること。 ■補足説明:文章を変更しています。	(2) 第五第三号イ(3)(i)(口)に掲げる部分 (以下、略)
ホ 垂れ壁パネル等を設ける場合にあっては、次に 掲げる措置又はこれと同等以上に有効な垂れ壁 等の脱落防止措置を講じていること。	ホ改正なし
(1) 垂れ壁パネルを設ける場合にあっては、袖壁パネルに幅が四十五ミリメートルの欠き込みを設け、又は厚さが垂れ壁パネルと同寸法以上で幅が四十五ミリメートル以上の受け材を設置すること。	(1) <mark>改正なし</mark>

第八 保有耐力計算と同等以上に安全を確かめることができる構造計算(ルート3)

改正後	改正前
(2) 有開口壁パネルに垂れ壁部分を設ける場合は厚さが垂れ壁パネルと同寸法以上で幅が四十五ミリメートル以上の受け材を設置すること。	(2) 改正なし
へ 耐力壁線上に壁パネルを設けない部分を有する場合にあっては、当該部分の上部に設けられたはり、 床版又は屋根版が脱落しないための措置を講じていること。	へ 改正なし
ト 第五第三号イ(3)(i)(イ)に掲げる部分の接合部が降伏する場合において、当該接合部以外のCLTパネル工法を用いる建築物等の部分が降伏しないことが確かめられたものであること。	ト改正なし
■補足説明:トの第五第三号イ(3)(i)(イ)に掲げる 部分は、最下階の壁パネルと基礎の接合部分です。	32

改正後

耐力壁の構造	教值
イ(1)に適合するもの (小幅パネル架構 大版パネル架構①)	0.4
イ(2)に適合するもの (大版パネル架構②)	0.55

この表において、Dsを算定する階における $\bf n$ 力量の構造について、異なる区分のものが混在する場合は、 $\bf 0.55$ を当該階の $\bf Ds$ とする。

■補足説明:表の文章が変更されています。 小幅パネル架構大版パネル架構①は、Ds=0.4~0.55が Ds=0.4に緩和されています。 大版パネル架構②は改正前と同様です。

改正前

	無開口壁パネル等の長さ		
耐力壁の構造	90cm以上1.5m以 下の場合 1.5mを超え2.0m以 下の場合 2.0mを超える場合		
小幅パネル架構 大版パネル架構①	0.4	0.5	0.55
大版パネル架構②	0.55		

この表において、Dsを算定する階における耐力量の構造及び無関口壁パネル等の長さについて、異なる区分のものが混在する場合は、異なる区分ごとの数値のうち最大の数値を当該階のDsとする。

3:

第九 許容応力度等計算と同等以上に安全を確かめることができる構造計算(ルート2)

改正後	改正前
令第八十一条第二項第二号イに規定する許容応力度 等計算と同等以上に安全性を確かめるkとができる構造 計算は、次の基準に従った構造計算とする。	改正なし
一 令第八十二条の六に定めるところによる。	一 改正なし
■補足説明:許容応力度計算、層間変形角1/200以下の確認、剛性率0.6以上の確認、偏心率0.15以下の確認及び屋根ふき材等の構造計算が規定されています。	
	34

第九 許容応力度等計算と同等以上に安全を確かめることができる構造計算(ルート2)

- 二 令第八十二条第一号の規定により計算した当該階の構造耐力上主要な部分に生ずる令第八十八条第一項の規定による地震力による応力の数値に、次に掲げる構造耐力上主要な部分の種類に応じてそれぞれ次に定める応力割増し係数を乗じて得た数値を当該応力の数値として令第八十二条第二号及び第三号に規定する構造計算を行うこと。
- イ 引張接合部(上下階の壁パネル相互又は壁パネルと床版の接合部に限る。)及びせん断応力を負担する接合部(以下「せん断接合部」という。)耐力壁の構造に応じて次の表に掲げる数値以上の数値とする。
 - ■補足説明:表の文章が変更されています。

- 二 令第八十二条第一号の規定により計算した当該階の構造耐力上主要な部分に生ずる令第八十八条第一項の規定による地震力による応力の数値に、構造耐力上主要な部分の種類に応じて次に掲げる応力割増し係数を乗じて得た数値を当該応力の数値として令第八十二条第二号及び第三号に規定する構造計算を行うこと。
- イ 引張接合部(第五第三号イ(3)(i)(イ)に掲げる部分の接合部を除く。)及びせん断応力を負担する接合部(以下「せん断接合部」という。) 二・五以上の数値とする。

35

第九 許容応力度等計算と同等以上に安全を確かめることができる構造計算(ルート2)

改正後 改正前 イの続き イの続き 改正により新設 耐力壁の構造 数値 第五第三号イまたはロに掲げ る基準に適合するもの 2.0 (小幅パネル架構 大版パネル架構①) 第五第三号ハに掲げる基準 2.5 **に適合するもの** (大版パネル架構②) この表において応力割増し係数を算定する階における耐力壁の構造について、異なる区分のものが混在する場合は、2.5を当該階の応力割増し係数とする。 ■補足説明:基礎と壁パネル以外の緊結部分につい て、小幅パネル架構、大版パネル架構①は、応力割 増し係数が、2.5から2.0へと緩和されています。 大版パネル架構②は改正前と同様です。 36

第九 許容応力度等計算と同等以上に安全を確かめることができる構造計算(ルート2)

改正後

ロ イ以外の構造耐力上主要な部分(壁パネルと小屋 組又は屋根版の引張接合部を除く)。 次に掲げる 基準に適合する場合にあっては耐力壁の構造に応 じて次の表に (中略) 二・五以上の数値

耐力壁の構造	数值
ロ(2)(i)に 適合するもの (小幅パネル架構 大版パネル架構①)	1.0
ロ(2)(ii)に適合するもの (大版パネル架構②)	1.8

この表において応力割増し係数を算定する階における耐力壁の構造について、異なる区分のものが混在する場合は、1.8を当該階の数値とする。

■補足説明:基礎と壁パネルの緊結部分において小幅パネル架構、大版パネル架構①は、壁長さに応じて1.3~1.8の応力割増し係数が規定されていましたが、壁長さに関係なく1.0に緩和されています。

改正前

ロ イ以外の構造耐力上主要な部分 次に掲げる基準に適合する場合にあっては耐力壁の構造及び 無開口壁パネル等の長さに応じて次の表に(中略)二・五以上の数値とする。

	無開口壁パネル等の長さ		無開口壁パネル等の長さ	
耐力壁の構造	90cm以上1.5m以 下の場合	1.5mを超え2.0m以 下の場合	2.0mを超える場合	
ロ(2)(i)に 適合する もの 小幅パネル架構 大版パネル架構①	1.3	1.6	1.8	
ロ(2)(ii)に 適合する もの 大版パネル架構②	1.8			

この表において、応力割増し係数を算定する階における耐力壁の構造及び無関口壁パネル等の長さについて、異なる区分のものが混在する場合は、異なる区分ごとの数値のうち最大の数値を当該階の応力割増し係数とする。

37

第九 許容応力度等計算と同等以上に安全を確かめることができる構造計算(ルート2)

改正後 改正前 前項に定める基準に従った構造計算は、次の各 2 改正により新設 号に掲げる引張接合部が、当該各号に定める基 準に適合する場合に適用する。 - CLTパネル工法を用いる建築物等の最下階の壁 一 改正により新設 パネルと基礎又はこれに類する部分との接合部 当該接合部の引張応力に対して有効な部分の 終局引張耐力時の変形量が四センチメートル以 上で、伸び率が十パーセント以上であること。 二 改正により新設 - 上下階の壁パネル相互の接合部又は壁パネル と床版との接合部 当該接合部の引張応力に対して有効な部分の 終局引張耐力時の変形量がニセンチメートル以 上で、伸び率が十パーセント以上であること。 ■補足説明:第2項第一号、第二号が新設され、接合 部の性能が規定されました。

改正後	改正前
令第八十一条第三項に規定する令第八十二条各号及び令第八十二条の四に定めるところによる構造計算と同等以上に安全性を確かめることができる構造計算は、次の各号に定まる基準のいずれかに従った構造計算とする。	改正なし
ー 次に定めるところによること。	一 改正なし
イ 令第八十二条各号及び令第八十二条の四に定 めるところによること。	1
□ 令第八十八条第一項に規定する標準層せん断力係数を〇・三以上として計算した地震力によって構造耐力上主要な部分(耐力壁を除く。)に生じる力を計算して令第八十二条第一号から第三号までに規定する構造計算を行うこと。	П
■補足説明:壁量の検討以外は、標準層せん断力係数0.3を用いて許容応力度設計を行うこと。及び、屋根ふき材等の構造計算をすることが規定されていませ	
す。	39

改正後	改正前
ハ 令第八十二条の六第二号口に定めるところにより張り間方向及び桁行方向の偏心率を計算し、それぞれ○・一五を超えないことを確かめること。ただし、偏心率が○・一五を超える方向について、次のいずれかに該当する場合にあっては、この限りでない。	ハ、改正なし
(1)(以下略)・・・・ ■補足説明:偏心率が0.15を超え0.3以下の場合 は、告示第1792号第7の表2のFeの数値を乗じた 数値以上として令第82条第1号から第3号までの 計算をして安全が確かめられた場合は可と規定し ています。	(1) 改正なし(2) 改正なし
(2)(以下略)・・・・・ ■補足説明:偏心率が0.15を超え0.3以下の場合 は、ねじれ補正係数を乗じて令第82条第1号から 第3号までの計算をして安全が確かめられた場合 は可と規定しています。	
二 前号イに定めるところによる。	<u>二 改正なし</u> 40

改正後	改正前
2 前項第一号に定める基準に従った構造計算は、 (以下、略)・・・・	2 前項の場合において、同項第一号に定める基準に 従った構造計算は、(以下、略)
一 耐力壁の構造が、第五第三号イ又は口に掲げる基準に適合するものであること。	一 改正なし
二 耐力壁として設ける無開口壁パネル又は有開口壁パネルの垂れ壁部分、腰壁部分若しくは袖壁部分(以下この号において「垂れ壁部分等」という。)であって、第四第二号ハに該当するものにあっては、無開口壁パネル又は有開口壁パネル又は有開口壁パネルの垂れ壁部分等に設けた開口部等の寸法は二十五センチメートル角以下とするとともに、無開口壁パネル又は有開口壁パネルの垂れ壁部分等が構造耐力上安全であるよう当該開口部等を適切な位置に設けること。 ■補足説明:耐力壁パネルに25cm角以下の開口部等を設けることができる緩和がされています。	二 耐力壁として設ける無開口壁パネル又は有開口壁パネルの袖壁部分、垂れ壁部分若しくは腰壁部分に第四第二号ハに該当する開口部等を設ける場合にあっては、当該開口部等の寸法は、二十四センチメートル角以下であること。
	41

第十 令第八十二条各号及び令第八十二条の四に定めるところによる構造計算と同等以上に安全を確かめることができる構造計算(ルート1)

改正後	改正前
三 耐力壁として設ける無開口壁パネル等の下階に、 次に掲げる基準に適合する無開口壁パネル等を 耐力壁として設けること。	一 改正なし
イ 上階の無開口壁パネル等と同じ長さ、かつ、同寸法 以上の厚さであること。	1
ロ 接合部(第五第三号イ(3)(i)(イ)に掲げる部分の 接合部を除く。)は、上階の無開口壁パネル等の接 合部と同等の耐力及び変形性能を有するものであ ること。	
■補足説明:耐力壁は、上下階の長さを同じとした連 層壁とし下階は上階と同じか厚い耐力壁とすること が規定されています。	

改正後	改正前		
2項続き 四 各階の耐力壁として設ける無開ロパネル等の長さは、次の式に適合するものとすること。ただし、特別な調査又は研究の結果に基づき、当該耐力壁の脚部における曲げモーメントを適切に評価して算出することができる場合においては、当該算出によることができる。	2項続き 四 各階の耐力壁として設ける無開口パネル等の長さは、次の式に適合するものとすること。		
(中略) (長さが九十センチメートル以上二メートル以下であるものに限る。) (中略) (長さが九十センチメートル以上四メートル以下で高さが五十センチメートル以上のものに限る。	(中略) (長さが九十センチメートル以上二メートル以下であるものに限り、第二号の規定による開口部等を設けたものを除く。) (中略) (長さが九十センチメートル以上四メートル以下で高さが		
■補足説明:耐力壁の許容せん断耐力を、層せん断力が作用することで生じる各壁の転倒モーメントから算定することができることが追加されています。また、第2号の開口部を設けたパネルを耐力壁に採用できる緩和がされています。	五十センチメートル以上のものに限り、第二号の規定に よる開口部等を設けたものを除く。)		

改正後	改正前		
2項	2項		
五 第八第二号ホ <mark>及びへ</mark> に掲げる基準に適合すること。	五 第八第二号ホ掲げる基準に適合すること。		
■補足説明:床版、屋根版の脱落防止の規定が追加されています。			
六 耐力壁として設ける壁パネルは、直行集成板規格 第三条に規定する強度等級S60-3-3若しくはMx60 -5-5に該当する直行集成板でラミナの厚さが24ミリ メートル以上36ミリメートル以下のもの又はこれと 同等以上の耐力を有するもの使用すること。	六改正なし		
	44		

改正後	改正前
2項 七 次に掲げる引張接合部が、それぞれ次に掲げるものであること。 イ CLTパネル工法を用いる建築物等の最下階の壁パネルと基礎又はこれに類する部分との接合部次のいずれかに適合するもの。 (1) U形の鋼材その他これに類するものにJIS B 1220(構造用転造両ねじアンカーボルトセット)-2010のうちABR490に適合するもの(以下単に「ABR490」という。)でねじの呼びがM16のボルトを有効長さ40センチメートル以上となるように緊結したもの ■補足説明:文章が変更されています。	2項 七 引張接合部が、緊結する部分に応じ、それぞれ次に掲げるものであること。 イ 第五第三号イ(3)(i)(イ)に掲げる部分次のいずれかに適合するもの。 (1) 改正なし

改正後	改正前	
2項第七号イの続き	2項第七号イの続き	
(2) ABR490でねじの呼びがM16のボルトを有効長さ40センチメートル以上確保して、直行集成板に鋼板を介して終局引張耐力が86キロニュートン以上となるように緊結したもの。	(2) 改正なし	
ロ 上下階の壁パネル相互の接合部又は壁パネルと 床版との接合部 次のいずれかに適合するもの。	ロ 第五第三号イ(3)(i)(ロ)に掲げる部分 次のいずれかに適合するもの。	
(1) U形の鋼材その他これに類するものにABR 490でねじの呼びがM20以上のボルトを有効 長さ20センチメートル以上を確保して接合した 金物を、直行集成板に終局引張耐力が135キロニュートン以上となるように緊結したもの。	(1) 改正なし	
■補足説明:文章が変更されています。	46	

改正後	改正前
2項第七号ロの続き	2項第七号ロの続き
(2) ABR490でねじの呼びがM20のボルトを有効長さ20センチメートル以上確保して、直行集成板に鋼板を介して終局引張耐力が135キロニュートン以上となるように緊結したもの。	(2) 改正なし
(3) 第八第二号二(2)に定める基準に適合し、かつ、 135キロニュートン以上の終局引張耐力を有す るもの	(3) 改正なし
ハ 壁パネルと小屋組又は屋根版との接合部 二十五 キロニュートン以上の終局引張耐力を有するもの	ハ 新設
■補足説明:耐力壁パネルと小屋組、屋根版との接合部の規定が「ハ」で新設されています。 改正により終局引張耐力135kNが25kNに緩和され、 金物の合理化が可能となりました。	47

改正後	改正前
八 壁パネル相互を緊結する場合にあっては接合部の 短期に生ずる力に対する許容せん断耐力が一箇 所当り五十二キロニュートン以上、床パネル相互 又は耐力壁線上に設けるはりその他の横架材相 互を緊結する場合にあっては、床パネル相互が接 する線と耐力壁線が交さする部分に限る。)の短期 に生ずる力に対する許容引張耐力が一箇所当り 五十二キロニュートン以上となるようにすること。	八 改正なし 48
	40

改正後	改正前
九 耐力壁である壁パネルと次に掲げる部分を緊結する場合にあっては、金物その他これに類するものの間隔を一メートル以下として当該壁パネルの部分に配置するとともに、当該接合部の短期に生ずる力に対する許容せん断耐力が次に掲げる部分に応じて、それぞれ次に掲げる数値以上となるようにすること。	九改正なし
イ 基礎又は土台 一箇所当り四十七キロニュートン	イ 改正なし
ロ 床版、小屋組又は屋根版 一箇所当り五十四キ ロニュートン	口 改正なし
	49

第十一 耐久性等関係規定の指定

改正後	改正前
令第三十六条第一項に規定する耐久性等関連規 定として、第七に定める安全上必要な技術的基準 を指定する。	改正なし
	50

第十二 令第三十六号第二項第一号の規定に基づく技術的基準の指定

改正後	改正前
令第三十六条第二項第一号の規定に基づき、第八に規定する構造計算を行った場合に適用を除外することができる技術的基準として、第三第二号、第四、第五(第三号イ(3)前段、ロ(3)前段及びハ(2)前段を除く。)及び第六に定める技術的基準を指定する。	
■補足説明:ルート3により適用を除外できる内容は以下になります。 第三第二号は、土台の幅を耐力壁の厚さと同寸法以上とする規定が該当します。 第四は、床版のすべての規定が該当します。 第五(第三号イ(3)前段、口(3)前段及びハ(2)前段を除く。)は、構造耐力上主要な部分である床版その他の部分と構造耐力上有効に緊結しなければならないと規定している箇所を除いた第五の規定が該当します。 第六は、小屋組等のすべての規定が該当します。	
	51

テキスト 2 CLT 関連告示解説セミナー

テキスト2

CLT関連告示解説セミナー

「CLT関連告示等解説書(2016年発行)」のCLTパネル工法 技術基準告示第611号 告示の条文、逐条解説部分の補足説明

(2022年11月8日に施行された告示改正内容以外の部分)

2024年1月12日

1

(1)告示第611号 第四 床版 第一号

条文

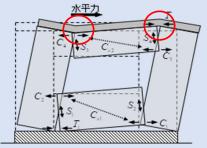
床版は、水平力によって生じる力を構造耐力上有効に耐力壁(最下階に床版を設ける場合にあっては、土台 又は基礎)に伝えることができる**剛性及び耐力を有する構造**としなければならない。ただし、建築物に作用する 水平力を負担しない部分については、この限りでない。

・ 告示第611号 第四 床版 第一号の逐条解説文

床版は・・・他の木質構造建築物と同様に、<u>製材・集成材等による軸材(梁・根太等)と構造用合板等の面材によって構成しても良い</u>。ただし、・・・水平力によって生じる力に対して水平構面自体が有効に抵抗し、かつ、それらの力を耐力壁等の他部材に有効に伝達できる剛性・耐力が必要である。・・・・

水平力によって床版に生じる力として、他の木質構造建築物と同様に、水平構面としての面内せん断力及び水平構面端部の引張力が挙げられる。また、耐力壁線の水平変形が不均一になることを防止するために面内剛性を確保することも重要である。・・・

告示第611号 第四 床版 第一号の補足説明


逐条解説では、床構面に生じる応力と構面の剛性について記載がありますが、軸材と面材を用いてどのように構成するかは示されていません。ここでは、軸材と面材でどのように構成するかについて補足説明します。

床構面を軸材と面材で構成した場合は、床構面に作用する水平力に対して「設計施エマニュアル 第皿部第4章4.1.2応力計算」により、面内に生じるせん断力、水平構面端部に生じる引張力に対 して構造耐力上安全な設計を行うことになります。

また、

床構面を軸材と面材で構成した場合は、耐力壁線上の軸材は頭つなぎとして機能するので軸材 相互の継手部と下図の赤丸の部分には、第四第四号で規定されている「当該部分に生ずる引張 力」が作用するので、軸材の上面や側面に引張接合部を設ける必要があります。

また、大地震時に軸材が損傷した場合には、<u>軸材に取り付く部材が脱落しない措置を講じる</u>必要があります。

3

① 軸材(梁)と構造用面材で床版を構成した例

来中力を負担した壁バネルと垂れ壁バネルに 生じる面外の突き上げ力に対する梁の補強 を左右の床バネルに伝えられるようにするため。 および、水平角の上で見る引張力に 抵抗するために引張金物を配置する。

大地震時に壁パネルと垂れ壁パネルの突合せ部分の上で軸材が損傷しても、耐力壁線に作用しているせん断力を隣接する軸材に伝達できるように引張金物を配置します。

水平構面端部の引張力に抵抗する金物

また、頭つなぎとなる軸材に取り付く部材は、脱落しない様に金物などで緊結します。上図の引張金物は、クロスマーク表示金物STFで納まらない場合には特注の引張金物になります。

ルート1を採用して設計する場合は、第十第2項第八号で規定している一箇所当り短期許容引張耐力が52kN以上の引張金物を配置することになります。 引張金物は、壁パネル下部で床面との間に隙間が生じるなど、構造上の支障が生じないように設計します。 床パネル相互の面内せん断力に対する緊結は、合板スプラインを用い床構面端部に生じる引張力及び壁パネルと垂れ壁パネルの突合せ部分の上で生じる引張力に対しては、引張金物で床パネル相互を緊結します。

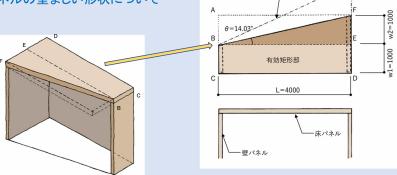
② 床パネルで床版を構成した例

ルート1を採用して設計する場合は、クロスマーク表示金物 STFを用います。

(2)告示第611号 第四 床版 第二号

条文

床版に一の直交集成板で次のイから小までのいずれかに該当するものを使用する場合にあっては、当該直交 集成板の外層ラミナの方向は、当該直交集成板の長辺方向又は短辺方向と平行でなければならない。


イ 形状が矩形であり、構造耐力上支障のある開口部又は欠き込み(以下「開口部等」という。)を設けないもの口(省略)

- ハ 形状が矩形であるものに開口部を設けたもので、かつ、当該直交集成板の<u>剛性及び耐力の低減について特別な調査又は研究の結果に基づき算出した上で構造耐力上主要な部分として構造計算を行い構造耐力上安全であることが確かめられたもの</u>
- · 告示第611号 第四 床版 第二号の逐条解説文

図 2.2.4-2 第二号の規定に適合しない床パネル

・ 告示第611号 第四 床版 第二号の補足説明 ここでは、台形パネルの望ましい形状について 補足説明します。

B-Gの一点鎖線が θ が30度の場合の辺です。

この場合、E-Gの長さが2.0mを超えるので、BGEの荷重を有効矩形に円滑に伝えて支持するには条件が厳しくなります。

よって、有効矩形BCDEでBEFの荷重を支持する場合は、<u>E-Fの寸法が有効矩形の幅B-Cの寸法を超えないような形状が望ましい形状</u>です。

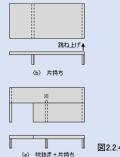
(3)告示第611号 第四 床版 第三号

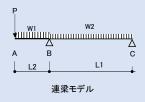
条文

床版に床パネル(一の直交集成板で、前号イからハまでのいずれかに該当するもの又はその形状が四角形であり、かつ、その剛性及び耐力の低減について特別な調査若しくは研究の結果に基づき算出した上で構造耐力上主要な部分として構造計算を行い構造耐力上安全であることが確かめられたものをいう、以下同じ。)を使用する場合にあっては、床パネルを、平行する二つの壁又ははりによって、構造耐力上有効に支持しなければならない。ただし特別な調査又は研究の結果に基づき、安全上及び使用上支障のないことが確かめられた場合にあっては、この限りではない。

告示第611号 第四 床版 第三号の逐条解説文

・・・CLTパネル工法建築物についても他構造と同様に平19国交告第594号が適用され、同告示第二第三号ニの規定により出が2mを超える片持ち部分には、鉛直震度を1.0以上とした検定が必要であることに注意する。・・・・




図2.2.4-3 床パネルの支持方法

7

告示第611号 第四 床版 第三号の補足説明

ここでは、跳ね出しを有する床パネルの設計について補足説明します。

上図において長期では、床面に作用する鉛直荷重が一様な場合にAB間距離>BC間距離であればC点に跳ね上げ力が生じます。

ルート1を採用する設計を行う場合は、長期、短期で生じる跳ね上げ力は、想定していない力として壁パネル下部に取り付く引張接合部に作用することになるので、跳ね上げ力を生じさせない設計が求められます。

長期の場合は、AB間距離:BC間距離の比を、1:1.5~2.0程度にすることで跳ね上げ力が生じない設計となります。 跳ね出し部分を有する床パネルの設計は、B点固定端モデルではなく支点反力の確認が長期、短期ともできるAC 間の連梁モデルとして設計することが望まれます。

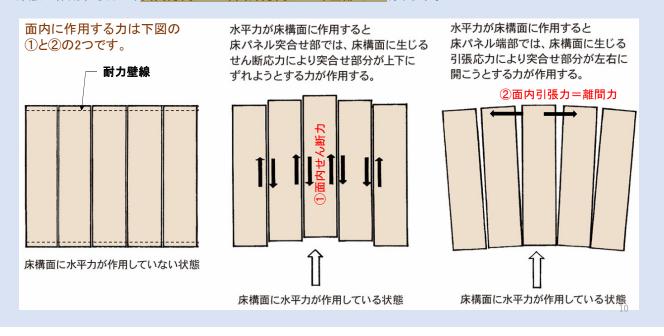
(4)告示第611号 第四 床版 第四号

条文

床版に床パネルを使用する場合にあっては、<u>床パネル相互は、構造耐力上有効に緊結</u>しなければならない。 この場合において、<u>床パネル相互が接する線と耐力壁線が交さする部分は、当該部分に生ずる引張応力を</u> 伝えるように緊結しなければならない。

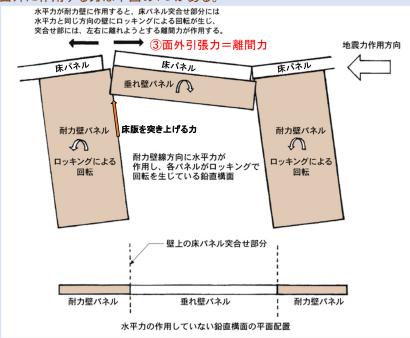
告示第611号 第四 床版 第四号の逐条解説文

第一号に解説したように、建築物に水平力が作用すると床版に面内のせん断応力と引張応力が生じる。 床パネル相互の接合部においてもこれらの力が安全に伝達されなければならない。既往の振動台実験試験体および設計事例の多くでは写真2.2.4-1のように、<u>せん断接合部としてビス打ち合板スプライン(やといざね)、引張接合部としてビス打ち鋼板</u>が用いられている。


写真2.2.4-1 床パネル相互接合部の例

9

· 告示第611号 第四 床版 第四号の補足説明


ここでは、床版に作用する力と床構面の設計について補足説明します。

床版に作用する力は、**面内方向に2つ、面外方向に1つ、全部で3つ**あります。

耐力壁パネル、垂れ壁パネルに水平力が作用すると。床構面に対して面外方向に突き上げる力が作用します。

面外に作用する力は下図の1つがある。

Ι.

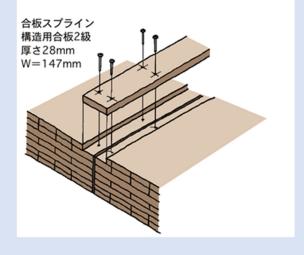
逐条解説文:・・・せん**断接合部としてビス打ち合板スプライン(やといざね)、引張接合部としてビス打ち鋼板・・・**

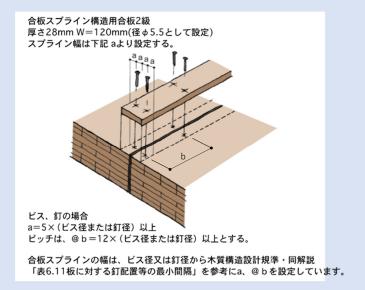
スプライン(spline):長い薄板

やといざね:2材を接合するにあたって母材以外の材料を使う方法

床パネルを支持している耐力壁線 「大学スプラインを配置」 「株パネル突合せ部分に関き防止金物を配置」 「株パネル相互が接する線とすれ防止のための下が力壁線が交さする部分」

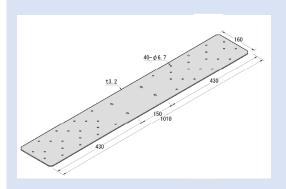
水平構面の構成に必要な接合


- ①面内せん断力に対しての接合=合板スプライン
- ②面内引張力に対しての接合=ビス打ち鋼板
- ③面外引張力に対しての接合=ビス打ち鋼板


ビス打ち鋼板は、床面内に生じる引張力

壁パネル、垂れ壁パネルの角から床面に 面外方向に作用する力で生じる引張力の 2つの力に抵抗します。

・ せん断接合部に用いるビス打ち合板スプライン(やといざね)の構成例

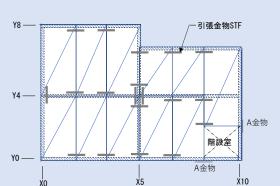

ビス又は釘により合板スプラインで床パネル相互を接合する。 ビス又は釘の間隔は、計算により設計する。

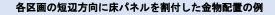
10

• 引張接合部に用いるビス打ち鋼板

引張接合部に用いるビス打ち鋼板は

(公益財団法人)日本住宅・木材技術センターの規格・制定している左図のクロスマーク表示金物のSTFがあります。


形状は、長さ1010mm、幅160mm、厚さ3.2mm 使用するねじ:タッピンねじ 40-STS・C65


耐力は、告示第611号第十第2項第八号で規定している短期 許容引張耐力52kN以上を有しています。

STFは、壁パネル及び周辺の金物を避けて耐力壁線の近くに耐力壁線と平行に配置することになります。

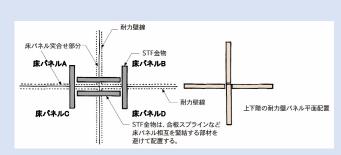
• クロスマーク金物STFの配置例

鋼板配置数は19箇所

鋼板配置数は12箇所

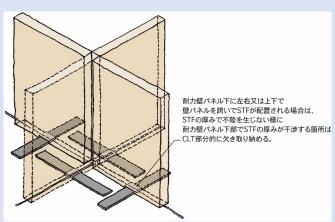
タテ方向に長い床パネルを割付した金物配置の例

右図の床パネル割りは、床パネル幅、長さを左図より大きくして、床パネルの突合せ箇所数を減らしています。


: 耐力壁線部分 : 床パネル部分

また、床版中央の耐力壁交差部X5/Y4は、1枚パネルを跨がせて割付を行い、金物を配置しない様にしています。

床パネルの割付により、引張金物、合板スプラインの数が左右されます。


15

X10

床構面の耐力壁線十字部での引張金物STFの納まりは 耐力壁の端部に取り付く引張金物、耐力壁中央付近に 配置されるせん断金物に干渉しない位置に配置する必 要があります。

せん断金物の位置をずらしてSTFを納めることがあります。

(4)告示第611号 第四 床版 第五号

条文

吹抜きその他床版を設けない部分で外壁に接する部分は、はりを設けることその他の方法により風圧力その他の 外力に対して構造耐力上有効に補強しなければならない。

告示第611号 第四 床版 第五号の逐条解説文

・・・図2.2.4-5のように耐風梁等により外壁面に作用する風圧力に対して有効に補強する。また、耐風梁についても 頭つなぎとしての性能を確保するために、耐風梁端部と床版の間に引張接合部を設ける必要がある。

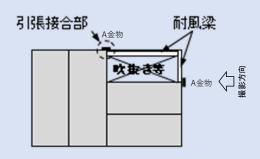
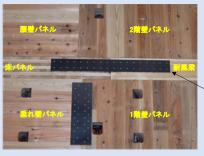



図2.2.4-5 耐風梁の配置例

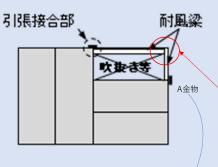
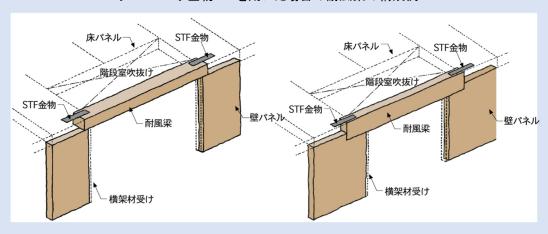

写真の引張金物は クロスマーク金物STFでは ありません。 オリジナルのA金物です。

写真2.2.4-2 耐風梁-床パネル間引張接合部の例

17

· 告示第611号 第四 床版 第五号の補足説明

ここでは、耐風梁の設計について補足説明します。



耐風梁は耐力壁線上の頭つなぎとして機能するので、耐風梁の端 部は、隣接する床パネルに緊結する必要があります。

告示解説書の図には出隅部に金物表示はありませんが、風圧力が作用した際には、耐風梁に作用する力が耐風梁の支点から緊結している耐風梁に伝わるようにしておく必要があるので、金物、ビスなどを用いて交差する耐風梁相互を緊結する必要があります。

告示解説書の左の写真は、上図の側面を示しています。 使用されているA金物はクロスマーク金物ではありません。 クロスマーク金物STFを用いた場合は、ラミナの木口にビスが留め 付けられることになるので、所定の耐力がでません。よって、<mark>床パネ</mark> ル側面にはSTFは、使用できないので注意が必要です。

クロスマーク金物STFを用いた場合の耐風梁の構成例

第十ルート1の設計を採用する場合は、第十第2項第八に「・・・耐力壁線上に設けるはりその他の横架材を緊結する場合にあっては、・・・短期に生ずる力に対する許容引張力が一箇所当り52キロニュートン以上・・・」とあるので、 STFであれば支障のない引張接合部になります。

右図の構成において上階に耐力壁パネルがあり耐力壁端部の引張金物のボルトが干渉する場合及び壁中央部に配置するせん断金物が干渉する場合は、STF金物が納まらないので注意が必要です。 右図で上階に耐力壁を設けたい場合は、告示解説書の写真にあるオリジナルのA金物を側面に配置して設計する方法が簡便です。

告示第611号の告示解説書の補足説明は、以上となります。

本セミナーの内容や告示第611号に対するお問合せなどがありましたら 一般社団法人 日本CLT協会のホームページに 「お問合せ・ご相談」コーナーを設けていますので お気軽にお問合せ下さい。

テキスト3 構造設計の手引き

テキスト3

構造設計の手引き

第1章 ルート1構造計算例(解説付き)

第2章 計算例の設計図書

参考資料1 Mx60-5-5基準強度 · 弹性係数算定

参考資料2 Mx60-5-7基準強度·弾性係数算定

参考資料3 燃えしろMx60-5-5基準強度・弾性係数算定

参考資料4 燃えしろMx60-5-7基準強度・弾性係数算定

参考資料5 仮定荷重資料

1. ルート1構造計算例の解説

1.1 計算例の対象とした建物の概要

ルート1構造計算例の建築物は、対象建物をCLTパネル工法の3階建て共同住宅としています。 防耐火仕様は、1時間準耐火構造としています。よって、施行令第109条の2の2を適用しています。 室内側の壁は、居室に平成28年国土交通省告示第563号を適用した燃えしろ設計を採用しCLT 現わしの壁としています。

設備スリーブは、設備開口を設けられる設備壁を設け、CLT耐力壁パネルには開口を設けていません。設備壁は、製材による軸組と構造用面材で構成としていますが、設計者の選択によってはCLTパネルに設備開口を設ける設計も可能です。その場合は、CLT耐力壁パネルとするか耐力壁としないCLT壁によるか設計者が選択する必要があり、CLTパネルと周辺部材との接合方法は、設計図書で示す必要があります。

1.2 参考図書

- CLT関連告示等解説書(以下、告示解説書)
- CLTを用いた建築物の設計施工マニュアル(以下、設計施工マニュアル)

ルート1計算例(解説付)

【目次】

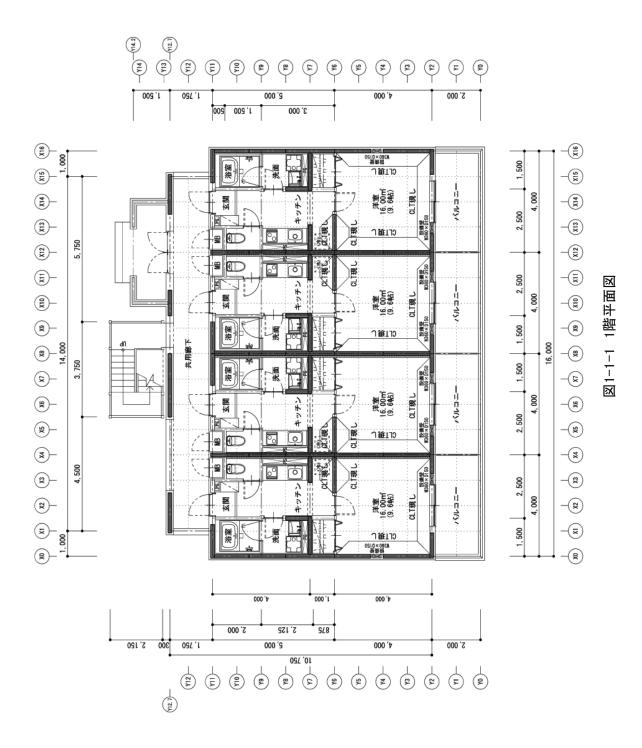
1.	一般事	·項		
	1-1	建築物概要	計算書	1
	1-2	構造設計概要	計算書	22
	1-3	法的合チェックリスト	計算書	24
	1-4	構造計算ルート	計算書	26
	1-5	設計クライテリア	計算書	27
	1-6	準拠図書	計算書	27
	1-7	使用構造材料一覧表	計算書	28
	1-8	使用材料の許容応力度及び許容耐力	計算書	30
2.	荷重			
	2-1	仮定荷重、積載荷重	計算書	33
	2-2	風圧力の算定	計算書	38
	2-3	地震力の算定	計算書	40
	2-4	地震力と風圧力の比較	計算書	43
3.	耐力壁	配置の検討		
	3-1	各階の許容せん断耐力の算定	計算書	44
	3-2	各階各方向の許容せん断耐力の算定	計算書	47
	3-3	水平力に対する壁配置の検定	計算書	48
	3-4	施行令第109条の2の2に規定される層間変形角1/150以内の確認	計算書	49
4.	壁軸力	の算定		
	4-1	各階軸力分担図	計算書	50
	4-2	軸力の算定	計算書	51
	4-3	各階軸力図	計算書	67
5.	偏心率	多の算定		
	5-1	重心の算定	計算書	70
	5-2	剛心の算定	計算書	76
	5-3	重心、剛心の位置	計算書	77
	5-4	偏芯率の算定	計算書	78
6.	断面検	定		
	6-1	壁パネルの検定	計算書	79
	6-2	床・屋根パネルの検定	計算書	89
	6-3	垂れ壁パネルの検定	計算書	100
	6-4	梁の検定	計算書	106
7.	水平構	歯面の検定		
	7-1	耐力壁配置図と各通りの剛性割合の算定	計算書	108
	7-2	水平構面の各通りの負せん断力Pxiの算定	計算書	109
	7-3	水平構面の各階の通りの負せん断力Qi-jの算定	計算書	114
		水平構面の曲げモーメントの算定	計算書	118
	7-5	水平構面の接合部の検定	計算書	133

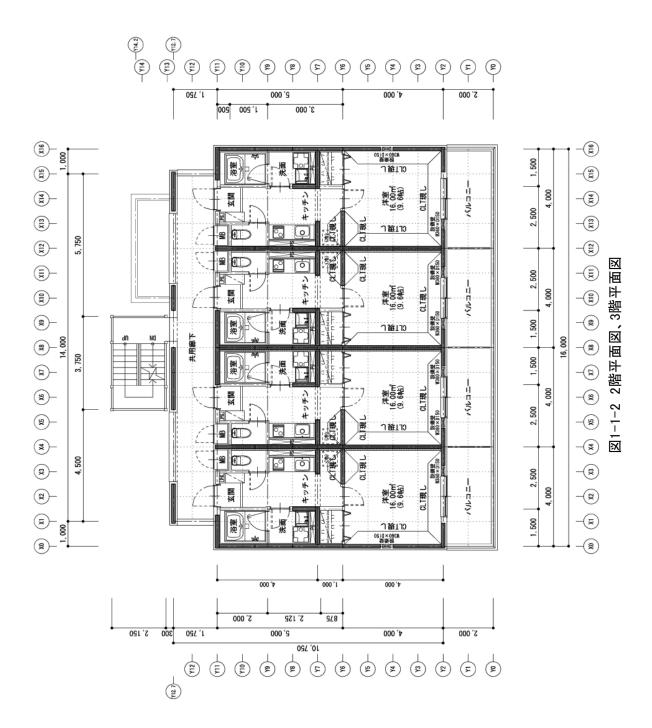
8. 基礎の設計

8-1	接地圧の検定		計算書	140
8-2	地中梁の検定		計算書	151
8-3	底版の検定		計算書	190
8-4	引張金物アンカーボルト	の検定(コ ー ン破壊の検定	計算書	192

1.一般事項

1-1建築物の概要


①建築物概要


建築物の名称	ルート1構造計算例
建設場所	東京都
用途	共同住宅

②建築物構造概要

建築面積	202.64m ²
延べ面積	680.00 m²
階数	3階建て 塔屋なし、地下なし
軒の高さ	8.975m
最高高さ	9.425m
各階階高	2.850m
構造種別	木造 CLTパネル工法
構造形式	壁式構造
多雪区域指定	指定なし 垂直積雪量30cm以下
地盤	関東ローム層(第二種地盤)
基礎	直接基礎(べた基礎)

地盤の種別は、昭和55年建設省告示第1793号第2により ます。

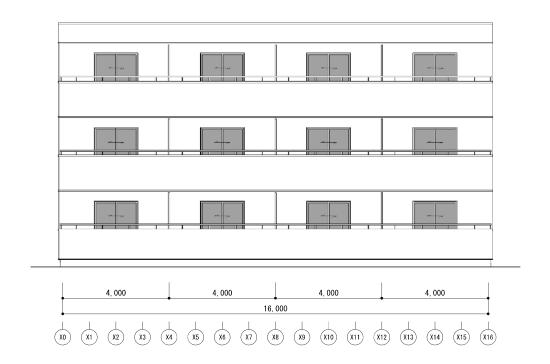


図1-1-3 南立面図

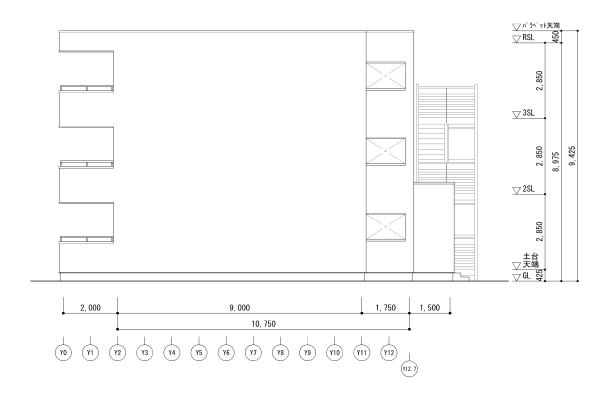
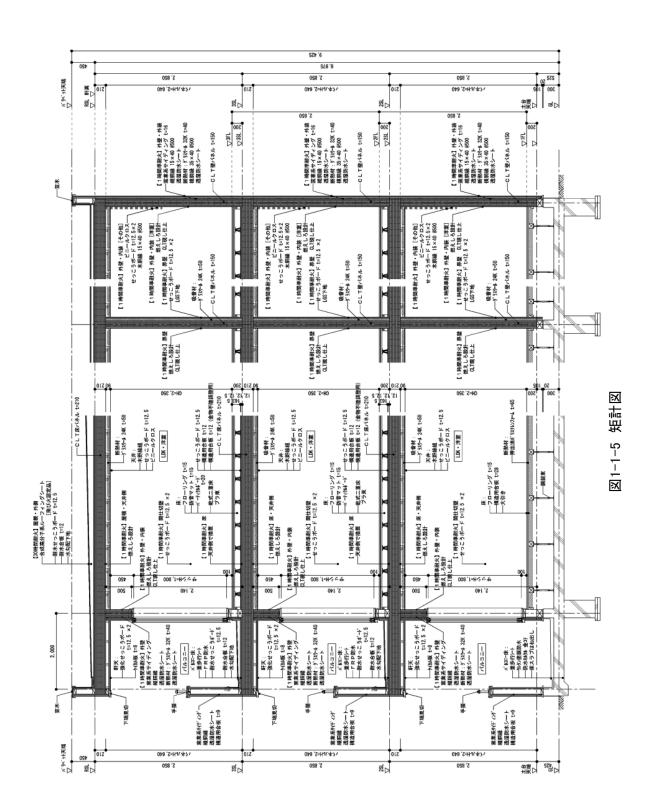
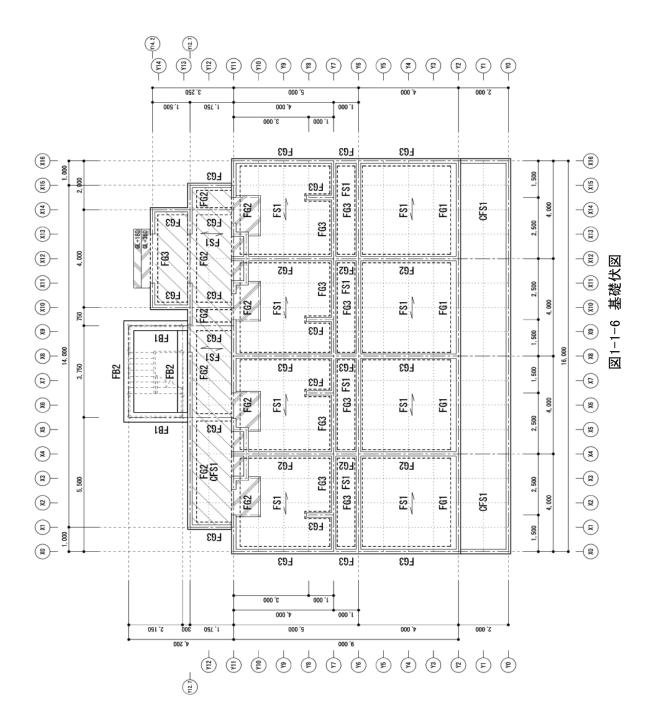
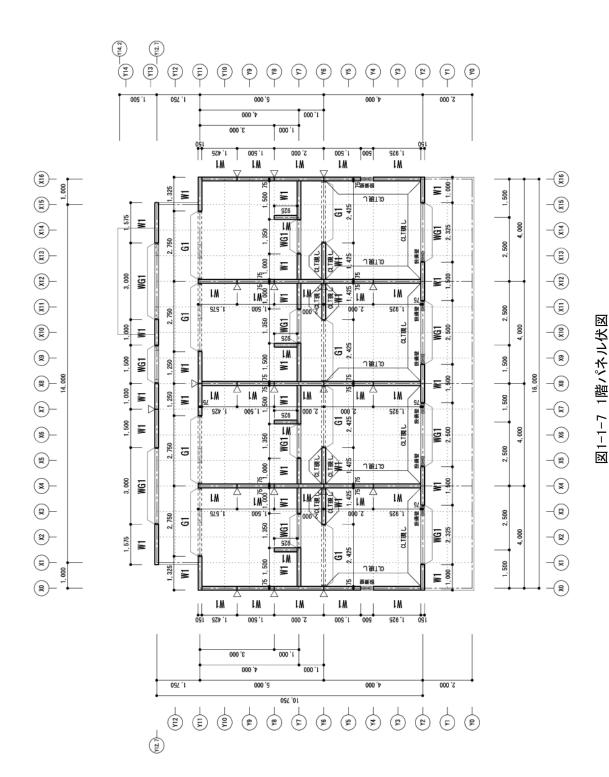


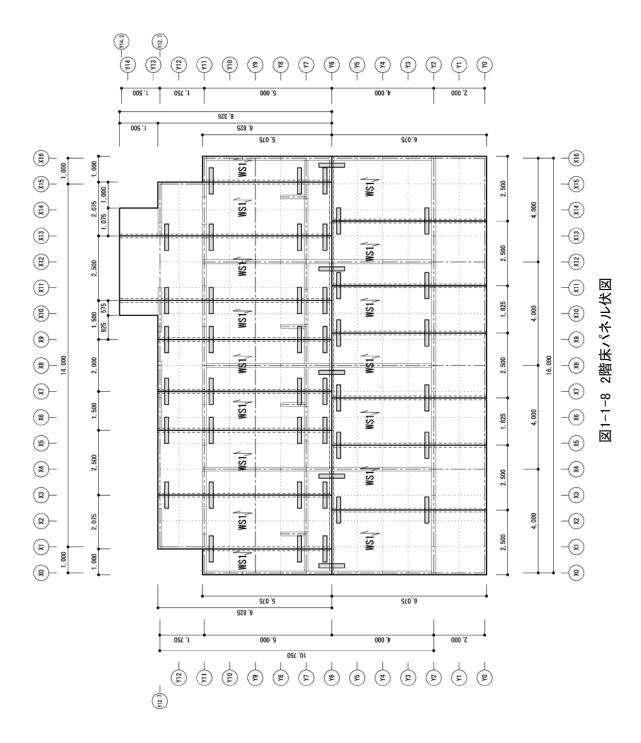
図1-1-4 東立面図

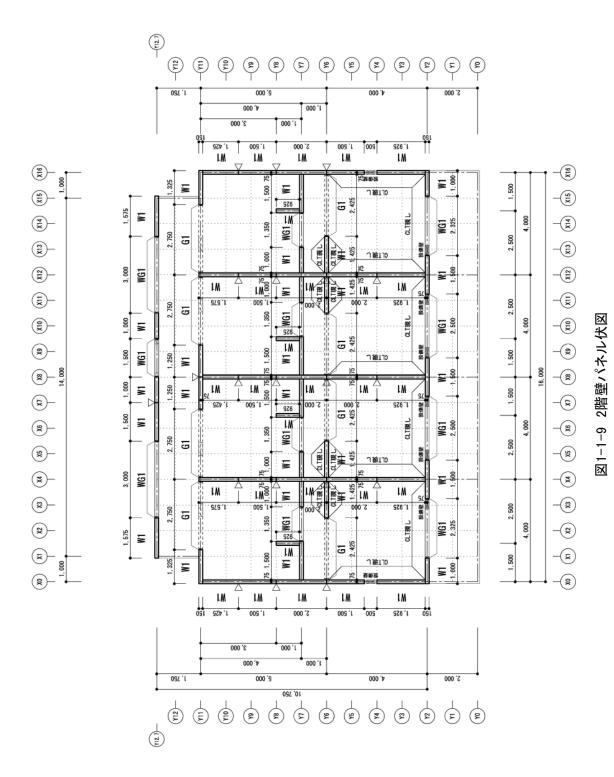
計算書 4

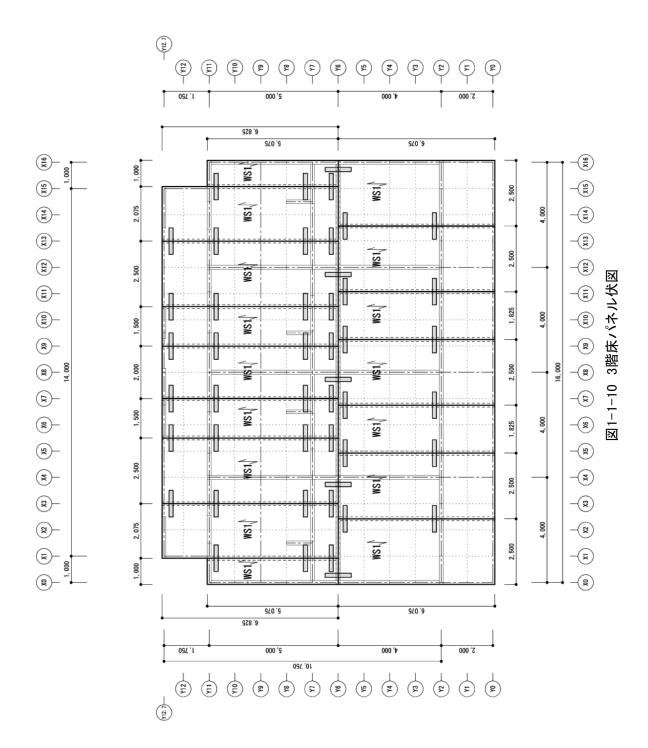



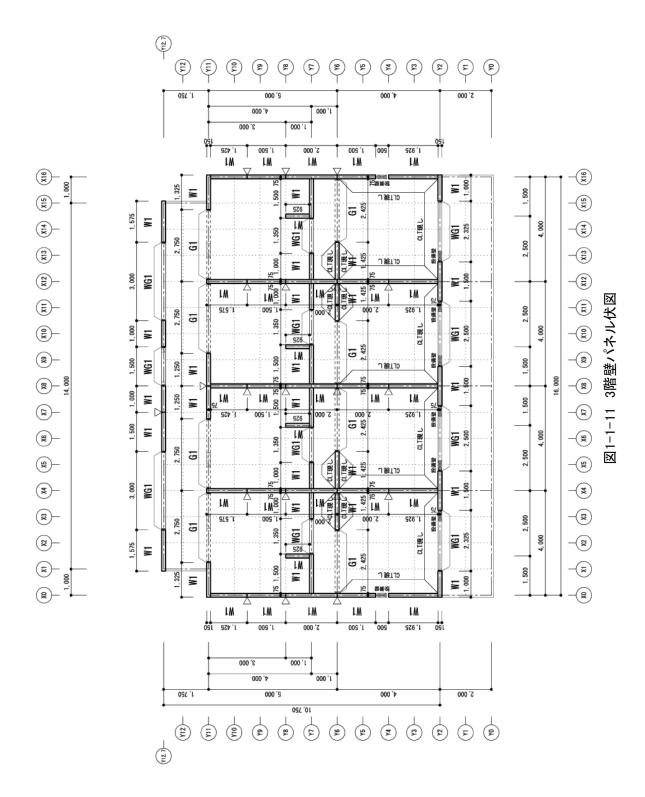

表1-1-1 構造図凡例

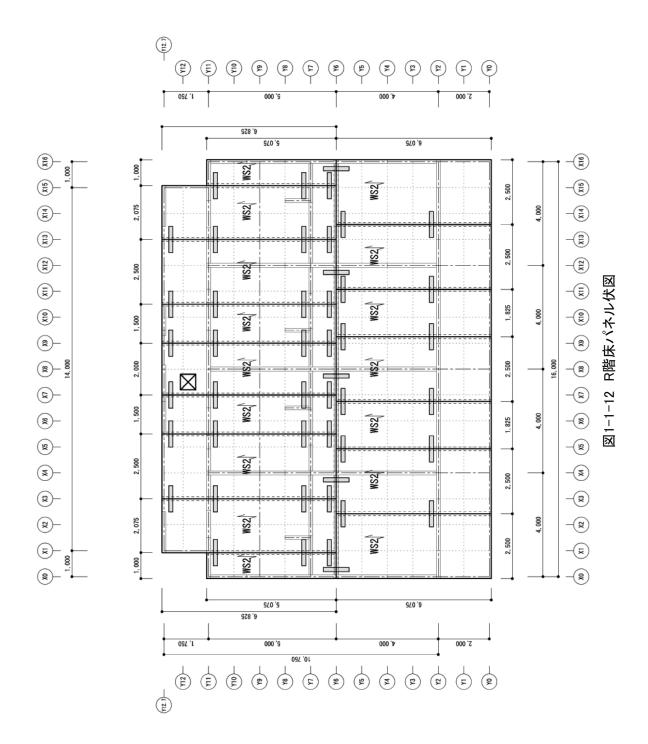
	CLT壁パネル
	設備壁(W=360 D=150)
	CLT垂れ壁
£=====	集成材梁
8	梁受材
211111111	非耐力壁

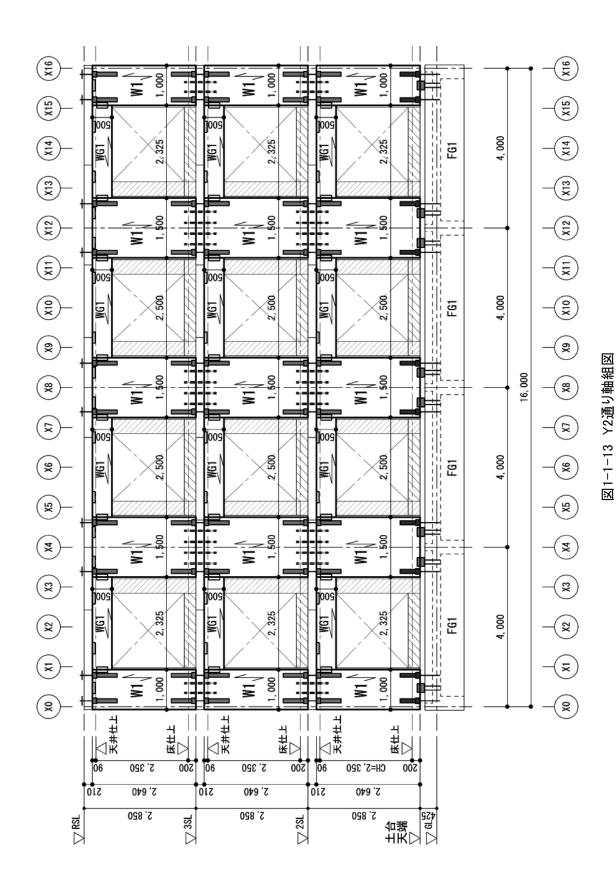

	合板スプライン t=28 W=147 構造用合板 特類 2級
	帯金物 STF
-	最外層ラミナ方向

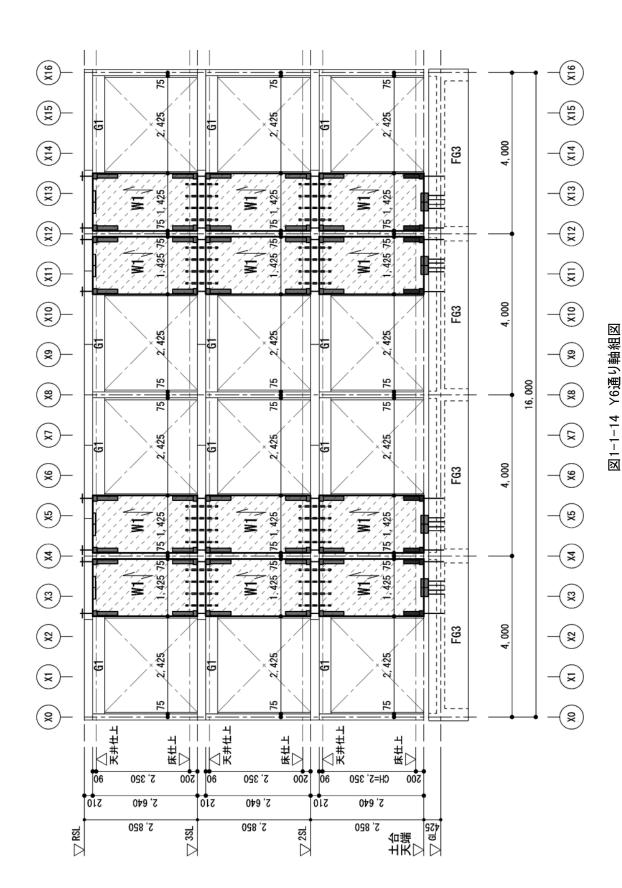

計算書 5



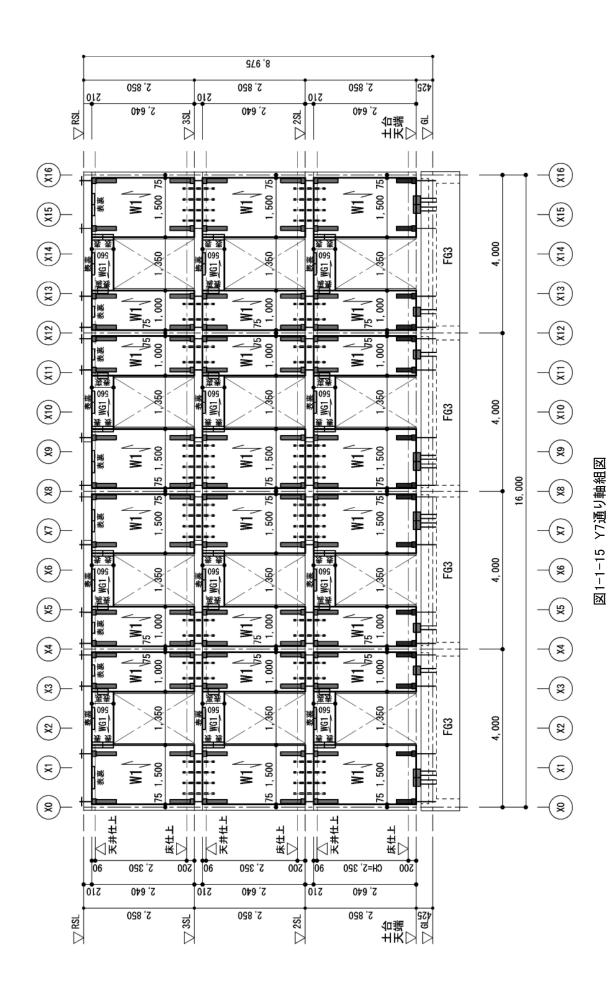

計算書 7

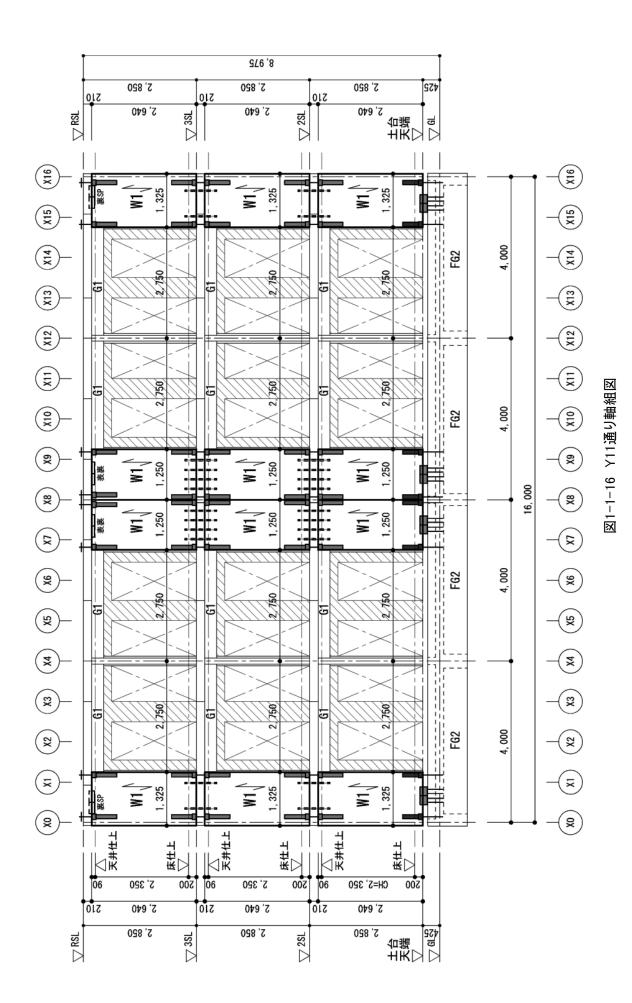


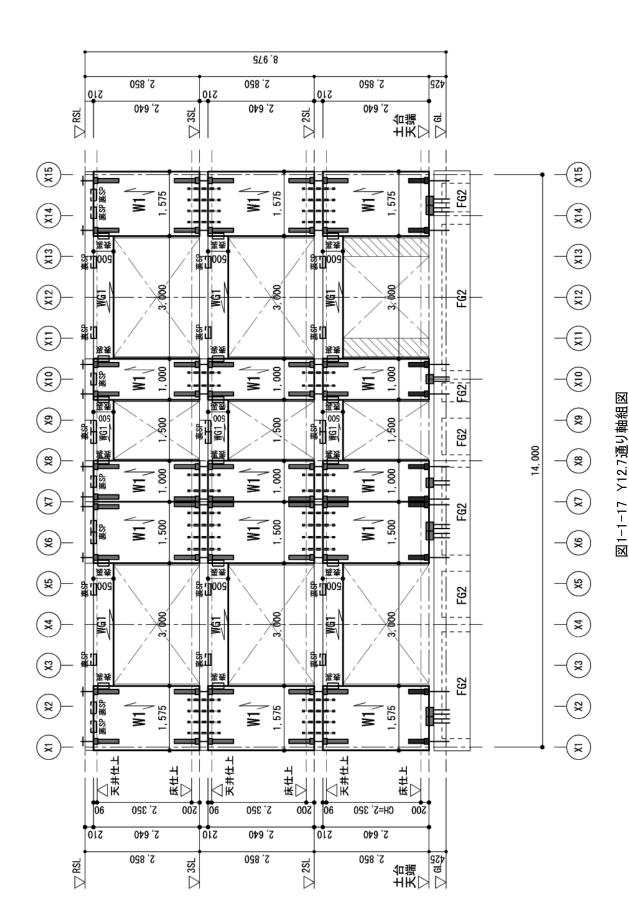

計算書 9

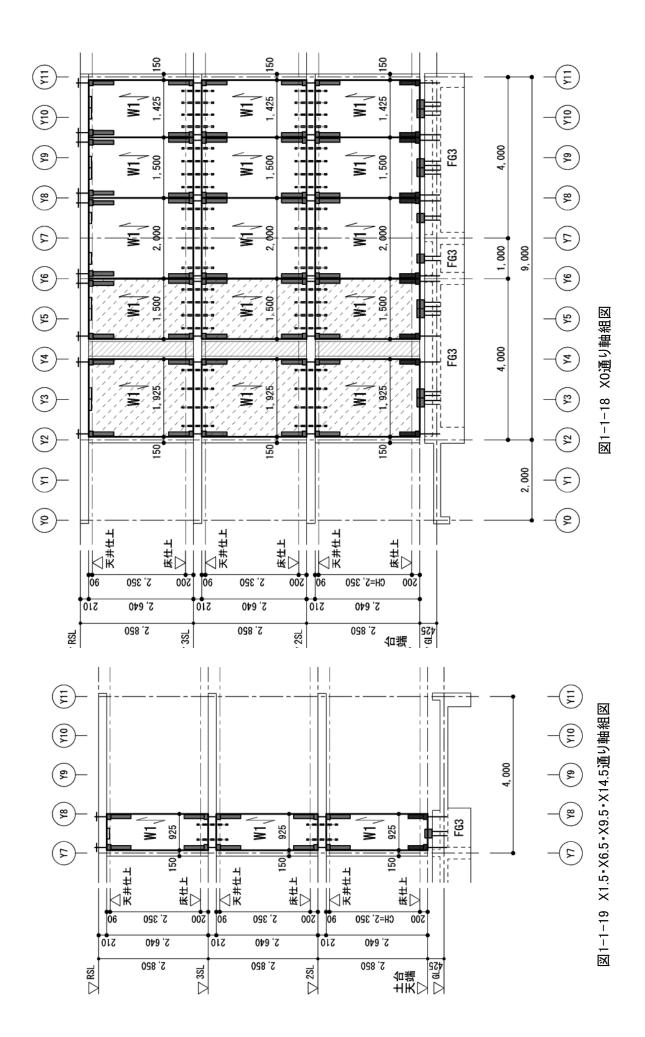


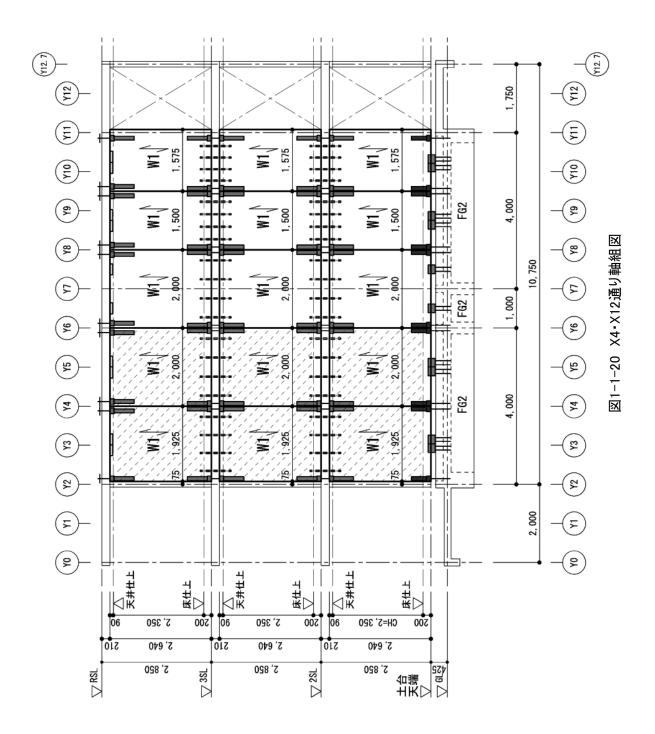
計算書 11

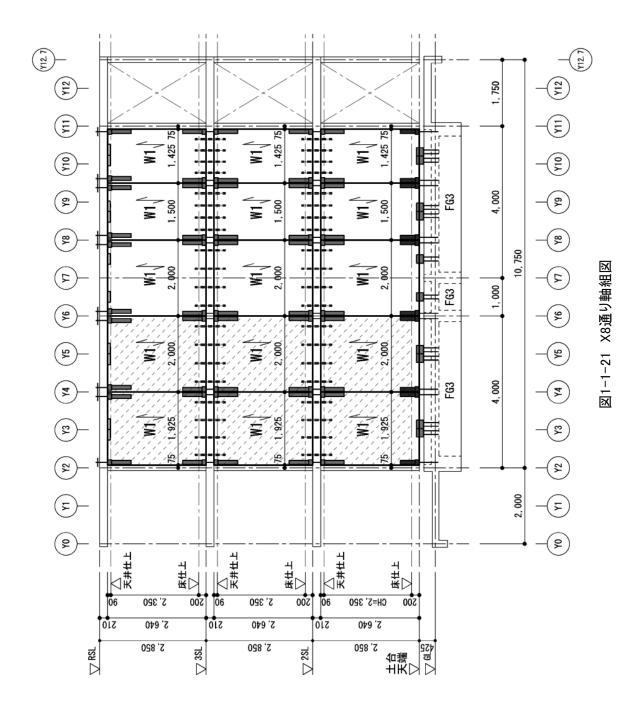


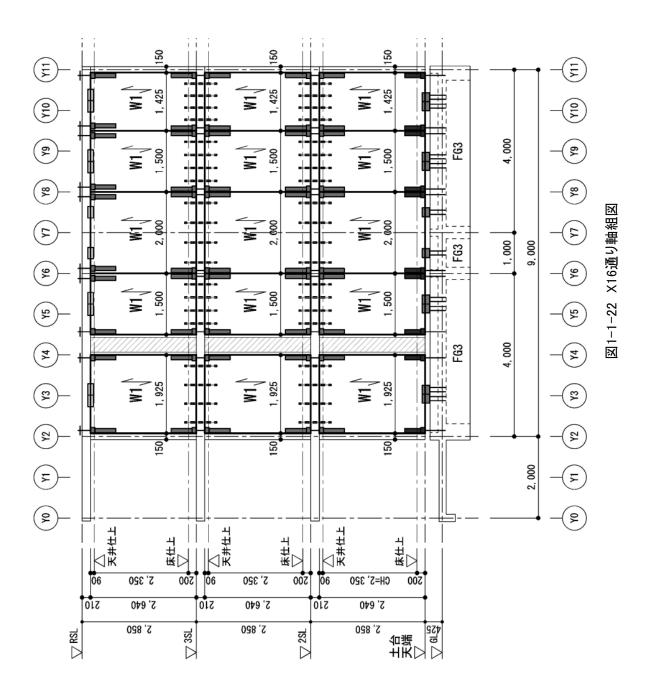

計算書 13


計算書 14


計算書 15


計算書 16




計算書 17

計算書 18

計算書 21

1-2 構造設計概要

- ① 構造概要
- 1) 本建物は、3階建ての共同住宅で構造形式は、直交集成板(CLT)を用いた壁式構造である。 1階床は鋼製束で支持される大引の上に構造用合板を張る構成とし、それ以外の躯体は、CLT で構成している。 基礎はべた基礎とし、階段は自立型の外部鉄骨階段としている。
- 2) 本建物の架構は、平28国交省告示611号第五第三号イに適合する小幅パネル架構を採用している。

袖壁パネル及び垂れ壁パネル、腰壁パネルの強度等級は、Mx60-5-5(厚さ150mm)とし 床版・屋根版については、平28国交省告示611号第四に適合する床版を用いている。床 パネル及び屋根パネルの強度等級は、Mx60-5-7(厚さ210mm)としている。

外層ラミナ方向は、壁パネルが鉛直方向、垂れ壁パネル及び腰壁パネルは水平方向に配置し床パネルの外層ラミナは長辺方向としている。

- 3) 壁パネルと基礎並びに他のパネル相互の接合には、クロスマーク金物を用いている。 以下に各部の接合について記載する。
 - a) 壁パネルと基礎接合の引張抵抗用金物は、基礎にアンカーボルトを埋込みクロスマーク 金物TB-DPにより緊結する。壁パネルとはドリフトピンで接合する。また、アンカーボルトは 告示第611号第十第2項第七号に規定しているABR490を用いる。

壁パネルと基礎接合のせん断抵抗用金物は、クロスマーク金物SBM-150Pをアンカーボルトで基礎に緊結し、壁パネルにはビス止めで固定する。

アンカーボルトは、せん断力に対して機能するのでJISB1180に規定する強度区分4.6以上を用いる。基礎 - CLTパネル間には土台を介し、土台と基礎は強度区分4.6以上のアンカーボルトで緊結する。

- b) 壁パネルー床パネル・天井パネルの接合は、せん断抵抗用クロスマーク金物LSTを、壁パネルと壁パネルの接合は、引張抵抗用としてTC-DP金物を用いる。引張抵抗用ボルトはクロスマーク金物の両ねじボルトセットを用いる。
- c) 床パネル・屋根パネル相互間の接合は、せん断抵抗用にパネル面を一部切欠き、合板 を挿入し、ビスにて接合するスプライン接合を用いる。 引張対抗用にはクロスマーク金物 STFを用いる。

4) 接合金物の仕様

- a) CLTパネル接合部に使用する金物は、(公財) 日本住宅・木材技術センターの規格であるクロス(χ)マーク金物とする。
- b) ビスは、(公財) 日本住宅・木材技術センターの規格であるクロス(χ)マーク金物とする。

計算例なので丁寧に記載していますが、 実施設計では、ポイントを箇条書きで簡潔 に記載すればよいです。

②構造設計方針

- ②-1上部構造
- 1) 構造計算ルートは、X方向、Y方向ともにルート1とする。
- 2) 応力計算は以下に示す検定を行う。
- a) 地震力と風圧力に対して、「第2章 第十 令第82条各号及び令第82条の4に定めるところによる構造計算と同等以上に安全性を確かめることができる構造計算(ルート1)」に従い計算を行う。 ただし、計算例の建築物は、陸屋根なので令第82条の4の屋根ふき材の構造計算は行わない。
- 3) 断面計算は以下に示す検定を行う。
- a) 長期荷重時の袖壁パネルの、圧縮座屈に対する断面検定を行う。
- b) 長期荷重時の床・屋根パネルは、単純梁モデルにより面外曲げ、面外せん断及びたわみに対する断面検定を行う。
- c) 長期荷重時の垂れ壁パネルは、単純梁モデルにより面内曲げ、面内せん断に対する断面検定を行う。
- d) 長期荷重と風圧力に対して、壁パネルの圧縮力と面外曲げに対する断面検定を行う。
- e) 長期荷重時の梁は、単純梁モデルにより曲げ、せん断及びたわみに対する断面検定を行う。
- f) 地震力に対して連続梁モデルによる水平構面の面内せん断の断面検定を行うこと。及び、せん 断接合部、引張接合部の検定を行う。
- 4) 燃えしろ設計
- a) 片面を耐火被覆していない壁パネル(t=150mm)は、燃えしろt=60mmとし支持力検定を行う。
- b) 片面を耐火被覆していない床パネル(t=270mm)は、燃えしろt=60mmとし支持力検定を行う。

②-2 基礎構造

- 1) 基礎設計は以下に示す検定を行う。
- a) べた基礎の接地圧に対する地盤の許容応力度の検定を行う。
- b) 基礎梁に生じる長期及び短期の曲げモーメントとせん断力に対する検討を行う。

1-3 法適合チェックリスト

設計施工マニュアル第皿部 第2章 2.2 表2.3-1をアレン ジして法適合チェックリストの表を作成しています。 告示第1446号 建築物の基礎、主要構造部等 に使用する建築材料並びにこれらの建築材料 が適合すべき産業規格及び品質に関する技術 的基準を定める件

表1-3-1 法適合チェックリスト

番号等		規定の概要確確		
■品質基準告示(平1	12建告第1446号(最終改正: 平28国交告示561号		
第一第二十三号		CLTを構造材として用いる場合には、JASまたは認定に適合すること		JAS品を用いる。
■許容応力度·材料引	強度告示(平13国	」 交告第1024号(最終改正∶平28国交告第562号))		
第一第十九号イ	(3)	(認定でない場合)ラミナ厚12~36mm		JAS品を用いる。
	(4)		•	 最低幅50cm(垂れ壁・腰壁パネル)。
第三第九号ハ ^{※2}			•	 床パネルはMx60-5-7を使用。
第三第九号二※2		│ │長期基準強度(面外せん断)は、強軸5-5、5-7、弱軸3-3、3-4、7-7に限る	•	 床パネルはMx60-5-7を使用。
■CLTパネル工法告	示(平28告第611 -	H 号)		
第二 材料	_	JAS品又は認定品のCLT	•	JAS品を用いる。
		ラミナ厚24mm~36mm	•	ラミナ幅=30mm。
	Ξ	 柱梁に用いる集成材その他の木材は昭62建告第1898号に適合	•	適合している木質材料を用いる。
	Ξ	 接合部に使用する材料は品質が確保されたものであること	•	クロスマーク金物を用いる。
第三 土台	_	土台基礎緊結	•	土台は基礎に緊結する。
	=	世厚さ以上の土台	•	
第四 床版	_	床版は有効に壁柱・はりに力を伝えること。	_	接合金物で緊結する。
	=	床パネルの外層ラミナ方向は当該床パネルの長辺/短辺方向と平行で次のいず れ かに該当		外層ラミナ方向は長辺方向で使用する。
	1	形状が矩形で開口部等なし	•	開口は設けない。
		形状が矩形で開口部等周囲を補強したもの		該当しない。
	/\	形状が矩形で開口部等を特別な調査研究により低減		該当しない。
	Ξ	床パネルを平行する2つの耐力壁・はりで有効に支持	•	平行する耐力壁、梁で支待する。
	四	床パネルは相互に有効に緊結	•	接合金物で緊結する。
	五	耐風はりで有効に補強		該当しない。
第五 壁等	_	壁パネルを釣り合いよく配置。柱及び耐力壁以外の壁を設ける。	•	偏心率を確認している。
	_	壁パネルは床版の上部に配置(床勝ち)	•	床勝ち。
	1	無開口壁パネルの定義	•	無関ロパネルを用いる。
		有開口壁パネルの定義		該当しない。
	=	壁パネルの外層ラミナ方向は当該壁パネルの長辺・短辺方向と平行	•	外層ラミナ方向は鉛直(長辺)方向。
	Ξ	耐力壁架構は、小幅・大版①・大版②から選択	•	小幅パネルを用いる
	1	小幅の定義		
	(1)	有開口壁パネルを使わない	•	無開口パネルを用いる。
	(2)	垂壁パネル・腰壁パネルの両側に袖壁パネルを設け、有効に緊結		該当しない。
	(3)	無開口壁パネル上下部は床版等と有効に緊結		接合金物で緊結する。
	(3)	袖壁パネルは四隅を十分な金物で接合	•	接合金物で緊結する。
	П	大版①の定義		
	(1)	有開口壁パネルを使う		
	(2)	袖壁部分を設けない場合、袖壁に有効に緊結		- - -該当しない。
	(3)	壁バネル上下部は床版等と有効に緊結		
	(3)	袖壁部分四隅を十分な金物で接合		
	И	大版②の定轎		
	(1)	有開口壁パネルを使う		
	(1)	袖壁部分を設けない場合、袖壁に有効に緊結		- - -該当しない。
	(2)	壁パネル上下部は床版等と有効に緊結		
	(2)	有関ロ壁パネル四隅を十分な金物で接合		
	四	土に接する部分や地面から地面から30cm以内の外周の壁はRC造	•	パネル下端でGL+300mmを確保。
第六 小屋組等	-	第四第一号~第五号に適合	•	
第七 防腐措置等	_	防水紙	•	ネコ土台を施工する。
	=	有効な防腐・防蟻措置	•	木材部分はGLより30cm上にあるため有効。
	Ξ	土に接する部分や地面から30cm以内の外周の壁は原則RC造	•	土台下端でGL+320mmを確保。
	四	金物に有効なサビ止め	•	クロスマーク金物使用環境2の防錆防食処理

表1-3-2 法適合チェックリスト

表1-3-2 法週音ナエックリスト								
番号等	規定の概要	適合 確認	備考					
第十 ルート1 ー	令第81条第3項に規定する令第82条各号及び令第82条の4に定めるところによる	構造計	算と同等以上に安全性を確かめることのできる構造計算					
1	令第82条各号・令第82条の4	•	許容層せん断耐力と C_0 =0.2の地震力との比較を行う。					
п	水平構面・基礎の応力割増1.5倍	•	1.5倍の応力で検定を行う。					
/\	偏心率計算	•	Re≦0.15とする。					
(1)	Re≦0.3、Co=0.2でFe割増し		割増し無し					
(2)	Re≦0.3、Co=0.2でねじれ補正		割増し無し					
=	混構造で実質ルート2のルート: 第一号イの計算		混構造ではない。					
2	第一号の構造計算を行う場合は次の各号の基準に適合							
_	小幅又は大版①		小幅パネルを用いる。					
=	壁の設備小開口の条件		該当しない。					
Ξ	下階の無開口壁パネル		該当しない。					
1	上階の無開口壁パネル等と同じ長さ、かつ、同寸法以上の厚さ	•	各階は、同じ長さ、同じ厚さで連層で配置。					
п	接合部が上階の接合部と同等の耐力及び変形性能を有するもの	•	クロスマーク金物で緊結する。					
四	無開口壁パネル等の許容せん断耐力の確認	•						
	無開口壁パネル等の長さ90cm~2m	•						
	垂れ壁パネル等腰壁パネル等の長さ90cm~4m、高さ50cm以上	•						
	大版①の開口高さ制限		該当しない。					
五	垂れ壁パネル・垂れ壁部分の脱落防止措置	•	袖壁パネルには、受け部分として45mmの切り欠きを設ける。					
六	壁パネルはS60-3-3、Mx60-5-5でラミナ厚24mm~36mm又は同等以上の耐力		Mx60-5-5でラミナ厚30mmを用いる。					
t	引張接合部仕様	•	告示の規定耐力を有するルート1対応のクロスマーク金物を使用する。					
Д	壁パネル相互せん断接合部、床パネル相互引張接合部の耐力	•	告示の規定耐力を有するルート1対応のクロスマーク金物を使用する。					
ħ	壁パネル上下端のせん断接合部の耐力	•	告示の規定耐力を有するルート1対応のクロスマーク金物を使用する。					

1-4 構造設計ルート

本建物の設計は告示第611号第十のルート1を採用する。

本建物は、高さが9.425m(13m以下)、軒の高さが8.975m(9m以下)、地階を除く階が3(3以下)である。 チェックリスト表に示されているCLTパネル工法告示第二から第七に規定する技術的基準に適合することを確認する。

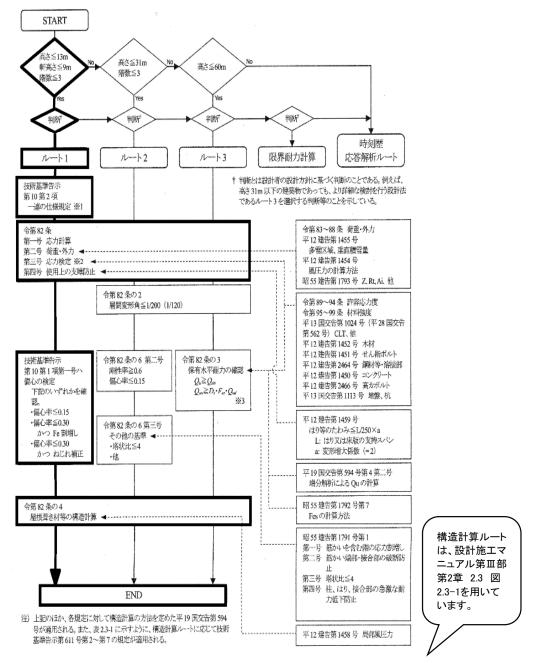


図1-4-1 CLTパネル工法建築物を含む木造建築物の構造計算ルート

1-5 設計クライテリア

設計クライテリアを表1-5-1に示す。

表1-5-1 設計クライテリア

	部位等	長期荷重	短期荷重		
上部	CLTパネル	長期許容応力度以下	短期許容応力度以下		
構造	接合部	長期許容応力度以下	%1 %2		
	接地圧	長期許容地耐力以下	※ 3		
│ 下部 │ 構造	基礎梁応力	長期許容応力度以下	短期許容応力度以下		
1776	基礎スラブ	長期許容応力度以下	短期許容応力度以下		

- ※1 耐力壁パネル及びそれに取りつく接合金物の検討に関しては、「第2章 第十令八十二条 各号及び第八十二条の四に定めるところにより構造計算と同等以上に安全性を確かめる ことができる構造計算(ルート1)」に含めたものとして省略している。
- ※2 耐力壁パネル4隅の引張接合部は、第十第2項第七号の終局引張耐力以上のクロスマーク金物による。

耐力壁パネルと垂れ壁パネル、腰壁パネルのせん断接合部は、第十第2項第八号の短期せん断耐力以上のクロスマーク金物による。

床パネル相互、床パネルと梁相互の引張接合部は、第十第2項第八号の短期引張耐力以上のクロスマーク金物による。

耐力壁パネルと基礎、床版、屋根版のせん断接合部は、第十第2項第九号の短期せん断耐力以上のクロスマーク金物による。金物間隔は、1m以下で配置する。

※3 長期許容地耐力の検討で安全性の確認ができることから、短期許容地耐力の検討は行わない。

1-6 準拠資料

本設計では、以下の法令及び技術指針等に準拠して計算を行う。

- 1) CLT関連告示等解説書(2016年 増補版)
- 2) CLTを用いた建築物の設計施工マニュアル(2016年 増補版)
- 3) 木造軸組工法住宅の許容応力度設計(日本住宅・木材技術センター編, 2017年)
- 4) 鉄筋コンクリート構造計算規準.同解説(日本建築学会, 2010年)
- 5) 鋼構造設計規準一許容応力度設計法一(日本建築学会, 2005年)

1-7使用構造材料一覧表

CLTは、製造工場ごとに仕様が異なるため、表1-7-1は、製造工場に確認をして記載することになります。

(1) CLTパネル

表1-7-1 CLTパネル

	樹種		スギ			
壁パネル		強度等級	Mx60-5-5 (外層: M60A、内層: M30A)			
	ラミナ	ラミナ厚	30mm			
垂れ壁パネル 腰壁パネル		ラミナ幅	約124mm			
接壁バネル (150mm)	接着剤	縦継ぎ(フィン ガージョイント)、 積層部分	JISK6806に規定する水性高分子ーイソシアネート系木材接着 剤1種1号			
		幅はぎ部分	接着無			
	樹種		スギ			
	ラミナ	強度等級	Mx60-5-7 (外層: M60A、内層: M30A)			
		ラミナ厚	30mm			
屋根•床		ラミナ幅	約124mm			
(210mm)	接着剤	縦継ぎ(フィン ガージョイント) 積層部分	JISK6806に規定する水性高分子ーイソシアネート系木材接着剤 1種1号			
		幅はぎ部分	接着無			

本設計は、壁パネル、垂れ壁パネル、床パネル、屋根パネルには開口を設けない。設備用貫通孔などは非耐力壁部分の軸組による壁に設ける。

(2) 接合金物

表1-7-2 接合金物(クロスマーク金物規格)

設計に用いる金物記号を記載します。

名称	部位	記号	備考
引張金物	基礎+1階壁脚	TB-DP	
	1階壁頭+2階壁脚	TC-DP	
	2階壁頭+3階壁脚	TC-DP	
	3階壁頭+R階床版	TC-DP+W16	
	基礎+1階壁脚	SBM-150P	
	1階壁頭+2階壁脚	2-D32	1m間隔以下
せん断金物	2階壁頭+3階壁脚	2-D32	1m間隔以下
	3階壁頭+R階床版	2-LST	1m間隔以下
	耐力壁パネル+垂れ壁パネル	2-SP	

表1-7-3 使用環境と防錆防食処理 (クロスマーク金物は、使用環境2)

	使用環境 1	使用環境 2	使用環境 3
種類	室内のような乾燥した環境	直接雨に暴露されない屋外環境	直接雨に曝される屋外環境で
	での使用	又は多湿な屋内環境での使用	の使用
L形金物			
引張金物		·JIS G 3302(溶融亜鉛めっき鋼板	
せん断金物		及U鋼帯)Z27 NC	·JISH 8641(溶融亜鉛めっき)
带金物		·JIS H 8610(電気亜鉛めっき)	2種 HDZ 35
丸座金、角座金	·JISH 8610(電気亜鉛めっき)	Ep-Fe/Zn20/CM1	·JISG 3302(溶融亜鉛めっき
四角穴付き	Ep-Fe/Zn5/CM2	・その他、同等以上の処理	鋼板及び鋼帶) Z 35 NC
タッピンねじ	・その他、同等以上の処理		・JIS H 8610(電気亜鉛めっき)
せん断金物 D32		WOLLDON OF THE TANK A	Ep-Fe/Zn25/CM2
ドリフトピン		・JISH 8610(電気亜鉛めっき)	・その他、同等以上の処理
両ねじボルト		Ep-Fe/Zn8/CM2 ・その他、同等以上の処理	
六角ナット		CANIEW INTANCE	

(3) 木材

表1-7-4 木材

部位	材料	規格	等級	樹種
梁	構造用集成材	JAS	E105-F300	オウシュウアカマツ
柱	構造用製材	JAS	E50	スギ
土台	構造用製材	JAS	甲種2級	ヒノキ(K3加圧注入材)

(4) 基礎

表1-7-5 コンクリート、鉄筋

部品	仕様
コンクリート	JIS A5308レディーミクストコンクリート 設計基準強度:Fc=21N/mm²
鉄筋	JISG 3112鉄筋コンクリート用棒鋼: SD295A、SD345

1-8 使用材料の基準強度、許容応力度

CLTの基準強度などは、設計施工マニュアル第Ⅲ部 第3章 3.3 3.3.1 表3.3.1の各表に記載されています。

ただし、Fsの算定は、平成30年告示第1024号の改正に合わせた値 としています。基準強度は、資料1~4に算定例を記載しています。

表1-8-1 CLTパネルの基準強度

	基準強度[N/mm²]											
 強度等級		面内方向								面外方向		
四及守秘	F	С	F	t	F	b b	Fs		Fb		Fs	
	強軸	弱軸	強軸	弱軸	強軸	弱軸	m=3	m=7	強軸	弱軸	-	
Mx 60-5-5	8.10	4.68	6.00	3.45	8.10	4.68	2.02	2.45	10.37	1.97	0.90	
M× 60-5-7	10.41	3.34	7.71	2.46	10.41	3.34	-	1.75	12.14	0.72	0.90	
燃えしろ60mm Mx 60-5-5	8.10	3.90	6.00	2.88	8.10	3.90	1.68	-	8.53	0.82	0.90	
燃えしろ60mm Mx 60-5-7	8.10	4.68	6.00	3.45	8.10	4.68	-	-	4.05	9.27	0.90	

表1-8-1のFs欄のmは、幅方向の外層ラミナの規格幅120mmを満足している数を示している。



図1-8-1 垂れ壁、耐力壁のm数

900~1000mm 外層ラミナ幅120mmを 満足している幅方向の 数m=7

表1-8-2 CLTパネルの許容応力度

許容応力度[N/mm²]							
長	·期	短期					
常時	積雪時	水平時	積雪時				
(I.I/3)xF	(1.43/3)xF	(2/3)xF	(1.6/3)×F				

告示解説書 第4章にせ ん断基準強度Fsの解説 が記載されています。

表1-8-3 せん断応力度分布係数β-

	面外方向			
強度等級	β			
	強軸	弱軸		
Mx 60-5-5	1.256	2.308		
Mx 60-5-7	1.344	3.237		
燃えしろ60mm Mx 60-5-5	1.371	9.000		
燃えしろ60mm Mx 60-5-7	1.948	3.529		

設計施工マニュアル第皿部 第3章 3.2 3.2.1にせん断応力度 β の解説が 記載されています。

資料1~4に算定例を記載しています。

弾性係数は、資料1~4に算定例を記載しています。

表1-8-4 CLTパネルの弾性係数 (N/mm²)

	,	面内方向		面外方向				
強度等級	E	Ξ	G	G E		G		
	強軸	弱軸	共通	強軸	弱軸	強軸	弱軸	
Mx60-5-5	3000	1200	500	4728	624	27.9	13.6	
M×60-5-7	3857	857	500	5536	227	29.7	9.7	

(公財)日本住宅・木材技術センターHP 木造建築 用接合金物承認・認定制度◇種類と耐力表から抜 粋した表です。

表1-8-5 クロスマーク金物の耐力

名称	記号	耐力	(kN)	接合具
	TB-90*1,TB-150*1 TB-90P*1,TB-150P*1	終局引張耐力	86.0	STS·C65 (18本)
引張金物	TB-DP*2			DP16 (6本)
	TC-90*1,TC-150*1	終局引張耐力	135.0	STS·C65 (26本)
	TC-DP*2	おき何ケロな肌リノ	139.0	DP16 (8本)
	SB-90*1,SB-150*1			STS·C65 (14本)
	SBM-90*1,SBM-150*1	許容せん断耐力	47.0	STS·C65 (18本)
せん断金物	SBM-90P* ,SBM-150P*			515,000 (10 47)
でをを要	SP*1	許容せん断耐力	52.0 (2枚1組)	STS·C65 (18本×2)
	SP-DP*2	許容せん断耐力	52.0	DP16(12本)
	D32*2	許容せん断耐力	54.0 (2本1組)	D32 (1本×2)
	STF*1	非常引起新力	52.0	STS·C65 (40 本)
# Alba	STF-DP*3	許容引張耐力	92.U	DP16 (8本)
帯金物	STW-790*1		1950	QTQ.Qet (to +)
	STW-850*1	終局引張耐力	135.0	STS·C65 (58 本)
L形金物	LST*1	許容せん断耐力	54.0(2枚1組)	STS·C65 (18本×2)
L 月/5世初	LST+SP*1	許容せん断耐力	54.0	313.003 (184×2)
23 del -1-1-11-11				

注 *1 直交集成板の強度等級S60-3-3、Mx60-5-5 又はこれと同等以上

表1-8-6 木材の基準強度、許容応力度、ヤング係数

並	部位規格		基準強度[N/mm²]				 許容応力度[N/mm ²]			
即址	が旧	圧縮 Fc	曲げ Fb	せん断 Fs	めり込 みFcv	長期	短期	積雪時 (中長期)	積雪時 (中短期)	
·····································	対称異等級 E105-F300 (オウシュウアカマ ツ)	23.2	30.0	3.0	6.0	(1.1/3)	(2/3)	(1.43/3)		
柱	甲種3級(スギ)	18.0	22.2	1.8	6.0	xF xF		xF	xF	
土台	甲種3級(ヒノキ)	23.4	28.8	2.1	7.8					

対称異等級構成E105-F300(オウシュウアカマツ)のヤング係数E=9.0kN/mm²

^{*2} 直交集成板の強度等級S60-3-3 又はこれと同等以上

^{*3} 直交集成板の強度等級Mx60-5-5 又はこれと同等以上

表1-8-7 コンクリートの許容応力度

	許容応力度[N/mm²]								
設計基準強度 N/mm ²	長期				短期				
	圧縮	圧縮 せん断 付着 fa		圧縮 fc	せん断 fs	付着 fa			
	fc	fs	上端筋	その他	产和 IC	e AMI is	וין ופו ומ /il la		
F _C =21N/mm ²	7.0	0.70	1.4	2.1	長期の2倍	長期の1.5倍	長期の1.5倍		

表1-8-8 異形鉄筋の許容応力度

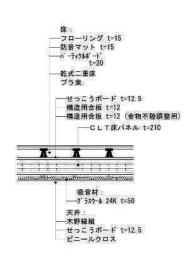
種類の記号	許容応力度[N/mm²]						
	長期			短期			基準強度F
	圧縮 fc	引張 ft	せん断 fs	圧縮 fc	引張 ft	せん断 fs	[N/mm ²]
SD295A	196	196	195	295	295	295	295
SD345	215	215	195	345	345	345	345

2.荷重


2-1 仮定荷重

(1)床仮定荷重的

荷重については、設計施エマニュアル第皿部 第4章 4.1 4.1.1荷重・外力に解説されています。 仮定荷重は、設計されている仕様に基づき、部位ごとに根拠のある数値を設定します。 資料6に仮定荷重例を記載しています。

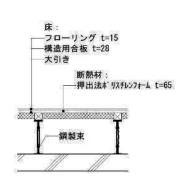

参考として資料5に仮定荷重例を記載しています。実際の設計に合わせて荷重を設定してください。

①RF床


合成高分子系ルーフィングシート 15 防火下地 耐水PB12.5 100 耐水合板12mm 80 勾配木下地組 50 CLT: Mx60-5-7 210mm 4900 N/m^3 1029 (金物などを含む) 天井吊り木・野縁(30x45@500) 30 グラスウール24k50mm 12 **PB12.5mm** 90 天井仕上 ビニールクロス 10 $\overline{1416} \text{ N/m}^2$ 設計施エマニュアル第Ⅲ部第4章4.14.1.1(2)に、すぎを 1420 N/m^2 用いたCLTの比重は0.45以上とすることが記載されて いることから、ここでは0.49として設定しています。

②2階~3階床

フローリング15mm		110
防音マット15mm		150
パーティクルボード20mm		150
プラ東(台板含む)		40
PB12.5mm		90
構造用合板t12 2枚貼り		200
CLT:Mx60-5-7 210mm (金物などを含む)	4900 N/m ³	1029
天井吊り木・野縁		30
グラスウール24k50mm		20
PB12.5mm		90
天井仕上 ビニールクロス		10
		1919 N/m²
	\rightarrow	1920


③バルコニー・共用廊下

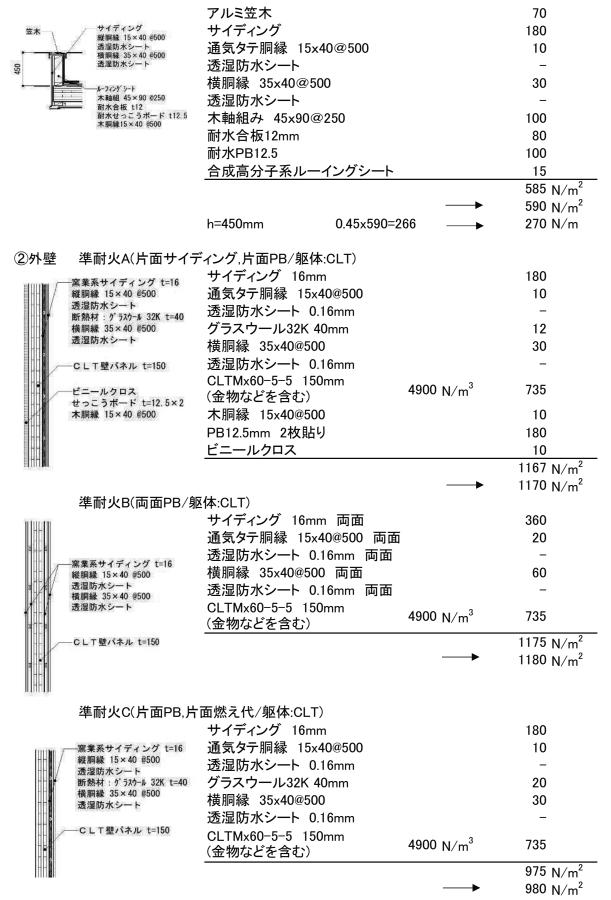
重歩行シート FRP防水		30 59
耐水PB12.5		100
耐水合板12		100
木下地		50
CLTMx60-5-7 210mm (金物などを含む)	4900 N/m ³	1029
天井吊り木・野縁		30
PB12.5 2枚貼り		180
ケイカル板 8mm		74
		1652 N/m ²

1660

41階床

フローリング15mm		30
構造用合板28mm		250
大引き+土台+鋼製束		60
押出法ポリスチレンフォーム65mm		20
底版t=200mm	24000 N/m ³	4800
		5160 N/m ²
	\rightarrow	5160

表2-1-1 床荷重一覧


N	/	m	2
IИ	/	m	1

部位	DL	LL		TL
		床用	1000	2420
RF屋上	1420	架構用	600	2020
		地震用	400	1820
		床用	1800	3720
2階、3階床 共同住宅	1920	架構用	1300	3220
		地震用	600	2520
		床用	1800	3460
バルコニー・共用廊下	1660	架構用	1300	2960
		地震用	600	2260
		床用	1800	3220
1階床	5160	架構用	1300	2720
		地震用	600	2020

設計施工マニュアル第4章 4.1 4.1.1 (3)に解説がされています。 積載荷重LLは、設計施工マニュアル表4.1.1-3より、使用される室の種類 に応じて数値を設定します。

(2)壁仮定荷重

①パラペット H=0.65m

準耐火D(両面PB/躯体:在来軸組み) サイディング 16mm 180 通気タテ胴縁 15x40@500 10 窯業系サイディング t=16 縦胴縁 15×40 @500 透湿防水シート 0.16mm 透湿防水シート 断熱材: グラスウール 32K t=40 グラスウール32K 40mm 20 横胴縁 35×40 @500 横胴縁 35×40@500 30 透湿防水シート 透湿防水シート 0.16mm 構造用合板 t15 構造用合板 15mm 90 木軸組 45×150 @500 構造用合板 t15 木軸組み 45x120@500 70 構造用合板 15mm 90 ゼニールクロス せっこうボード t=12.5×2 木胴縁 15×40 @500 木胴縁 15x40@500 10 PB12.5mm+PB12.5mm 180 ビニールクロス 10 690 N/m² 690 N/m^2 ③内壁 界壁 準耐火(片面PB,片面燃え代/躯体:CLT) CLTMx60-5-5 150mm 4900 N/m^3 735 (金物などを含む) 30 軽鉄スタッド せっこうポード t=12.5 せっこうボード t=12.5 グラスウール24K 50mm 12 LGS下地 PB12.5 2枚貼り 180 吸音材: ビニールクロス 10 グラスウール 24K t=50 967 N/m^2 CLT壁パネル t=150 970 N/m^2 内壁A 準耐火(両面PB/躯体:CLT) PB12.5 2枚貼り 180 ビニールクロス せっこうポード t=12.5 せっこうボード t=12.5 LGS 30 グラスウール24K 50mm 12 LGS下地 CLTMx60-5-5 150mm ビニールクロス 4900 N/m^3 735 せっこうボード t=12.5 せっこうボード t=12.5 (金物などを含む) 木胴縁 15x40@400 10 グラスウール 24K t=50 PB12.5 2枚貼り 180 木胴縁15×40 @500 CLT壁パネル t=150 ビニールクロス 両面貼り 20 1167 N/m^2 1170 N/m^2 内壁B 準耐火(CLT表し) CLTMx60-5-5 150mm CLT壁パネル t=150 4900 N/m^3 735 (金物などを含む) 735 N/m^2 740 N/m^2 間仕切り壁(LGS下地) PB12.5 2枚貼り 180 LGS 30 -ビニールクロス せっこうボード t=12.5 ビニールクロス 両面貼り 20 230 N/m 2 240 N/m^2

④ 手摺	笠木+手摺		100
	サイディング 16mm		180
手摺 ――――――――――――――――――――――――――――――――――――	通気タテ胴縁 15x40@500		10
縦胴縁 透湿防水シート	構造用合板9mm		60
透湿のホシート 構造用合板 t=9	木軸組み 45×90@250		100
──耐水せっこうポート゚t=12.5	構造用合板9mm		60
耐水合板 t=12	通気タテ胴縁 15x40@500		10
 4	ケイカル板 12mm		180
			700 N/m ²
			700 N/m^2
⑤ サ ッシ		アルミ 玄関ドア	400 N/m ² 400 N/m ²

2-2 風圧力の算定

(1) 見付面積の算定

設計施工マニュアル第皿部 第4章 4.1 4.1.1 (5)に解説されています。

平成12年建設省告示第1454号で規定されている算定式、各数値を 用いて、建設地ごと算定を行います。

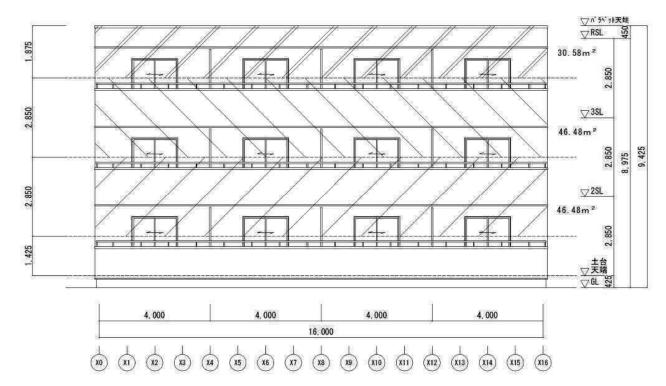


図2-2-1 Y方向用(長辺方向)見付け面積

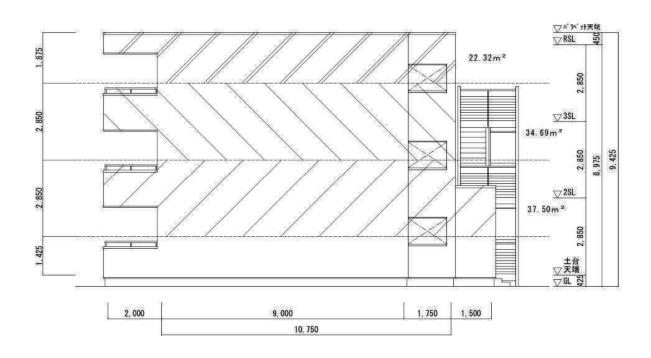


図2-2-2 X方向用(短辺方向)見付け面積

(2) 風圧力の算定

① 速度圧の算定

風速 V0= 30 (m/s)

地表面粗度区分 皿 よって $Z_b=5$ 、 $Z_G=450$ 、 $\alpha=0.20$ 平均高さH=9.425 (m)よって、 $Er=1.7\left(H/Z_G\right)^{\alpha}=1.7\times\left(9.425/450\right)^{0.20}=0.78$ ガスト影響係数Gf=2.5 より

 $E=Er^2 \cdot Gf = 0.78^2 \times 2.5 = 1.54$

② 風圧力の算定

 $Q_{Wi} = q \times C_f \times A$

ここで

Q_{wi}:i階の風圧力(kN)

q:速度圧(kN/m²)

C_f:風力係数

A:見付面積(m²)

表2-2-1 X方向(建物短辺方向)風圧力

		勾置	記面	鉛區	直面	Qwi	ΣQ
層	q	Α	Cf	Α	Cf	QWI	2 0
	[kN/m²]	$[m^2]$	-	[m ²]	ı	[kN]	[kN]
3	0.83	0.0	0.0	22.32	1.2	22.23	22.23
2	0.83	0.0	0.0	34.69	1.2	34.55	56.78
1	0.83	0.0	0.0	37.50	1.2	37.35	94.13

表2-2-2 Y方向(建物長辺方向)風圧力

		勾置	記面	鉛區	直面	Qwi	ΣQ
層	q	Α	Cf	Α	Cf	QWI	20
	$[kN/m^2]$	$[m^2]$	-	[m ²]	ı	[kN]	[kN]
3	0.83	0.0	0.0	30.58	1.2	30.46	30.46
2	0.83	0.0	0.0	46.48	1.2	46.29	76.75
1	0.83	0.0	0.0	46.48	1.2	46.29	123.05

2-3 地震力の算定_____

設計施工マニュアル第皿部 第4章 4.1 4.1.1 (6)に解説されています。 昭和55年建設省告示第1793号で規定されている算定式各数値を用いて、建設地ごと算定を行います。

①地震力算定用軸力の算定

表2-3-1 地震力算定用軸力の算定

階	部位	面積A(㎡)又は長さL(m)		TL(kN/ ㎡)又は DL(kN/m)	A・TL 又は L・DL (kN)	ΣWi(kN)	ΣW(kN)
R階	パラペット	(16.0+12.75)×2	57.50	0.27	15.53		
	R階床	(11.15 × 16.15)+(1.75 × 14.15)	204.84	1.82	372.80		
	3階外壁上1/2 準耐火A	$(16.0+5.0\times2)\times2.64\times1/2-2.75\times4\times2.64\times1/2$	19.80	1.17	23.17		
	3階外壁上1/2 準耐火B	$(1.5 \times 2 + 1.5 + 1.0 \times 2) \times 2.64/2 + (3.0 \times 2 + 1.5) \times 0.5$	12.33	1.18	14.55		
	3階外壁上1/2 準耐火C	$(4.0 \times 2 + 16.0) \times 2.64 \times 1/2 - 1.8 \times 1.875 \times 4 \times 1/2$	24.93	0.98	24.43		
	3階外壁上1/2 準耐火D	$2.75 \times 4 \times 2.64 \times 1/2 - ((0.95 \times 2.14 \times 4) + (0.88 \times 2.14 \times 4)) \times 1/2$	6.69	0.69	4.61		
	3階外壁ドア上1/2	$((0.95 \times 2.14 \times 4) + (0.88 \times 2.14 \times 4)) \times 1/2$	7.83	0.40	3.13		
	3階外壁サッシ上1/2	1.8×1.875×4×1/2	6.75	0.40	2.70		
	3階内壁A上1/2	((1.5+1.0 × 2) × 4+5.0 × 3) × 2.64 × 1/2	38.28	1.17	44.79		
	3階内壁B上1/2	1.5 × 4 × 2.64 × 1/2	7.92	0.74	5.86		
	3階内壁(界壁)上1/2	4×3×2.64×1/2	10.56	0.97	10.24		
	3階間仕切り上1/2	$(2.5+1.5+5.0-1.0+2.0+1.0 \times 2) \times 4 \times 2.64 \times 1/2$	63.36	0.24	15.21	537.01	537.01
3階	3階外壁下1/2 準耐火A	(16.0+5.0 × 2) × 2.64 × 1/2-2.75 × 4 × 2.64 × 1/2	19.80	1.17	23.17		
	3階外壁下1/2 準耐火B	$(1.5 \times 2 + 1.5 + 1.0 \times 2) \times 2.64/2$	8.58	1.18	10.12		
	3階外壁下1/2 準耐火C	$(4.0 \times 2 + 16.0) \times 2.64 \times 1/2 - 1.8 \times 1.875 \times 4 \times 1/2$	24.93	0.98	24.43		
	3階外壁下1/2 準耐火D	$2.75 \times 4 \times 2.64 \times 1/2 - ((0.95 \times 2.14 \times 4) + (0.88 \times 2.14 \times 4)) \times 1/2$	6.69	0.69	4.61		
	3階外壁ドア下1/2	$((0.95 \times 2.14 \times 4) + (0.88 \times 2.14 \times 4)) \times 1/2$	7.83	0.40	3.13		
	3階外壁サッシ下1/2	1.8×1.875×4×1/2	6.75	0.40	2.70		
	3階内壁A下1/2	$((1.5+1.0 \times 2) \times 4+5.0 \times 3) \times 2.64 \times 1/2$	38.28	1.17	44.79		
	3階内壁B下1/2	1.5 × 4 × 2.64 × 1/2	7.92	0.74	5.86		
	3階内壁(界壁)下1/2	4×3×2.64×1/2	10.56	0.97	10.24		
	3階間仕切り下1/2	$(2.5+1.5+5.0-1.0+2.0+1.0 \times 2) \times 4 \times 2.64 \times 1/2$	63.36	0.24	15.21		
	3階床	9.15×16.15	147.77	2.52	372.39		
	3階床(バルコニー・共用廊下)	1.75 × 14.15+2.0 × 16.15	57.06	2.26	128.96		
	3階手摺	(16+2×2+1.75×2+3×2)×1.1	32.45	0.70	22.72		
	2階外壁上1/2 準耐火A	(16.0+5.0 × 2) × 2.64 × 1/2-2.75 × 4 × 2.64 × 1/2	19.80	1.17	23.17		
	2階外壁上1/2 準耐火B	$(1.5 \times 2 + 1.5 + 1.0 \times 2) \times 2.64/2 + (3.0 \times 2 + 1.5) \times 0.5$	12.33	1.18	14.55		
	2階外壁上1/2 準耐火C	$(4.0 \times 2 + 16.0) \times 2.64 \times 1/2 - 1.8 \times 1.875 \times 4 \times 1/2$	24.93	0.98	24.43		
	2階外壁上1/2 準耐火D	2.75 × 4 × 2.64 × 1/2-((0.95 × 2.14 × 4)+(0.88 × 2.14 × 4)) × 1/2	6.69	0.69	4.61		
	2階外壁ドア上1/2	$((0.95 \times 2.14 \times 4) + (0.88 \times 2.14 \times 4)) \times 1/2$	7.83	0.40	3.13		
	2階外壁サッシ上1/2	1.8×1.875×4×1/2	6.75	0.40	2.70		
	2階内壁A上1/2	((1.5+1.0 × 2) × 4+5.0 × 3) × 2.64 × 1/2	38.28	1.17	44.79		
	2階内壁B上1/2	1.5 × 4 × 2.64 × 1/2	7.92	0.74	5.86		
	2階内壁(界壁)上1/2	4 × 3 × 2.64 × 1/2	10.56	0.97	10.24		
	2階間仕切り上1/2	(2.5+1.5+5.0-1.0+2.0+1.0 × 2) × 4 × 2.64 × 1/2	63.36	0.24	15.21	817.02	1354.03

表2-3-2 地震力算定用軸力の算定

階	部位	面積A(㎡)又は長さL(m)		TL(kN/ ㎡)又は DL(kN/m)	A・TL 又は L・DL (kN)	ΣWi(kN)	ΣW(kN)
2階	2階外壁下1/2 準耐火A	(16.0+5.0 × 2) × 2.64 × 1/2-2.75 × 4 × 2.64 × 1/2	19.80	1.17	23.17		
	2階外壁下1/2 準耐火B	$(1.5 \times 2 + 1.5 + 1.0 \times 2) \times 2.64/2$	8.58	1.18	10.12		
	2階外壁下1/2 準耐火C	$(4.0 \times 2 + 16.0) \times 2.64 \times 1/2 - 1.8 \times 1.875 \times 4 \times 1/2$	24.93	0.98	24.43		
	2階外壁下1/2 準耐火D	$2.75 \times 4 \times 2.64 \times 1/2 - ((0.95 \times 2.14 \times 4) + (0.88 \times 2.14 \times 4)) \times 1/2$	6.69	0.69	4.61		
	2階外壁ドア下1/2	$((0.95 \times 2.14 \times 4) + (0.88 \times 2.14 \times 4)) \times 1/2$	7.83	0.40	3.13		
	2階外壁サッシ下1/2	1.8 × 1.875 × 4 × 1/2	6.75	0.40	2.70		
	2階内壁A下1/2	$((1.5+1.0\times2)\times4+5.0\times3)\times2.64\times1/2$	38.28	1.17	44.79		
	2階内壁B下1/2	1.5 × 4 × 2.64 × 1/2	7.92	0.74	5.86		
	2階内壁(界壁)下1/2	4×3×2.64×1/2	10.56	0.97	10.24		
	2階間仕切り下1/2	(2.5+1.5+5.0-1.0+2.0+1.0 × 2) × 4 × 2.64 × 1/2	63.36	0.24	15.21		
	2階玄関上パラペット	4+1.5 × 2	7.00	0.27	1.89		
	2階床	9.15 × 16.15	147.77	2.52	372.39		
	2階床(バルコニー・共用廊下)	1.75 × 14.15+2.0 × 16.15	57.06	2.26	128.96		
	2階玄関上屋根	1.5 × 4.15	6.23	1.82	11.33		
	2階手摺	(16+2×2+1.75×2+3×2)×1.1	32.45	0.70	22.72		
	1階外壁上1/2 準耐火A	(16.0+5.0 × 2) × 2.64 × 1/2-2.75 × 4 × 2.64 × 1/2	19.80	1.17	23.17		
	1階外壁上1/2 準耐火B	$(1.5 \times 2 + 1.5 + 1.0 \times 2) \times 2.64/2 + (3.0 \times 2 + 1.5) \times 0.5$	12.33	1.18	14.55		
	1階外壁上1/2 準耐火C	$(4.0 \times 2 + 16.0) \times 2.64 \times 1/2 - 1.8 \times 1.875 \times 4 \times 1/2$	24.93	0.98	24.43		
	1階外壁上1/2 準耐火D	$2.75 \times 4 \times 2.64 \times 1/2 - ((0.95 \times 2.14 \times 4) + (0.88 \times 2.14 \times 4)) \times 1/2$	6.69	0.69	4.61		
	1階外壁上1/2 準耐火D(玄関	$(1.5 \times 2+4) \times 2.64 \times 1/2 - 1.6 \times 2.3 \times 1/2$	7.40	0.69	5.11		
	1階外壁ドア上1/2	$((0.95 \times 2.14 \times 4) + (0.88 \times 2.14 \times 4)) \times 1/2$	7.83	0.40	3.13		
	1階外壁サッシ上1/2	1.8 × 1.875 × 4 × 1/2	6.75	0.40	2.70		
	1階内壁A上1/2	$((1.5+1.0 \times 2) \times 4+5.0 \times 3) \times 2.64 \times 1/2$	38.28	1.17	44.79		
	1階内壁B上1/2	1.5 × 4 × 2.64 × 1/2	7.92	0.97	7.68		
	1階内壁(界壁)上1/2	4 × 3 × 2.64 × 1/2	10.56				
	1階間仕切り上1/2	(2.5+1.5+5.0-1.0+2.0+1.0 × 2) × 4 × 2.64 × 1/2	63.36	0.24	15.21	826.92	2180.95

②地震力の算定

 $\alpha i = \sum Wi / \sum W1$

 $Ai = 1 + (1/\sqrt{\alpha} i - \alpha i) \cdot 2T/(1+3T)$

 $Ci = Z \cdot Rt \cdot Ai \cdot C_0$

建物高さH=9.425 m設計用1次固有周期T=0.03×H=0.283

地震地域係数 Z=1.0 振動特性係数 Rt=1.0 標準層せん断力係数 $C_0=0.2$

表2-3-3 地震力の算定

階	Wi kN	ΣWi kN	αi	Ai	Ci	Qei kN
3	537.01	537.01	0.2462	1.541	0.308	165.54
2	817.02	1354.03	0.6208	1.198	0.240	324.52
1	826.92	2180.95	1.0000	1.000	0.200	436.19

2-4 地震力と風圧力の比較

表2-4-1、表2-4-2に地震力と風圧力の比較を示す。各階各方向で水平力の大きな地震力を採用する。

表2-4-1 X方向(建物短辺方向)水平力の比較

	風圧力	地震力(C ₀ =0.2)	
階	ΣQ_{wi}	\mathbf{Q}_{Ei}	$\Sigma Q_{wi} \angle Q_{Ei}$
	[kN]	[kN]	
3	22.23	165.54	0.13
2	56.78	324.52	0.17
1	94.13	436.19	0.22

表2-4-2 Y方向(建物長辺方向)水平力の比較

	風圧力	地震力(C ₀ =0.2)						
階	ΣQ_{wi}	\mathbf{Q}_{Ei}	$\Sigma Q_{wi} / Q_{Ei}$					
	[kN]	[kN]						
3	30.46	165.54	0.18					
2	76.75	324.52	0.24					
1	123.05	436.19	0.28					

外力の大きな数値を用いて計算 することにより、安全側な判定と することができます。

3.耐力壁配置の検定

3-1各階の許容層せん断耐力の算定

ここでは[H28告示第611号第十第2項第四号]の規定に従い、各層の許容せん断耐力(Qai)が $C_0=0.2$ で計算した地震力 (Q_a) 以上であることを確認する。

i階の許容せん断耐力Qaiの算出は以下による。

$$Qai = \frac{Q_{ei}}{Q_{e1}} \times \Sigma(Qa \times Li)$$

$$Q_a = \frac{3}{H} \times (Q_0 + 1.5n)$$

告示第611号第十第2項第四号に 規定されている算定式です。設計 施工マニュアル第皿部 第7章7.2 7.21に解説されています。

ここで

Qa [kN]: 当該階許容せん断耐力(ここでは1階の許容せん断耐力。)

Li [m] : 当該階の耐力壁のうち計算しようとする方向に設けたものの長さ

(耐力壁の長さの規定 0.9m≦L≦2m)

H [m]: 当該階の階高(3m以下である場合3とする。)

Q₀ [kN/m]: 10(地階を除く階数が3の場合。)

n : 当該壁パネルに緊結された垂れ壁パネル及び腰壁パネルを合計した数値 (nに算入できる腰壁・垂れ壁の規定 腰壁・垂れ壁高さ≧0.5m 0.9m≦腰壁・垂れ壁長さ≦4.0m)

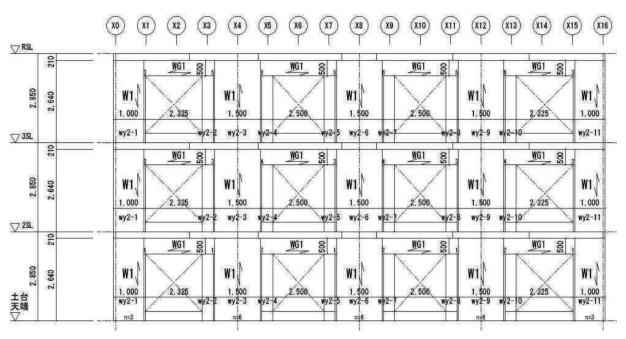


図3-1-1 Y2通り軸組図

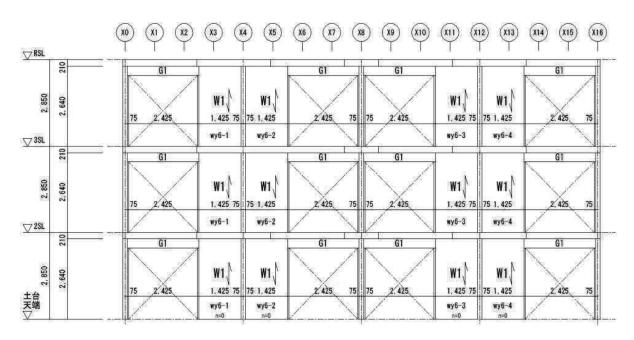


図3-1-2 Y6通り軸組図

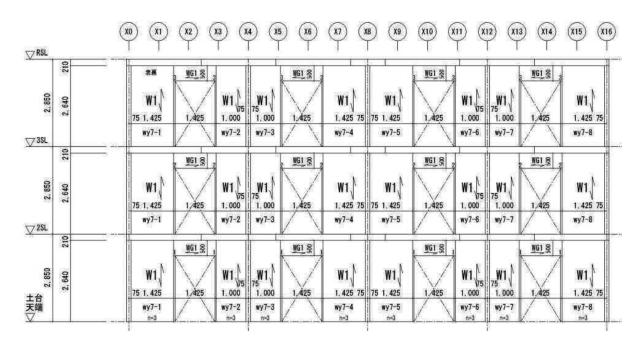


図3-1-3 Y7通り軸組図

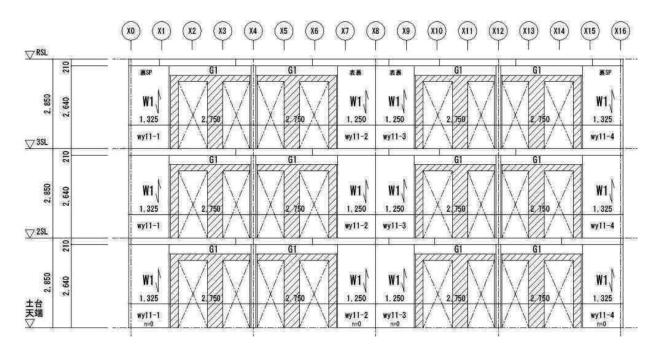


図3-1-4 Y11通り軸組図

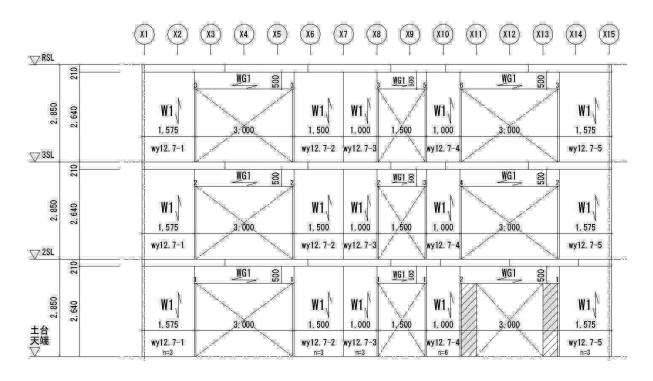


図3-1-5 Y12.7通り軸組図

3-2 各階各方向の許容せん断耐力の算定 階高H=2.85mは、3.0m以下であることから H=3.0mとして扱う。 第十第2項第四号の算定を表で行っています。 1階、2階、3階の耐力壁配置が同一なので、各階共通 の算定表となっています。各階で耐力壁配置が異な る場合は、各階ごとの算定表が必要となります。

表3-2-1 1階~3階共通 X方向(長辺方向)許容せん断耐力

種類	通り	壁番号	Li	Н	Qo	n	Qa	Qa•Li	各通りの ΣQa•Li	Σ(Qa•Li)
11170	11117	* #7	[m]	[m]	[kN]		[kN]	[kN]	[kN]	[kN]
		wy2-1	1.000	3.00	10.00	3	14.50	14.50		
		wy2-2	1.500	3.00	10.00	6	19.00	28.50	1	
	Y2	wy2-3	1.500	3.00	10.00	6	19.00	28.50	114.50	
		wy2-4	1.500	3.00	10.00	6	19.00	28.50		
		wy2-5	1.000	3.00	10.00	3	14.50	14.50		
		wy6-1	1.425	3.00	10.00	0	10.00	14.25		
	Y6	wy6-2	1.425	3.00	10.00	0	10.00	14.25	57.00	
	10	wy6-3	1.425	3.00	10.00	0	10.00	14.25	37.00	
		wy6-4	1.425	3.00	10.00	0	10.00	14.25	1	
		wy7-1	1.500	3.00	10.00	3	14.50	21.75		
		wy7-2	1.000	3.00	10.00	3	14.50	14.50	145.00	
		wy7-3	1.000	3.00	10.00	3	14.50	14.50		
X方向	Y7	wy7-4	1.500	3.00	10.00	3	14.50	21.75		468.93
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		wy7-5	1.500	3.00	10.00	3	14.50	21.75		400.93
		wy7-6	1.000	3.00	10.00	3	14.50	14.50		
		wy7-7	1.000	3.00	10.00	3	14.50	14.50		
		wy7-8	1.500	3.00	10.00	3	14.50	21.75		
		wy11-1	1.325	3.00	10.00	0	10.00	13.25		
	Y11	wy11-2	1.250	3.00	10.00	0	10.00	12.50	51.50	
	111	wy11-3	1.250	3.00	10.00	0	10.00	12.50	51.50	
		wy11-4	1.325	3.00	10.00	0	10.00	13.25		
		wy12.7-1	1.575	3.00	10.00	3	14.50	22.84		
		wy12.7-2	1.500	3.00	10.00	3	14.50	21.75		
	Y12.7	wy12.7-3	1.000	3.00	10.00	3	14.50	14.50	100.93	
		wy12.7-4	1.000	3.00	10.00	6	19.00	19.00		
		wy12.7-5	1.575	3.00	10.00	3	14.50	22.84		

表3-2-2 1階~3階共通 Y方向(短辺方向)許容せん断耐力

		7747	17313 (752 227							
種類	通り	壁番号	Li	Н	Qo	n	Qa	Qa•Li	各通りの ΣQa•Li	Σ (Qa•Li)
12700	~_ /	- " '	[m]	[m]	[kN]		[kN]	[kN]	[kN]	[kN]
		wx0-1	1.925	3.00	10.00	0	10.00	19.25		
		wx0-2								
	X0	wx0-3	1.500	3.00	10.00	0	10.00	15.00	83.50	
	٨٥	wx0-4	2.000	3.00	10.00	0	10.00	20.00	63.50	
		wx0-5	1.500	3.00	10.00	0	10.00	15.00		
		wx0-6	1.425	3.00	10.00	0	10.00	14.25		
	X1.5	wx1.5-1	0.925	3.00	10.00	0	10.00	9.25	9.25	
		wx4-1	1.925	3.00	10.00	0	10.00	19.25		
		wx4-2	2.000	3.00	10.00	0	10.00	20.00		
	X4	wx4-3	2.000	3.00	10.00	0	10.00	20.00	90.00	
		wx4-4	1.500	3.00	10.00	0	10.00	15.00		
		wx4-5	1.575	3.00	10.00	0	10.00	15.75		
	X6.5	wx6.5-1	0.925	3.00	10.00	0	10.00	9.25	9.25	1
		wx8-1	1.925	3.00	10.00	0	10.00	19.25	88.50	1
		wx8-2	2.000	3.00	10.00	0	10.00	20.00		
Y方向	X8	wx8-3	2.000	3.00	10.00	0	10.00	20.00		472.50
		wx8-4	1.500	3.00	10.00	0	10.00	15.00		
		wx8-5	1.425	3.00	10.00	0	10.00	14.25		
	X9.5	wx9.5-1	0.925	3.00	10.00	0	10.00	9.25	9.25	
		wx12-1	1.925	3.00	10.00	0	10.00	19.25		
		wx12-2	2.000	3.00	10.00	0	10.00	20.00		
	X12	wx12-3	2.000	3.00	10.00	0	10.00	20.00	90.00	
		wx12-4	1.500	3.00	10.00	0	10.00	15.00		
		wx12-5	1.575	3.00	10.00	0	10.00	15.75		
	X14.5	wx14.5-1	0.925	3.00	10.00	0	10.00	9.25	9.25	1
		wx16-1	1.925	3.00	10.00	0	10.00	19.25]
		wx16-2								
	V16	wx16-3	1.500	3.00	10.00	0	10.00	15.00	02.50	
	X16	wx16-4	2.000	3.00	10.00	0	10.00	20.00	83.50	
		wx16-5	1.500	3.00	10.00	0	10.00	15.00		
		wx16-6	1.425	3.00	10.00	0	10.00	14.25		

3-3 水平力に対する壁配置の検定

本建物では耐力壁の配置が1~3階で共通なことから、各階の許容せん断耐力 Σ (Qa·Li)は同一の値となる。

Σ(Qa·Li) : 各階の許容せん断耐力 [kN]

Q_{ei}: i階の地震層せん断力 [kN]

κ: i階の地震力/1階の地震力

設計施工マニュアル第皿部 第 7章 7.2 7.2.1に記載されている 耐力壁の水平耐力の検定を表 で行っています。

 Q_{ai} = Σ ($Qa\cdot Li$)× κ : 各階の許容層せん断耐力 [kN]

 $\gamma = Q_{ei}/Q_{ai}$: 検定比1.0以上を確認する。

検定比γは、各階が連層耐力壁で同一配置となる場合は各方向で各階の値は同一となります。

表3-3-1 地震力に対する許容層せん断耐力の検定

階	方向	Σ (Qa•Li)	Q _{ei}	$\kappa = rac{Q_{ m ei}/Q_{ m e1}}{Q_{ m e1}}$	Q _{ai} = Σ(Qa• Li) × κ	検定比γ	判定 1.0以下
		[kN]	[kN]		[kN]	$Q_{\rm ei}/Q_{\rm ai}$	
3	X(長辺)	468.93	165.54	0.38	177.96	0.930	OK
J	Y(短辺)	472.50	100.04	0.30	179.32	0.923	OK
2	X(長辺)	468.93	324.52	0.74	348.88	0.930	OK
	Y(短辺)	472.50	324.32	0.74	351.54	0.923	OK
1	X(長辺)	468.93	436.19	1.00	468.93	0.930	OK
'	Y(短辺)	472.50	430.18	1.00	472.50	0.923	OK

 Σ (Qa·Li) に κ を乗じることで各階各方向の許容せん断耐力を算定します。

この計算方法は、設計施工マニュアル第皿部第7章「7.2応力計算」に記載されています。

3-4 施行令第109条の2の2に規定される層間変形角1/150以内の確認

準耐火建築物に該当することから、施行令第109条の2の2の規定を満足していることを確認する。 CLTパネル工法建築物のルート1において、耐力壁の変形クライテリアは、1/150以下である。 よって、検討は下記とする。

 $\lambda = 1.0$ の場合、層間変形角は、1/150以内であることから検定比 $\lambda = m$ の場合の層間変形角は下式となる。 層間変形角= $1/(150 \times m)$ 告示解説書、設計施工マニュアルには、耐力壁の特定変形角に関して記載はありませんが、ルート1では、耐力壁の特定変形角を1/150以内として設計法が定め

表3-3-2 今第109条の2の2の規定における層間変形角の確認

階	方向	各階壁量検定比 λ	層間変形角		判定	
3階	Х	0.930	1/ 161	<	1/150	ОК
り自	Υ	0.923	1/ 162	<	1/150	ОК
2階	Χ	0.930	1/ 161	<	1/150	ОК
乙的自	Υ	0.923	1/ 162	<	1/150	ОК
1階	Х	0.930	1/ 161	\	1/150	ОК
I PA	Υ	0.923	1/ 162	<	1/150	ОК

施行令第109条の2の2は、主要構造部を準耐火構造等とした建築物の層間変形角の規定です。この変形角は、防火上有害となる防火被覆材の脱落、損傷、変形等を防止するために規定されています。

 $1/(\lambda/150)$ で層間変形角を算定しています。

4.壁軸力の算定

4-1 各階軸力分担図

設計施工マニュアル第皿部 第3章 3.1 3.1.3(3)で解説しています。

壁などへの鉛直荷重の伝達は、「一つの方法である。」として亀甲 形の分担とする荷重伝達の例が図3.1.3-2示されています。

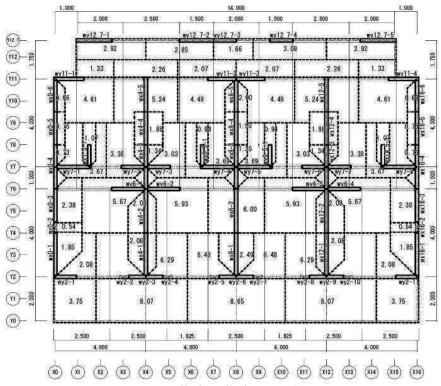


図4-1-1 3階壁、2階壁軸力分担図

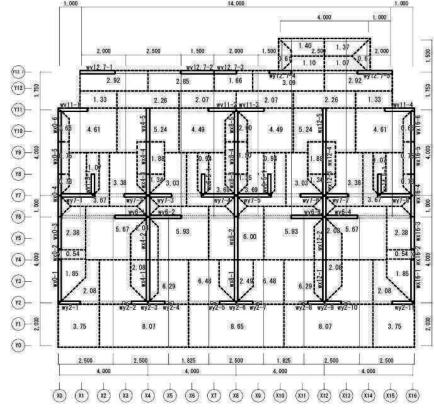


図4-1-2 1階壁軸力分担図

4-2 軸力の算定

通り	i 階	壁符号	部位	面積(A㎡)又は長さL(m)		W(kN/ m)又は Lw(k N/m)	A*W 又はL*Lw (kN)	Ni(kN)	ΣN(kN)
X0	3	3Fwx0-1	パラペット	2.0+0.035	2.04	0.27	0.55		
			RF床	1.85	1.85	2.02	3.74		
			外壁 準耐火C	(2.0+0.035) × 2.64	5.37	0.98	5.26	9.55	9.55
	2	2Fwx0-1	3F床	1.85	1.85	3.22	5.96		
			外壁 準耐火C	(2.0+0.035) × 2.64	5.37	0.98	5.26		
								11.22	20.77
	1	1Fwx0-1	2F床	1.85	1.85	3.22	5.96		
			外壁 準耐火C	(2.0+0.035) × 2.64	5.37	0.98	5.26		
								11.22	32.00
Х0	3	3Fwx0-2	パラペット	0.5-0.07	0.43	0.27	0.12		
			RF床	0.54	0.54	2.02	1.09		
			外壁 準耐火C	(0.5-0.07) × 2.64	1.14	0.98	1.11	2.32	2.32
	2	2Fwx0-2	3F床	0.54	0.54	3.22	1.74		
			外壁 準耐火C	$(0.5-0.07) \times 2.64$	1.14	0.98	1.11		
								2.85	5.17
	1	1Fwx0-2	2F床	0.54	0.54	3.22	1.74		
			外壁 準耐火C	$(0.5-0.07) \times 2.64$	1.14	0.98	1.11		
								2.85	8.02
X0	3	3Fwx0-3	パラペット	1.5+0.035	1.54	0.27	0.41		
			RF床	2.38	2.38	2.02	4.81		
			外壁 準耐火C	0.5 × 2.64	1.32	0.98	1.29		
			間仕切り壁	1.175 × 2.64	3.10	0.24	0.74	7.26	7.26
	2	2Fwx0-3	2F床	2.38	2.38	3.22	7.66		
			外壁 準耐火C	0.5 × 2.64	1.32	0.98	1.29		
			間仕切り壁	1.175 × 2.64	3.10	0.24	0.74	9.70	16.96
	1	1Fwx0-3	2F床	2.38	2.38	3.22	7.66		
			外壁 準耐火C	0.5 × 2.64	1.32	0.98	1.29		
			間仕切り壁	1.175 × 2.64	3.10	0.24	0.74	9.70	26.66
X0	3	3Fwx0-4	パラペット	2.00	2.00	0.27	0.54		
			RF床	0.73	0.73	2.02	1.47		
			外壁 準耐火A	2 × 2.64	5.28	1.17	6.18	8.19	8.19
	2	2Fwx0-4	2F床	0.73	0.73	3.22	2.35		
			外壁 準耐火A	2 × 2.64	5.28	1.17	6.18	8.53	16.72
	1	1Fwx0-4	2F床	0.73	0.73	3.22	2.35		
			外壁 準耐火A	2 × 2.64	5.28	1.17	6.18	8.53	25.25

通り	i 階	壁符号	部位	面積(A㎡)又は長さL(m)		W(kN/ ㎡)又は Lw(k N/m)	A*W 又はL*Lw (kN)	Ni(kN)	ΣN(kN)
X0	3	3Fwx0-5	パラペット	1.50	1.50	0.27	0.41		
			RF床	0.75	0.75	2.02	1.52		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	0.425 × 2.64	1.12	0.24	0.27	6.82	6.82
	2	2Fwx0-5	3F床	0.75	0.75	3.22	2.42		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	0.425 × 2.64	1.12	0.24	0.27	7.32	14.14
	1	1Fwx0-5	2F床	0.75	0.75	3.22	2.42		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	0.425 × 2.64	1.12	0.24	0.27	7.32	21.46
X0	3	3Fwx0-6	パラペット	1.50	1.50	0.27	0.41		
			RF床	0.66	0.66	2.02	1.33		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63	6.37	6.37
	2	2Fwx0-6	3F床	0.66	0.66	3.22	2.13		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63	6.76	13.13
	1	1Fwx0-6	2F床	0.66	0.66	3.22	2.13		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63	6.76	19.89
X1.5	3	3Fwx1.5-1	RF床	1.07	1.07	2.02	2.16		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	5.88	5.88
	2	2Fwx1.5-1	3F床	1.07	1.07	3.22	3.45		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	7.17	13.05
	1	1Fwx1.5-1	2F床	1.07	1.07	3.22	3.45		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	7.17	20.22
X4	3	3Fwx4-1	RF床	2.08	2.08	2.02	4.20		
			界壁	2 × 2.64	5.28	0.97	5.12	9.32	9.32
	2	2Fwx4-1	3F床	2.08	2.08	3.22	6.70		
			界壁	2×2.64	5.28	0.97	5.12	11.82	21.14
	1	1Fwx4-1	2F床	2.08	2.08	3.22	6.70		
			界壁	2×2.64	5.28	0.97	5.12	11.82	32.96
X4	3	3Fwx4-2	RF床	2.08	2.08	2.02	4.20		
			界壁	2×2.64	5.28	0.97	5.12	9.32	9.32
	2	2Fwx4-2	3F床	2.08	2.08	3.22	6.70		
			界壁	2×2.64	5.28	0.97	5.12	11.82	21.14
	1	1Fwx4-2	2F床	2.08	2.08	3.22	6.70		
			界壁	2 × 2.64	5.28	0.97	5.12	11.82	32.96

表4-2-3

表4-2-	i 階	壁符号	部位	面積(A㎡)又は長さL(m)		W(kN/ ㎡)又は Lw(k N/m)	A*W 又はL*Lw (kN)	Ni(kN)	ΣN(kN)
X4	3	3Fwx4-3	RF床	1.34	1.34	2.02	2.71		
			内壁A	2 × 2.64	5.28	1.17	6.18	8.88	8.88
	2	2Fwx4-3	3F床	1.34	1.34	3.22	4.31		
			内壁A	2 × 2.64	5.28	1.17	6.18	10.49	19.38
	1	1Fwx4-3	2F床	1.34	1.34	3.22	4.31		
			内壁A	2 × 2.64	5.28	1.17	6.18	10.49	29.87
X4	3	3Fwx4-4	RF床	1.88	1.88	2.02	3.80		
			内壁A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	1.25 × 2.64	3.30	0.24	0.79	9.22	9.22
	2	2Fwx4-4	3F床	1.88	1.88	3.22	6.05		
			内壁A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	1.25 × 2.64	3.30	0.24	0.79	11.48	20.70
	1	1Fwx4-4	2F床	1.88	1.88	3.22	6.05		
			内壁A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	1.25 × 2.64	3.30	0.24	0.79	11.48	32.18
X4	3	3Fwx4-5	パラペット	2.83	2.83	0.27	0.76		
			RF床	5.24+2.26	7.50	2.02	15.15		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	$(2.0 \times 2 + 0.5 + 0.25) \times 2 \times 2.64$	25.08	0.24	6.02		
			外壁 準耐火D	2.825 × 2.64	7.46	0.69	5.15	31.71	31.71
	2	2Fwx4-5	3F床	5.24	5.24	3.22	16.87		
			共用廊下床	2.26	2.26	2.96	6.69		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	$(2.0 \times 2 + 0.5 + 0.25) \times 2 \times 2.64$	25.08	0.24	6.02		
			外壁 準耐火D	2.825 × 2.64	7.46	0.69	5.15	39.36	71.07
	1	1Fwx4-5	2F床	5.24	5.24	3.22	16.87		
			共用廊下床	2.26	2.26	2.96	6.69		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	$(2.0 \times 2 + 0.5 + 0.25) \times 2 \times 2.64$	25.08	0.24	6.02		
			外壁 準耐火D	2.825 × 2.64	7.46	0.69	5.15	39.36	110.43
X6.5	3	3Fwx6.5-1	RF床	0.94	0.94	2.02	1.90		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	5.62	5.62
	2	2Fwx6.5-1	3F床	0.94	0.94	3.22	3.03		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	6.75	12.37
	1	1Fwx6.5-1	2F床	0.94	0.94	3.22	3.03		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	6.75	19.12

通り	i 階	壁符号	部位	面積(A㎡)又は長さL(m)		W(kN/ ㎡)又は Lw(k N/m)	A*W 又はL*Lw (kN)	Ni(kN)	ΣN(kN)
X8	3	3Fwx8-1	RF床	2.49	2.49	2.02	5.03		
			界壁	2 × 2.64	5.28	0.97	5.12	10.15	10.15
	2	2Fwx8-1	3F床	2.49	2.49	3.22	8.02		
			界壁	2 × 2.64	5.28	0.97	5.12	13.14	23.29
	1	1Fwx8-1	2F床	2.49	2.49	3.22	8.02		
			界壁	2 × 2.64	5.28	0.97	5.12	13.14	36.43
X8	3	3Fwx8-2	RF床	6.00	6.00	2.02	12.12		
			界壁	2 × 2.64	5.28	0.97	5.12		
			間仕切り壁	1.25 × 2 × 2.64	6.60	0.24	1.58	18.83	18.83
	2	2Fwx8-2	3F床	6.00	6.00	3.22	19.32		
			界壁	2 × 2.64	5.28	0.97	5.12		
			間仕切り壁	1.25 × 2 × 2.64	6.60	0.24	1.58	26.03	44.85
	1	1Fwx8-2	2F床	6.00	6.00	3.22	19.32		
			界壁	2 × 2.64	5.28	0.97	5.12		
			間仕切り壁	1.25 × 2 × 2.64	6.60	0.24	1.584	26.03	70.88
X8	3	3Fwx8-3	RF床	1.25	1.25	2.02	2.53		
			内壁A	2 × 2.64	5.28	1.17	6.18	8.70	8.70
	2	2Fwx8-3	3F床	1.25	1.25	3.22	4.03		
			内壁A	2 × 2.64	5.28	1.17	6.18	10.20	18.91
	1	1Fwx8-3	2F床	1.25	1.25	3.22	4.03		
			内壁A	2 × 2.64	5.28	1.17	6.18	10.20	29.11
X8	3	3Fwx8-4	RF床	1.50	1.50	2.02	3.03		
			内壁A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	0.5 × 2 × 2.64	2.64	0.24	0.63	8.30	8.30
	2	2Fwx8-4	3F床	1.50	1.50	3.22	4.83		
			内壁A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	0.5 × 2 × 2.64	2.64	0.24	0.63	10.10	18.39
	1	1Fwx8-4	2F床	1.50	1.50	3.22	4.83		
			内壁A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	0.5 × 2 × 2.64	2.64	0.24	0.63	10.10	28.49
X8	3	3Fwx8-5	RF床	2.00	2.00	2.02	4.04		
			内壁A	1.5 × 2.64	3.96	1.17	4.63	8.67	8.67
	2	2Fwx8-5	3F床	2.00	2.00	3.22	6.44		
			内壁A	1.5 × 2.64	3.96	1.17	4.63	11.07	19.75
	1	1Fwx8-5	2F床	2.00	2.00	3.22	6.44		
			内壁A	1.5 × 2.64	3.96	1.17	4.63	11.07	30.82

表4-2-5

通り	i 階	壁符号	部位	面積(A㎡)又は長さL(m)		W(kN/ m)又は Lw(k N/m)	A*W 又はL*Lw (kN)	Ni(kN)	ΣN(kN)
X9.5	3	3Fwx9.5-1	RF床	0.94	0.94	2.02	1.90		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	5.62	5.62
	2	2Fwx9.5-1	3F床	0.94	0.94	3.22	3.03		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	6.75	12.37
	1	1Fwx9.5-1	2F床	0.94	0.94	3.22	3.03		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	6.75	19.12
X12	3	3Fwx12-1	RF床	2.08	2.08	2.02	4.20		
			界壁	2×2.64	5.28	0.97	5.12	9.32	9.32
	2	2Fwx12-1	3F床	2.08	2.08	3.22	6.70		
			界壁	2×2.64	5.28	0.97	5.12	11.82	21.14
	1	1Fwx12-1	2F床	2.08	2.08	3.22	6.70		
			界壁	2×2.64	5.28	0.97	5.12	11.82	32.96
X12	3	3Fwx12-2	RF床	2.08	2.08	2.02	4.20		
			界壁	2×2.64	5.28	0.97	5.12	9.32	9.32
	2	2Fwx12-2	3F床	2.08	2.08	3.22	6.70		
			界壁	2 × 2.64	5.28	0.97	5.12	11.82	21.14
	1	1Fwx12-2	2F床	2.08	2.08	3.22	6.70		
			界壁	2 × 2.64	5.28	0.97	5.12	11.82	32.96
X12	3	3Fwx12-3	RF床	1.34	1.34	2.02	2.71		
			内壁A	2 × 2.64	5.28	1.17	6.18	8.88	8.88
	2	2Fwx12-3	3F床	1.34	1.34	3.22	4.31		
			内壁A	2 × 2.64	5.28	1.17	6.18	10.49	19.38
	1	1Fwx12-3	2F床	1.34	1.34	3.22	4.31		
			内壁A	2 × 2.64	5.28	1.17	6.18	10.49	29.87
X12	3	3Fwx12-4	RF床	1.88	1.88	2.02	3.80		
			内壁A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	1.25 × 2.64	3.30	0.24	0.79	9.22	9.22
	2	2Fwx12-4	3F床	1.88	1.88	3.22	6.05		
			内壁A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	1.25 × 2.64	3.30	0.24	0.79	11.48	20.70
	1	1Fwx12-4	2F床	1.88	1.88	3.22	6.05		
			内壁A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	1.25 × 2.64	3.30	0.24	0.79	11.48	32.18

通り	i 階	壁符号	部位	面積(A㎡)又は長さL(m)		W(kN/ ㎡)又は Lw(k N/m)	A*W 又はL*Lw (kN)	Ni(kN)	ΣN(kN)
X12	3	3Fwx12-5	パラペット	2.83	2.83	0.27	0.76		
			RF床	5.24+2.26	7.50	2.02	15.15		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	$(2.0 \times 2 + 0.5 + 0.25) \times 2 \times 2.64$	25.08	0.24	6.02		
			外壁 準耐火D	2.825 × 2.64	7.46	0.69	5.15	31.71	31.71
	2	2Fwx12-5	3F床	5.24	5.24	3.22	16.87		
			共用廊下床	2.26	2.26	2.96	6.69		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	$(2.0 \times 2 + 0.5 + 0.25) \times 2 \times 2.64$	25.08	0.24	6.02		
			外壁 準耐火D	2.825 × 2.64	7.46	0.69	5.15	39.36	71.07
	1	1Fwx12-5	2F床	5.24	5.24	3.22	16.87		
			共用廊下床	2.26	2.26	2.96	6.69		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	$(2.0 \times 2 + 0.5 + 0.25) \times 2 \times 2.64$	25.08	0.24	6.02		
			外壁 準耐火D	2.825 × 2.64	7.46	0.69	5.15	39.36	110.43
X14.5	3	3Fwx14.5-1	RF床	1.07	1.07	2.02	2.16		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	5.88	5.88
	2	2Fwx14.5-1	3F床	1.07	1.07	3.22	3.45		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	7.17	13.05
	1	1Fwx14.5-1	2F床	1.07	1.07	3.22	3.45		
			内壁A	1 × 2.64	2.64	1.17	3.09		
			間仕切り壁	1 × 2.64	2.64	0.24	0.63	7.17	20.22
X16	3	3Fwx16-1	パラペット	2.0+0.035	2.04	0.27	0.55		
			RF床	1.85	1.85	2.02	3.74		
			外壁 準耐火C	(2.0+0.035) × 2.64	5.37	0.98	5.26	9.55	9.55
	2	2Fwx16-1	3F床	1.85	1.85	3.22	5.96		
			外壁 準耐火C	(2.0+0.035) × 2.64	5.37	0.98	5.26		
								11.22	20.77
	1	1Fwx16-1	2F床	1.85	1.85	3.22	5.96		
			外壁 準耐火C	(2.0+0.035) × 2.64	5.37	0.98	5.26		
								11.22	32.00

通り	i 階	壁符号	部位	面積(A㎡)又は長さL(m)		W(kN/ ㎡)又は Lw(k N/m)	A*W 又はL*Lw (kN)	Ni(kN)	ΣN(kN)
X16	3	3Fwx16-2	パラペット	0.5-0.07	0.43	0.27	0.12		
			RF床	0.54	0.54	2.02	1.09		
			外壁 準耐火C	(0.5-0.07) × 2.64	1.14	0.98	1.11	2.32	2.32
	2	2Fwx16-2	3F床	0.54	0.54	3.22	1.74		
			外壁 準耐火C	(0.5-0.07) × 2.64	1.14	0.98	1.11		
								2.85	5.17
	1	1Fwx16-2	2F床	0.54	0.54	3.22	1.74		
			外壁 準耐火C	(0.5-0.07) × 2.64	1.14	0.98	1.11		
								2.85	8.02
X16	3	3Fwx16-3	パラペット	1.5+0.035	1.54	0.27	0.41		
			RF床	2.38	2.38	2.02	4.81		
			外壁 準耐火C	0.5 × 2.64	1.32	0.98	1.29		
			間仕切り壁	1.175 × 2.64	3.10	0.24	0.74	7.26	7.26
	2	2Fwx16-3	2F床	2.38	2.38	3.22	7.66		
			外壁 準耐火C	0.5 × 2.64	1.32	0.98	1.29		
			間仕切り壁	1.175 × 2.64	3.10	0.24	0.74	9.70	16.96
	1	1Fwx16-3	2F床	2.38	2.38	3.22	7.66		
			外壁 準耐火C	0.5 × 2.64	1.32	0.98	1.29		
			間仕切り壁	1.175 × 2.64	3.10	0.24	0.74	9.70	26.66
X16	3	3Fwx16-4	パラペット	2.00	2.00	0.27	0.54		
			RF床	0.73	0.73	2.02	1.47		
			外壁 準耐火A	2×2.64	5.28	1.17	6.18	8.19	8.19
	2	2Fwx16-4	2F床	0.73	0.73	3.22	2.35		
			外壁 準耐火A	2×2.64	5.28	1.17	6.18	8.53	16.72
	1	1Fwx16-4	2F床	0.73	0.73	3.22	2.35		
			外壁 準耐火A	2×2.64	5.28	1.17	6.18	8.53	25.25
X16	3	3Fwx16-5	パラペット	1.50	1.50	0.27	0.41		
			RF床	0.75	0.75	2.02	1.52		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	0.425 × 2.64	1.12	0.24	0.27	6.82	6.82
	2	2Fwx16-5		0.75	0.75	3.22	2.42		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	0.425 × 2.64	1.12	0.24	0.27	7.32	14.14
	1	1Fwx16-5		0.75	0.75	3.22	2.42		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63		
			間仕切り壁	0.425 × 2.64	1.12	0.24	0.27	7.32	21.46

通り	i 階	壁符号	部位	面積(A㎡)又は長さL(m)		W(kN/ m)又は Lw(k N/m)	A*W 又はL*Lw (kN)	Ni(kN)	ΣN(kN)
X16	3	3Fwx16-6	パラペット	1.50	1.50	0.27	0.41		
			RF床	0.66	0.66	2.02	1.33		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63	6.37	6.37
	2	2Fwx16-6	3F床	0.66	0.66	3.22	2.13		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63	6.76	13.13
	1	1Fwx16-6	2F床	0.66	0.66	3.22	2.13		
			外壁 準耐火A	1.5 × 2.64	3.96	1.17	4.63	6.76	19.89

表4-2-9 設備壁のwy2-2、wy2-4、wy2-5、wy2-7、wy2-8、wy2-10は、軸力を負担しない為、算定はしていない。

通り	i 階	壁符号	部位	面積A㎡又は長さLm		W kN/㎡ 又は Lw kN/m	A*W 又は L*Lw kN	Ni kN	ΣN kN
Y2	3	3Fwy2-1	パラペット	1.80	1.80	0.27	0.49		
			RF床	3.75+2.08	5.83	2.02	11.78		
			外壁 準耐火A	1.8*2.64-1.8*0.83	3.26	1.17	3.81		
			サッシ	1.8*0.83	1.49	0.40	0.60	16.67	16.67
	2	2Fwy2-1	3F床	2.08	2.08	3.22	6.70		
			3Fベランダ	3.75	3.75	2.96	11.10		
			外壁 準耐火A	1.8*2.64-1.8*0.83	3.26	1.17	3.81		
			サッシ	1.8*0.83	1.49	0.40	0.60	22.21	38.88
	1	1Fwy2-1	2F床	2.08	2.08	3.22	6.70		
			2Fベランダ	3.75	3.75	2.96	11.10		
			外壁 準耐火A	1.8*2.64-1.8*0.83	3.26	1.17	3.81		
			サッシ	1.8*0.83	1.49	0.40	0.60	22.21	61.09
Y2	3	3Fwy2-3	パラペット	4.04	4.04	0.27	1.09		
			RF床	8.07+6.29	14.36	2.02	29.01		
			外壁 準耐火A	4.037*2.64-1.8*(1.045+0.6825)	7.55	1.17	8.83		
			サッシ	1.8*(1.045+0.6825)	3.11	0.40	1.24	40.17	40.17
	2	2Fwy2-3	3F床	6.29	6.29	3.22	20.25		
			3Fベランダ	8.07	8.07	2.96	23.89		
			外壁 準耐火A	4.037*2.64-1.8*(1.045+0.6825)	7.55	1.17	8.83		
			サッシ	1.8*(1.045+0.6825)	3.11	0.40	1.24	54.22	94.39
	1	1Fwy2-3	2F床	6.29	6.29	3.22	20.25		
			2Fベランダ	8.07	8.07	2.96	23.89		
			外壁 準耐火A	4.037*2.64-1.8*(1.045+0.6825)	7.55	1.17	8.83		
			サッシ	1.8*(1.045+0.6825)	3.11	0.40	1.24	54.22	148.60
Y2	3	3Fwy2-6	パラペット	4.33	4.04	0.27	1.09		
			RF床	8.65+6.46	15.11	2.02	30.52		
			外壁 準耐火A	4.325*2.64-1.8*(1.0075+1.0075)	7.79	1.17	9.12		
			サッシ	1.8*(1.0075+1.0075)	3.63	0.40	1.45	42.18	42.18
	2	2Fwy2-6	3F床	6.29	6.29	3.22	20.25		
			3Fベランダ	8.07	8.07	2.96	23.89		
			外壁 準耐火A	4.325*2.64-1.8*(1.0075+1.0075)	7.79	1.17	9.12		
			サッシ	1.8*(1.0075+1.0075)	3.63	0.40	1.45	54.71	96.89
	1	1Fwy2-6	2F床	6.29	6.29	3.22	20.25		
			2Fベランダ	8.07	8.07	2.96	23.89		
			外壁 準耐火A	4.325*2.64-1.8*(1.0075+1.0075)	7.79	1.17	9.12		
			サッシ	1.8*(1.0075+1.0075)	3.63	0.40	1.45	54.71	151.59

表4-2-10

通り	i 階	壁符号	部位	面積A㎡又は長さLm		W kN/㎡ 又は Lw kN/m	A*W 又は L*Lw kN	Ni kN	ΣN kN
Y2	3	3Fwy2-9	パラペット	4.04	4.04	0.27	1.09		
			RF床	8.07+6.29	14.36	2.02	29.01		
			外壁 準耐火A	4.037*2.64-1.8*(1.045+0.6825) 7.55		1.17	8.83		
			サッシ	1.8*(1.045+0.6825)	3.11	0.40	1.24	40.17	40.17
	2	2Fwy2-9	3F床	6.29	6.29	3.22	20.25		
			3Fベランダ	8.07	8.07	2.96	23.89		
			外壁 準耐火A	4.037*2.64-1.8*(1.045+0.6825)	7.55	1.17	8.83		
			サッシ	1.8*(1.045+0.6825)	3.11	0.40	1.24	54.22	94.39
	1	1Fwy2-9	2F床	6.29	6.29	3.22	20.25		
			2Fベランダ	8.07	8.07	2.96	23.89		
			外壁 準耐火A	4.037*2.64-1.8*(1.045+0.6825)	7.55	1.17	8.83		
			サッシ	1.8*(1.045+0.6825)	3.11	0.40	1.24	54.22	148.60
Y2	3	3Fwy2-11	パラペット	1.80	1.80	0.27	0.49		
			RF床	3.75+2.08	5.83	2.02	11.78		
			外壁 準耐火A	1.8*2.64-1.8*0.83	3.26	1.17	3.81		
			サッシ	1.8*0.83	1.49	0.40	0.60	16.67	16.67
	2	2Fwy2-11	3F床	2.08	2.08	3.22	6.70		
			3Fベランダ	3.75	3.75	2.96	11.10		
			外壁 準耐火A	1.8*2.64-1.8*0.83	3.26	1.17	3.81		
			サッシ	1.8*0.83	1.49	0.40	0.60	22.21	38.88
	1	1Fwy2-11	2F床	2.08	2.08	3.22	6.70		
			2Fベランダ	3.75	3.75	2.96	11.10		
			外壁 準耐火A	1.8*2.64-1.8*0.83	3.26	1.17	3.81		
			サッシ	1.8*0.83	1.49	0.40	0.60	22.21	61.09
Y6	3	3Fwy6-1	RF床	5.67	5.67	2.02	11.45		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.325+0.5)*2.64	4.82	0.24	1.16	15.54	15.54
	2	2Fwy6-1	3F床	5.67	5.67	3.22	18.26		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.325+0.5)*2.64 4.82		0.24	1.16	22.34	37.88
	1	1Fwy6-1	2F床	5.67 5.67		3.22	18.26		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.325+0.5)*2.64	4.82	0.24	1.16	22.34	60.23

表4-2-11

通り	i 階	壁符号	部位	面積A㎡又は長さLm		W kN/㎡ 又は Lw kN/m	A*W 又は L*Lw kN	Ni kN	ΣN kN
Y6	3	3Fwy6-2	RF床	5.93	5.93	2.02	11.98		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.25+0.5)*2.64	4.62	0.24	1.11	16.02	16.02
	2	2Fwy6-2	3F床	5.93		3.22	19.09		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.25+0.5)*2.64	4.62	0.24	1.11	23.13	39.15
	1	1Fwy6-2	2F床	5.93	5.93	3.22	19.09		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.25+0.5)*2.64	4.62	0.24	1.11	23.13	62.29
Y6	3	3Fwy6-3	RF床	5.93	5.93	2.02	11.98		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.25+0.5)*2.64	4.62	0.24	1.11	16.02	16.02
	2	2Fwy6-3	3F床	5.93	5.93	3.22	19.09		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.25+0.5)*2.64	4.62	0.24	1.11	23.13	39.15
	1	1Fwy6-3	2F床	5.93	5.93	3.22	19.09		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.25+0.5)*2.64	4.62	0.24	1.11	23.13	62.29
Y6	3	3Fwy6-4	RF床	5.67	5.67	2.02	11.45		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.325+0.5)*2.64	4.82	0.24	1.16	15.54	15.54
	2	2Fwy6-4	3F床	5.67	5.67	3.22	18.26		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.325+0.5)*2.64	4.82	0.24	1.16	22.34	37.88
	1	1Fwy6-4	2F床	5.67	5.67	3.22	18.26		
			内壁B	1.5*2.64	3.96	0.74	2.93		
			間仕切り壁	(1.325+0.5)*2.64	4.82	0.24	1.16	22.34	60.23
Y7	3	3Fwy7-1	RF床	3.67	3.67	2.02	7.41		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	10.81	10.81
	2	2Fwy7-1	3F床	3.67	3.67	3.22	11.82		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	15.21	26.02
	1	1Fwy7-1	2F床	3.67	3.67	3.22	11.82		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	15.21	41.23

表4-2-12

通り	i 階	壁符号	部位	面積A㎡又は長さLm		W kN/㎡ 又は Lw kN/m	A*W 又は L*Lw kN	Ni kN	ΣN kN
Y7	3	3Fwy7-2	RF床	3.38	3.38	2.02	6.83		
			内壁B	1.075*2.64	2.84	0.74	2.10	8.93	8.93
	2	2Fwy7-2	3F床	3.38	3.38	3.22	10.88		
			内壁B	1.075*2.64	2.84	0.74	2.10	12.98	21.91
	1	1Fwy7-2	2F床	3.38	3.38	3.22	10.88		
			内壁B	1.075*2.64	2.84	0.74	2.10	12.98	34.90
Y7	3	3Fwy7-3	RF床	3.03	3.03	2.02	6.12		
			内壁B	1.075*2.64	2.84	0.74	2.10	8.22	8.22
	2	2Fwy7-3	3F床	3.03	3.03	3.22	9.76		
			内壁B	1.075*2.64	2.84	0.74	2.10	11.86	20.08
	1	1Fwy7-3	2F床	3.03	3.03	3.22	9.76		
			内壁B	1.075*2.64	2.84	0.74	2.10	11.86	31.93
Y7	3	3Fwy7-4	RF床	3.69	3.69	2.02	7.45		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	10.85	10.85
	2	2Fwy7-4	3F床	3.69	3.69	3.22	11.88		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	15.28	26.12
	1	1Fwy7-4	2F床	3.69	3.69	3.22	11.88		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	15.28	41.40
Y7	3	3Fwy7-5	RF床	3.69	3.69	2.02	7.45		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	10.85	10.85
	2	2Fwy7-5	3F床	3.69	3.69	3.22	11.88		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	15.28	26.12
	1	1Fwy7-5	2F床	3.69	3.69	3.22	11.88		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	15.28	41.40
Y7	3	3Fwy7-6	RF床	3.03	3.03	2.02	6.12		
			内壁B	1.075*2.64	2.84	0.74	2.10	8.22	8.22
	2	2Fwy7-6	3F床	3.03	3.03	3.22	9.76		
			内壁B	1.075*2.64	2.84	0.74	2.10	11.86	20.08
	1	1Fwy7-6	2F床	3.03	3.03	3.22	9.76		
			内壁B	1.075*2.64	2.84	0.74	2.10	11.86	31.93

表4-2-13

通り	i 階	壁符号	部位	面積A㎡又は長さLm		W kN/㎡ 又は Lw kN/m	A*W 又は L*Lw kN	Ni kN	ΣN kN
Y7	3	3Fwy7-7	RF床	3.38	3.38	2.02	6.83		
			内壁B	1.075*2.64	2.84	0.74	2.10	8.93	8.93
	2	2Fwy7-7	3F床	3.38	3.38	3.22	10.88		
			内壁B	1.075*2.64	2.84	0.74	2.10	12.98	21.91
	1	1Fwy7-7	2F床	3.38	3.38	3.22	10.88		
			内壁B	1.075*2.64	2.84	0.74	2.10	12.98	34.90
Y7	3	3Fwy7-8	RF床	3.67	3.67	2.02	7.41		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	10.81	10.81
	2	2Fwy7-8	3F床	3.67	3.67	3.22	11.82		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	15.21	26.02
	1	1Fwy7-8	2F床	3.67	3.67	3.22	11.82		
			内壁B	1.575*2.64	4.16	0.74	3.08		
			間仕切り壁	0.5*2.64	1.32	0.24	0.32	15.21	41.23
Y11	3	3Fwy11-1	パラペット	1+0.875	1.88	0.27	0.51		
			RF床	4.61+1.33	5.94	2.02	12.00		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.315*2.64	3.47	0.69	2.40	20.03	20.03
	2	2Fwy11-1	3F床	4.61	4.61	3.22	14.84		
			共用廊下床	1.33	1.33	2.96	3.94		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.315*2.64	3.47	0.69	2.40	26.30	46.33
	1	1Fwy11-1	2F床	4.61	4.61	3.22	14.84		
			共用廊下床	1.33	1.33	2.96	3.94		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.315*2.64	3.47	0.69	2.40	26.30	72.64

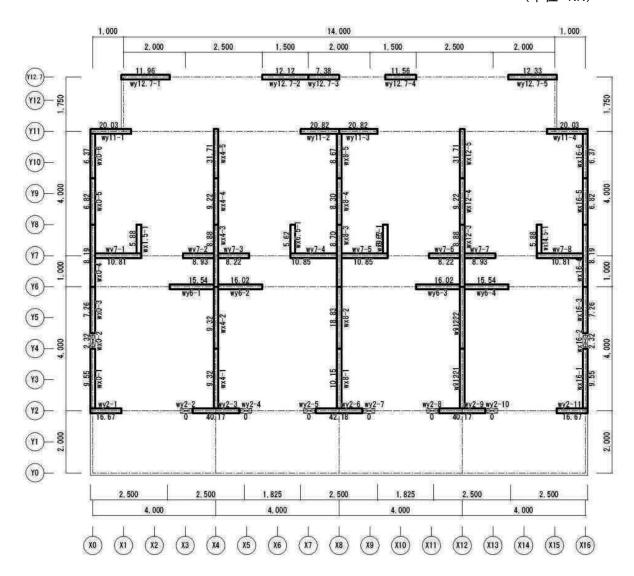
表4-2-14

通り	i 階	壁符号	部位	面積A㎡又は長さLm		W kN/㎡ 又は Lw kN/m	A*W 又は L*Lw kN	Ni kN	ΣN kN
Y11	3	3Fwy11-2	RF床	4.49+2.07	6.56	2.02	13.25		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.3375*2.64	3.53	0.69	2.44	20.82	20.82
	2	2Fwy11-2	3F床	4.49	4.49	3.22	14.46		
			共用廊下床	2.07	2.07	2.96	6.13		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.3375*2.64	3.53	0.69	2.44	28.15	48.97
	1	1Fwy11-2	2F床	4.49	4.49	3.22	14.46		
			共用廊下床	2.07	2.07	2.96	6.13		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.3375*2.64	3.53	0.69	2.44	28.15	77.11
Y11	3	3Fwy11-3	RF床	4.49+2.07	6.56	2.02	13.25		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.3375*2.64	3.53	0.69	2.44	20.82	20.82
	2	2Fwy11-3	3F床	4.49	4.49	3.22	14.46		
			共用廊下床	2.07	2.07	2.96	6.13		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.3375*2.64	3.53	0.69	2.44	28.15	48.97
	1	1Fwy11-3	2F床	4.49	4.49	3.22	14.46		
			共用廊下床	2.07	2.07	2.96	6.13		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.3375*2.64	3.53	0.69	2.44	28.15	77.11

表4-2-15

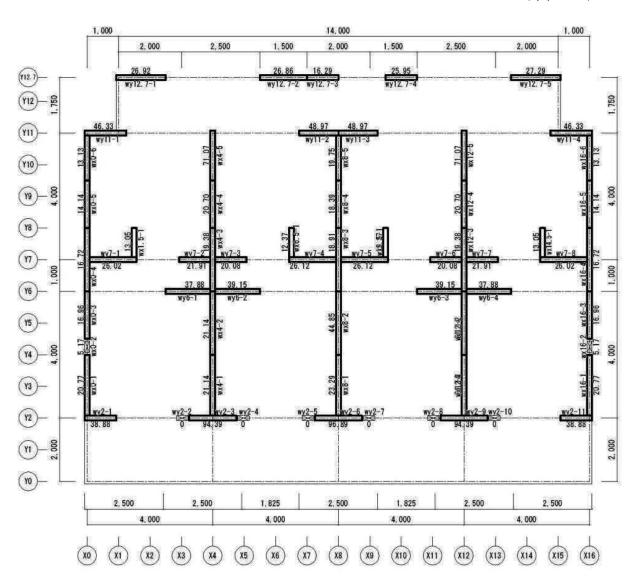
通り	i 階	壁符号	部位	面積A㎡又は長さLm		W kN/㎡ 又は Lw kN/m	A*W 又は L*Lw kN	Ni kN	ΣN kN
Y11	3	3Fwy11-4	パラペット	1+0.875	1.88	0.27	0.51		
			RF床	4.61+1.33	5.94	2.02	12.00		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.315*2.64	3.47	0.69	2.40	20.03	20.03
	2	2Fwy11-4	3F床	4.61	4.61	3.22	14.84		
			共用廊下床	1.33	1.33	2.96	3.94		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.315*2.64	3.47	0.69	2.40	26.30	46.33
	1	1Fwy11-4	2F床	4.61	4.61	3.22	14.84		
			共用廊下床	1.33	1.33	2.96	3.94		
			外壁 準耐火A	1.25*2.64	3.30	1.17	3.86		
			間仕切り壁	2.0*2.64	5.28	0.24	1.27		
			外壁 準耐火D	1.315*2.64	3.47	0.69	2.40	26.30	72.64
Y12.7	3	3Fwy12.7-1	パラペット	1+0.875	1.88	0.27	0.51		
			RF床	2.92	2.92	2.02	5.90		
			外壁 準耐火B	3.0*2.64-1.5*2.14	4.71	1.18	5.56	11.96	11.96
	2	2Fwy12.7-1	3F床	2.92	2.92	3.22	9.40		
			外壁 準耐火B	3.0*2.64-1.5*2.14	4.71	1.18	5.56	14.96	26.92
	1	1Fwy12.7-1	2F床	2.92	2.92	3.22	9.40		
			外壁 準耐火B	3.0*2.64-1.5*2.14	4.71	1.18	5.56	14.96	41.88
Y12.7	3	3Fwy12.7-2	パラペット	3.00	3.00	0.27	0.81		
			RF床	2.85	2.85	2.02	5.76		
			外壁 準耐火B	3.0*2.64-1.5*2.14	4.71	1.18	5.56	12.12	12.12
	2	2Fwy12.7-2	3F床	2.85	2.85	3.22	9.18		
			外壁 準耐火B	3.0*2.64-1.5*2.14	4.71	1.18	5.56	14.73	26.86
	1	1Fwy12.7-2	2F床	2.85	2.85	3.22	9.18		
			外壁 準耐火B	3.0*2.64-1.5*2.14	4.71	1.18	5.56	14.73	41.59
Y12.7	3	3Fwy12.7-3	パラペット	1.75	1.75	0.27	0.47		
			RF床	1.66	1.66	2.02	3.35		
			外壁 準耐火B	1.75*2.64-0.75*2.14	3.02	1.18	3.56	7.38	7.38
	2	2Fwy12.7-3	3F床	1.66	1.66	3.22	5.35		
			外壁 準耐火B	1.75*2.64-0.75*2.14	3.02	1.18	3.56	8.90	16.29
	1	1Fwy12.7-3		1.66	1.66	3.22	5.35		
			外壁 準耐火B	1.75*2.64-0.75*2.14	3.02	1.18	3.56	8.90	25.19

表4-2-16

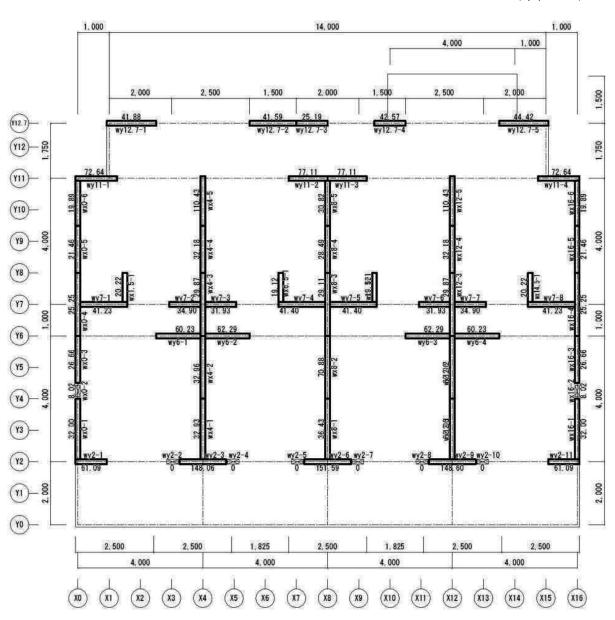

通り	i 階	壁符号	部位	面積A㎡又は長さLm		W kN/㎡ 又は Lw kN/m	A*W 又は L*Lw kN	Ni kN	ΣN kN
Y12.7	3	3Fwy12.7-4	パラペット	3.25	3.25	0.27	0.88		
			RF床	3.09	3.09	2.02	6.24		
			外壁 準耐火B	3.25*2.64-(0.75+1.5)*2.14	3.77	1.18	4.44	11.56	11.56
	2	2Fwy12.7-4	3F床	3.09	3.09	3.22	9.95		
			外壁 準耐火B	3.25*2.64-(0.75+1.5)*2.14	3.77	1.18	4.44	14.39	25.95
	1	1Fwy12.7-4	2F床	3.09	3.09	3.22	9.95		
			2F屋根	1.07	1.10	2.02	2.22		
			外壁 準耐火B	3.25*2.64-(0.75+1.5)*2.14	3.77	1.18	4.44	16.61	42.57
Y12.7	3	3Fwy12.7-5	パラペット	3.00	3.00	0.27	0.81		
			RF床	2.92	2.92	2.02	5.90		
			外壁 準耐火B	3.00*2.64-1.50*2.14	4.71	1.18	5.56	12.27	12.27
	2	2Fwy12.7-5	3F床	2.92	2.92	3.22	9.40		
			外壁 準耐火B	3.00*2.64-1.50*2.14	4.71	1.18	5.56	14.96	27.23
	1	1Fwy12.7-5	2F床	2.92	2.92	3.22	9.40		
			2F屋根	1.07	1.07	2.02	2.16		
			外壁 準耐火B	3.00*2.64-1.50*2.14	4.71	1.18	5.56	17.12	44.35
X10	2		パラペット	1.50	1.50	3.22	4.83		
			2F屋根	0.61	0.61	2.02	1.23	6.06	6.06
	1		外壁 準耐火D	1.5*2.64	3.96	0.69	2.73	2.73	8.79
X14	2		パラペット	1.50	1.50	3.22	4.83		
			2F屋根	0.67	0.67	2.02	1.35	6.18	6.18
	1		外壁 準耐火D	1.5*2.64	3.96	0.69	2.73	2.73	8.92
Y14.2	2	1	パラペット	2.00	2.00	3.22	6.44		
			2F屋根	1.40	1.40	2.02	2.83	9.27	9.27
	1	1	外壁 準耐火D	2.0*2.64-(1.6/2*2.3)	3.44	0.69	2.37		
			サッシ	1.6/2*2.3	1.84	0.40	0.74	3.11	12.38
Y14.2	2	2	パラペット	2.00	2.00	3.22	6.44		
			2F屋根	1.40	1.40	2.02	2.83	9.27	9.27
	1	2	外壁 準耐火D	2.0*2.64-(1.6/2*2.3)	3.44	0.69	2.37		
			サッシ	1.6/2*2.3	1.84	0.40	0.74	3.11	12.38

上部構造総重量(kN)= 2,670

部分は、エントランスであり基礎接地圧算定から除外して扱う。


基礎算定用軸力ΣN= 2,627.77 kN

(単位 kN)


3階壁軸力図

(単位 kN)

2階壁軸力図

(単位 kN)

1階壁軸力図

5. 偏心率の算定----

設計施工マニュアル第Ⅲ部 第7章 7.3に記載されている偏心率の算定を 行います。

5-1 重心の算定

重心は壁の座標と負担軸力により計算する。

表5-1-1 3階重心の算定

PD 35 D	座	標	負担	N V	N. V
壁番号	Х	Υ	軸力	N•X	N•Y
	[m]	[m]	[kN]	[kN•m]	[kN•m]
wx0-1	0.00	1.04	9.55	0.00	9.91
wx0-2	0.00	2.25	2.32	0.00	5.22
wx0-3	0.00	3.43	7.26	0.00	24.87
wx0-4	0.00	5.00	8.19	0.00	40.96
wx0-5	0.00	6.75	6.82	0.00	46.05
wx0-6	0.00	8.22	6.37	0.00	52.34
wx1.5-1	1.50	5.54	5.88	8.83	32.58
wx4-1	4.00	1.04	9.32	37.29	9.67
wx4-2	4.00	3.00	9.32	37.29	27.97
wx4-3	4.00	5.00	8.88	35.54	44.42
wx4-4	4.00	6.75	9.22	36.89	62.25
wx4-5	4.00	8.28	31.71	126.84	262.52
wx6.5-1	6.50	5.54	5.62	36.54	31.13
wx8-1	8.00	1.04	10.15	81.21	10.53
wx8-2	8.00	3.00	18.83	150.60	56.48
wx8-3	8.00	5.00	8.70	69.62	43.51
wx8-4	8.00	6.75	8.30	66.37	56.00
wx8-5	8.00	8.22	8.67	69.39	71.25
wx9.5-1	9.50	5.54	5.62	53.40	31.13
wx12-1	12.00	1.04	9.32	111.88	9.67
wx12-2	12.00	3.00	9.32	111.88	27.97
wx12-3	12.00	5.00	8.88	106.61	44.42
wx12-4	12.00	6.75	9.22	110.67	62.25
wx12-5	12.00	8.28	31.71	380.53	262.52
wx14.5-1	15.50	5.54	5.88	91.20	32.58
wx16-1	16.00	1.04	9.55	152.82	9.91
wx16-2	16.00	2.25	2.32	37.11	5.22
wx16-3	16.00	3.43	7.26	116.16	24.87
wx16-4	16.00	5.00	8.19	131.08	40.96
wx16-5	16.00	6.75	6.82	109.16	46.05
wx16-6	16.00	8.22	6.37	101.94	52.34

表5-1-2 3階重心の算定

	座	標	負担		
壁番号	Х	Υ	軸力	N•X	N•Y
	[m]	[m]	[kN]	[kN•m]	[kN•m]
wy2-1	0.43	0.00	16.67	7.09	0.00
wy2-2	3.03	0.00	0.00	0.00	0.00
wy2-3	4.00	0.00	40.17	160.69	0.00
wy2-4	4.98	0.00	0.00	0.00	0.00
wy2-5	7.03	0.00	0.00	0.00	0.00
wy2-6	8.00	0.00	42.18	337.43	0.00
wy2-7	8.98	0.00	0.00	0.00	0.00
wy2-8	11.03	0.00	0.00	0.00	0.00
wy2-9	12.00	0.00	40.17	482.07	0.00
wy2-10	12.98	0.00	0.00	0.00	0.00
wy2-11	15.58	0.00	16.67	259.67	0.00
wy6-1	3.22	4.00	15.54	49.96	62.16
wy6-2	4.79	4.00	16.02	76.69	64.07
wy6-3	11.21	4.00	16.02	179.60	64.07
wy6-4	12.79	4.00	15.54	198.72	62.16
wy7-1	0.83	5.00	10.81	8.92	54.04
wy7-2	3.43	5.00	8.93	30.58	44.64
wy7-3	4.58	5.00	8.22	37.61	41.10
wy7-4	7.18	5.00	10.85	77.83	54.24
wy7-5	8.83	5.00	10.85	95.73	54.24
wy7-6	11.43	5.00	8.22	93.92	41.10
wy7-7	12.58	5.00	8.93	112.27	44.64
wy7-8	15.18	5.00	10.81	164.00	54.04
wy11-1	0.59	9.00	20.03	11.77	180.26
wy11-2	7.38	9.00	20.82	153.52	187.34
wy11-3	8.63	9.00	20.82	179.54	187.34
wy11-4	15.41	9.00	20.03	308.69	180.26
wy12.7-1	1.71	10.75	11.96	20.49	128.60
wy12.7-2	6.25	10.75	12.12	75.78	130.34
wy12.7-3	7.50	10.75	7.38	55.38	79.37
wy12.7-4	10.00	10.75	11.56	115.62	124.29
wy12.7-5	14.29	10.75	12.27	175.25	131.86
		合計	729.20	5,839.65	3,507.72

表5-1-3 3階重心位置の計算

ΣΝ	Σ N•X	ΣΝ•Υ	重心位置		
[kN]	[kN·m]	[kN·m]	X座標 [m]	Y座標 [m]	
729.20	5,839.65	3,507.72	8.008	4.810	

重心は壁の座標と負担軸力により計算する。

表5-1-4 2階重心の算定

	座	標	負担	N V	N. V
壁番号	Х	Υ	軸力	N•X	N•Y
	[m]	[m]	[kN]	[kN•m]	[kN•m]
wx0-1	0.00	1.04	20.77	0.00	21.55
wx0-2	0.00	2.25	5.17	0.00	11.63
wx0-3	0.00	3.43	16.96	0.00	58.09
wx0-4	0.00	5.00	16.72	0.00	83.60
wx0-5	0.00	6.75	14.14	0.00	95.44
wx0-6	0.00	8.22	13.13	0.00	107.86
wx1.5-1	1.50	5.54	13.05	19.58	72.27
wx4-1	4.00	1.04	21.14	84.57	21.94
wx4-2	4.00	3.00	21.14	84.57	63.43
wx4-3	4.00	5.00	19.38	77.51	96.88
wx4-4	4.00	6.75	20.70	82.81	139.74
wx4-5	4.00	8.28	71.07	284.29	588.37
wx6.5-1	6.50	5.54	12.37	80.41	68.50
wx8-1	8.00	1.04	23.29	186.33	24.16
wx8-2	8.00	3.00	44.85	358.81	134.55
wx8-3	8.00	5.00	18.91	151.24	94.53
wx8-4	8.00	6.75	18.39	147.15	124.16
wx8-5	8.00	8.22	19.75	157.97	162.22
wx9.5-1	9.50	5.54	12.37	117.52	68.50
wx12-1	12.00	1.04	21.14	253.71	21.94
wx12-2	12.00	3.00	21.14	253.71	63.43
wx12-3	12.00	5.00	19.38	232.52	96.88
wx12-4	12.00	6.75	20.70	248.42	139.74
wx12-5	12.00	8.28	71.07	852.86	588.37
wx14.5-1	15.50	5.54	13.05	202.30	72.27
wx16-1	16.00	1.04	20.77	332.37	21.55
wx16-2	16.00	2.25	5.17	82.73	11.63
wx16-3	16.00	3.43	16.96	271.39	58.09
wx16-4	16.00	5.00	16.72	267.53	83.60
wx16-5	16.00	6.75	14.14	226.24	95.44
wx16-6	16.00	8.22	13.13	210.08	107.86

表5-1-5 2階重心の算定

	座	 標	負担	N. V	N. V
壁番号	Х	Υ	軸力	N•X	N•Y
	[m]	[m]	[kN]	[kN•m]	[kN•m]
wy2-1	0.43	0.00	38.88	16.52	0.00
wy2-2	3.03	0.00	0.00	0.00	0.00
wy2-3	4.00	0.00	94.39	377.55	0.00
wy2-4	4.98	0.00	0.00	0.00	0.00
wy2-5	7.03	0.00	0.00	0.00	0.00
wy2-6	8.00	0.00	96.89	775.09	0.00
wy2-7	8.98	0.00	0.00	0.00	0.00
wy2-8	11.03	0.00	0.00	0.00	0.00
wy2-9	12.00	0.00	94.39	1,132.66	0.00
wy2-10	12.98	0.00	0.00	0.00	0.00
wy2-11	15.58	0.00	38.88	605.54	0.00
wy6-1	3.22	4.00	37.88	121.80	151.54
wy6-2	4.79	4.00	39.15	187.44	156.61
wy6-3	11.21	4.00	39.15	438.99	156.61
wy6-4	12.79	4.00	37.88	484.44	151.54
wy7-1	0.83	5.00	26.02	21.47	130.09
wy7-2	3.43	5.00	21.91	75.05	109.56
wy7-3	4.58	5.00	20.08	91.85	100.39
wy7-4	7.18	5.00	26.12	187.43	130.62
wy7-5	8.83	5.00	26.12	230.54	130.62
wy7-6	11.43	5.00	20.08	229.38	100.39
wy7-7	12.58	5.00	21.91	275.54	109.56
wy7-8	15.18	5.00	26.02	394.83	130.09
wy11-1	0.59	9.00	46.33	27.22	417.00
wy11-2	7.38	9.00	48.97	361.12	440.69
wy11-3	8.63	9.00	48.97	422.33	440.69
wy11-4	15.41	9.00	46.33	714.11	417.00
wy12.7-1	1.71	10.75	26.92	46.11	289.42
wy12.7-2	6.25	10.75	26.86	167.87	288.74
wy12.7-3	7.50	10.75	16.29	122.15	175.08
wy12.7-4	10.00	10.75	25.95	259.55	279.01
wy12.7-5	14.29	10.75	27.23	389.00	292.68
		合計	1,676.29	13,422.17	7,996.14

表5-1-6 2階重心位置の計算

ΣΝ	Σ N•X	ΣΝ•Υ	重心位置		
[kN]	[kN•m]	[kN·m]	X座標 [m] Y座標 [n		
1,676.29	13,422.17	7,996.14	8.007	4.770	

重心は壁の座標と負担軸力により計算する。

表5-1-7 1階重心の算定

DD 325 D	座	標	負担	N. V	NI V
壁番号	Х	Υ	軸力	N•X	N•Y
	[m]	[m]	[kN]	[kN•m]	[kN·m]
wx0-1	0.00	1.04	32.00	0.00	33.20
wx0-2	0.00	2.25	8.02	0.00	18.05
wx0-3	0.00	3.43	26.66	0.00	91.32
wx0-4	0.00	5.00	25.25	0.00	126.24
wx0-5	0.00	6.75	21.46	0.00	144.84
wx0-6	0.00	8.22	19.89	0.00	163.38
wx1.5-1	1.50	5.54	20.22	30.33	111.96
wx4-1	4.00	1.04	32.96	131.85	34.20
wx4-2	4.00	3.00	32.96	131.85	98.88
wx4-3	4.00	5.00	29.87	119.48	149.35
wx4-4	4.00	6.75	32.18	128.72	217.22
wx4-5	4.00	8.28	110.43	441.73	914.22
wx6.5-1	6.50	5.54	19.12	124.28	105.87
wx8-1	8.00	1.04	36.43	291.44	37.80
wx8-2	8.00	3.00	70.88	567.01	212.63
wx8-3	8.00	5.00	29.11	232.86	145.54
wx8-4	8.00	6.75	28.49	227.92	192.31
wx8-5	8.00	8.22	30.82	246.56	253.18
wx9.5-1	9.50	5.54	19.12	181.64	105.87
wx12-1	12.00	1.04	32.96	395.54	34.20
wx12-2	12.00	3.00	32.96	395.54	98.88
wx12-3	12.00	5.00	29.87	358.43	149.35
wx12-4	12.00	6.75	32.18	386.16	217.22
wx12-5	12.00	8.28	110.43	1,325.19	914.22
wx14.5-1	15.50	5.54	20.22	313.40	111.96
wx16-1	16.00	1.04	32.00	511.92	33.20
wx16-2	16.00	2.25	8.02	128.35	18.05
wx16-3	16.00	3.43	26.66	426.62	91.32
wx16-4	16.00	5.00	25.25	403.98	126.24
wx16-5	16.00	6.75	21.46	343.32	144.84
wx16-6	16.00	8.22	19.89	318.21	163.38

表5-1-8 1階重心の算定

D	座	 標	負担	N. V	N V
壁番号	Х	Υ	軸力	N•X	N•Y
	[m]	[m]	[kN]	[kN•m]	[kN·m]
wy2-1	0.43	0.00	61.09	25.96	0.00
wy2-2	3.03	0.00	0.00	0.00	0.00
wy2-3	4.00	0.00	148.60	594.42	0.00
wy2-4	4.98	0.00	0.00	0.00	0.00
wy2-5	7.03	0.00	0.00	0.00	0.00
wy2-6	8.00	0.00	151.59	1,212.75	0.00
wy2-7	8.98	0.00	0.00	0.00	0.00
wy2-8	11.03	0.00	0.00	0.00	0.00
wy2-9	12.00	0.00	148.60	1,783.26	0.00
wy2-10	12.98	0.00	0.00	0.00	0.00
wy2-11	15.58	0.00	61.09	951.42	0.00
wy6-1	3.22	4.00	60.23	193.63	240.91
wy6-2	4.79	4.00	62.29	298.19	249.14
wy6-3	11.21	4.00	62.29	698.38	249.14
wy6-4	12.79	4.00	60.23	770.17	240.91
wy7-1	0.83	5.00	41.23	34.01	206.15
wy7-2	3.43	5.00	34.90	119.52	174.48
wy7-3	4.58	5.00	31.93	146.10	159.67
wy7-4	7.18	5.00	41.40	297.03	206.99
wy7-5	8.83	5.00	41.40	365.34	206.99
wy7-6	11.43	5.00	31.93	364.85	159.67
wy7-7	12.58	5.00	34.90	438.81	174.48
wy7-8	15.18	5.00	41.23	625.66	206.15
wy11-1	0.59	9.00	72.64	42.67	653.74
wy11-2	7.38	9.00	77.11	568.72	694.03
wy11-3	8.63	9.00	77.11	665.12	694.03
wy11-4	15.41	9.00	72.64	1,119.53	653.74
wy12.7-1	1.71	10.70	41.88	71.72	448.15
wy12.7-2	6.25	10.70	41.59	259.97	445.06
wy12.7-3	7.50	10.70	25.19	188.92	269.52
wy12.7-4	10.00	10.70	42.57	425.69	455.49
wy12.7-5	14.29	10.70	44.35	633.62	474.52
		合計	2,627.77	21,057.79	12,521.90

表5-1-9 1階重心位置の計算

ΣΝ	Σ N•X	ΣΝ•Υ	重心位置		
[kN]	[kN•m]	[kN•m]	X座標 [m] Y座標 [r		
2,627.77	21,057.79	12,521.90	8.014	4.765	

5-2 剛心の算定

剛心は壁の座標と許容せん断耐力(Qa)により計算する。

各階の壁の位置が同じであるため、剛心は同じとなるため、1つの階のみ検討する。

剛心は、表3-2-1、表3-2-1、表3-2-2で 算定している各通りの許容せん断耐力 Σ Qa・Liを剛性比Qaとして算定します。

表5-2-1 X方向剛心

通り番号	座標	Qax	Qax•Y		
通り留う	Υ	Gax	Gax	Qax•(Y-Yk)²	
	[m]	[kN]	[kN•m]		
Y2	0.00	114.50	0.00	3,258.22	
Y6	4.00	57.00	228.00	101.50	
Y7	5.00	145.00	725.00	16.22	
Y11	9.00	51.50	463.50	691.98	
Y12.7	10.75	100.93	1,084.94	2,959.98	
	合計	468.93	2,501.44	7,027.89	
		Yk=	5.334		

 $Yk = (\sum Qax \cdot Y) / \sum Qax = 2479.69/464.58 = 5.338$

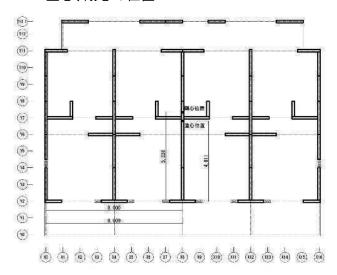
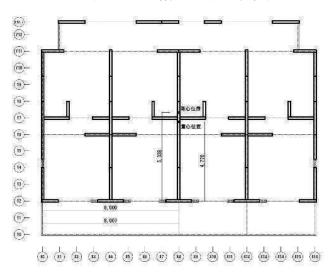

57.00×(4.00-5.338)²=102.04 となり、表の算定結果と異なる数値となりますが、これはデータリンクにより表計算を行ったことで誤差が生じたためです。清算値は、表計算の数値が近似なことから、表計算の値を用いることに問題はありません。

表5-2-2 Y方向剛心

通り番号	座標	Qay	Qay•X	
一 週7日 ラ	Х	Gay	Gay A	$Qay \cdot (X-Xk)^2$
	[m]	[kN]	[kN•m]	
X0	0.00	83.50	0.00	5,344.00
X1.5	1.50	9.25	13.88	390.81
X4	4.00	90.00	360.00	1,440.00
X6.5	6.50	9.25	60.13	20.81
X8	8.00	88.50	708.00	0.00
X9.5	9.50	9.25	87.88	20.81
X12	12.00	90.00	1,080.00	1,440.00
X14.5	14.50	9.25	134.13	390.81
X16	16.00	83.50	1,336.00	5,344.00
	合計	472.50	3,780.00	14,391.25
		Xk=	8.000	

 $Xk = (\Sigma Qay \cdot X) / \Sigma Qay = 3780.00/472.50 = 8.000$

5-3 重心、剛心の位置

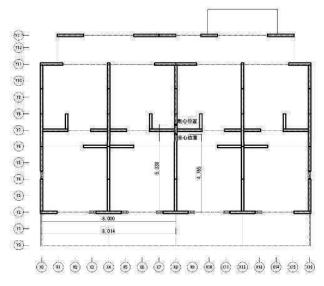

里心		
Xg =	8.008	m
Yg=	4.810	m

剛心

Xk = 8.000 mYk = 5.334 m

ex=|Yg-Yk|=0.524 m ey=|Xg-Xk|=0.008 m

図5-3-1 3階重心・剛心位置図



重心		
$\chi_g =$	8.007	m
Yg=	4.770	m

剛心 Xk= 8.000 m Yk= 5.334 m

ex=|Yg-Yk|=0.564 m ey=|Xg-Xk|=0.007 m

図5-3-2 2階重心・剛心位置図

Yg= 4.765 m 剛心 Xk= 8.000 m Yk= 5.334 m

8.014 m

重心

 $\chi_g =$

ex=|Yg-Yk|=0.569 m ey=|Xg-Xk|=0.014 m

図5-3-3 1階重心・剛心位置図

5-4 偏心率の算定

設計施工マニュアル第皿部 第4章 4.3 4.3.2に解説されています。

① ねじり剛性の算定 ねじり剛性Kri= Σ {Qaxi•(Yi-Yk)²+Qayi•(Xi-Xk)²}

表5-4-1 各階のねじり剛性Kriの算定

階	Qaxi• (Yi-Yk)²	Qayi•(Xi-Xk)²	Kri
3	7,027.89	14,391.25	21419.14
2	7,027.89	14,391.25	21419.14
1	7,027.89	14,391.25	21419.14

表5-2-1、表5-2-2にて算定した数値を用います。

② 弾力半径の算定 弾力半径Rex=√(Kri/∑Qaxi) 弾力半径Rey=√(Kri/∑Qayi)

表5-4-2 弾力半径reの算定

階	Kri	ΣQaxi	rexi
3		468.93	6.758
2	21419.14	468.93	6.758
1		468.93	6.758

階	Kri	ΣQayi	reyi
3		472.50	6.733
2	21419.14	472.50	6.733
1		472.50	6.733

表5-2-1にて算定した数値を用います。

表5-2-2にて算定した数値を用います。

③ 偏心率の算定 偏心率Rey=ey/rey 偏心率Rex=ex/rex

表5-4-3 3階偏心率

重	心	剛	心	偏心	距離	弾力	半径	偏心	率
Yg	Xg	Yk	Xk	ey	ex	rey	rex	R_{eY}	R _{eX}
4.810	8.008	5.334	8.000	0.524	0.008	6.733	6.758	0.078	0.001

表5-4-4 2階偏心率

重心		剛心		偏心距離		弾力	偏心率		
Yg	Хg	Yk	Xk	ey	ex	rey	rex	R_{eY}	R _{eX}
4.770	8.007	5.334	8.000	0.564	0.007	6.733	6.758	0.084	0.001

表5-4-5 1階偏心率

重心		剛心		偏心距離		弾力	偏心率		
Yg	Хg	Yk	Xk	ey	ex	rey	rex	R_{eY}	R_{eX}
4.765	8.014	5.334	8.000	0.569	0.014	6.733	6.758	0.085	0.002

各階各方向ともに偏心率Reは、15/100以下である。

6.断面検定

6-1 壁パネルの検定

① 壁パネルの圧縮座屈に関する検定

CLT壁パネルの圧縮座屈強度 F_k は国土交通省告示第1024号による。 軸力が最大となる1階壁で検討を行う。負担軸力が同じ箇所については省略する。 以下に計算内容について記載する。

从门口开门台	こうして記れるの。			
				算定例:wx0−1
荷重条件	: 長期、短期等の荷重条件			長期荷重時
壁番号	:検定箇所の壁番号			wx0-1
強度等級	:CLTパネルの種別			M×60-5-5
CLTパネル厚 t[mm	: 厚み		=	150
パネル幅 L[mm]	: 幅		=	1,925
$I_0[mm^4]$: 面外方向の断面二次モーメント =	$(L \times t^3)/12 = (1925 \times 150^3)/12$	=	541,406,250
$A_0[mm^2]$:断面積	$t \times L=150 \times 19.5$	=	288,750
i ₀ [mm]	:断面二次半径 $\sqrt{(I_0/A_0)}$ =	$\sqrt{(541,406,250/288,750)}$	=	43.30
ℓ_k [mm]	: 座屈長さ(CLT壁高さ)		=	2,640
λ	: 有効細長比(弱軸)	$\ell_k/i_0 = 2,640/43.3$	=	60.97
座屈低減係数	: 平成13年国土交通省告示第1024号に	よる		
	$=\lambda < 100 \rightarrow 1.3 - 0.01 \times \lambda$	$=1.3-0.01 \times 60.97$	=	0.69
$Fc[N/mm^2]$: 圧縮基準強度 8.10N/mm ^d		=	8.10
$F_k[N/mm^2]$:座屈強度(座屈低減係数×Fc)	$=8.10 \times 0.69$	=	5.59
N(鉛直荷重)[N]	: 4-2で算定した鉛直荷重(単位kNから	Nに換算している。)	=	31,995
$_{\rm L}\sigma{ m c[N/mm}^2]$:長期圧縮応力度	$N/A_0 = 31,995/288,750$	=	0.11
$_{\rm L}{\rm f_k}[{\rm N/mm}^2]$:長期許容座屈応力度	$1.1/3 \times \text{Fk} = 1.1/3 \times 5.59$	=	2.05
検定比	: $_{L}\sigma c/_{L} f_{k}$	=0.11/2.05	=	0.05
判定	: 検定比が1.0以下であるかの判定	0.05≦1.0より	=	ОК

4-2の算定表の単位kNの軸力を単位Nに換算して表のN(鉛直荷重)の欄に記載しています。

表6-1-1 壁パネルの圧縮座屈に関する検定

荷重条件	ŧ			長期荷	苛重時		
壁番号		wx0-1	wx0-2	wx0-3	wx0-4	wx0-5	wx0-6
強度等級	ን	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5
CLT壁パネル厚	[mm]	150	150	150	150	150	150
パネル幅	[mm]	1,925	500	1,500	2,000	1,500	1,425
I _o	[mm ⁴]	541,406,250	140,625,000	421,875,000	562,500,000	421,875,000	400,781,250
i ₀	[mm]	43.30	43.30	43.30	43.30	43.30	43.30
Q_{k}	[mm]	2,640	2,640	2,640	2,640	2,640	2,640
λ		60.97	60.97	60.97	60.97	60.97	60.97
座屈低減係数		0.69	0.69	0.69	0.69	0.69	0.69
Fc [$[N/mm^2]$	8.10	8.10	8.10	8.10	8.10	8.10
F _k [$[N/mm^2]$	5.59	5.59	6	6	6	6
N(鉛直荷重)	[N]	31,995	8,022	26,663	25,249	21,457	19,888
A_0	[mm ²]	288,750	75,000	225,000	300,000	225,000	213,750
$_{L}\sigma_{cm}$ [$[N/mm^2]$	0.11	0.11	0.12	0.08	0.10	0.09
_{短期} fk [$[N/mm^2]$	2.05	2.05	2.05	2.05	2.05	2.05
検定比		0.05	0.05	0.06	0.04	0.05	0.05
判定		OK	OK	OK	OK	OK	OK

表6-1-2 壁パネルの圧縮座屈に関する検定

荷重条件	ŧ			長期荷	苛重時		
壁番号		wx1.5-1	wx4-1	wx4-2	wx4-3	wx4-4	wx4-5
強度等級	<u></u>	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5
CLT壁パネル厚	[mm]	150	150	150	150	150	150
パネル幅	[mm]	925.00	1,925.00	2,000	2,000	1,500	1,575.0
I ₀	[mm ⁴]	260,156,250	541,406,250	562,500,000	562,500,000	421,875,000	442,968,750
i ₀	[mm]	43.30	43.30	43.30	43.30	43.30	43.30
Q_k	[mm]	2,640	2,640	2,640	2,640	2,640	2,640
λ		60.97	60.97	60.97	60.97	60.97	60.97
座屈低減係数		0.69	0.69	0.69	0.69	0.69	0.69
Fc [N/mm^2	8.10	8.10	8.10	8.10	8.10	8.10
F _k [$[N/mm^2]$	5.59	5.59	5.59	5.59	5.59	5.59
N(鉛直荷重)	[N]	20,219	32,962	32,962	29,869	32,180	110,433
A_0	[mm ²]	138,750	288,750	300,000	300,000	225,000	236,250
$_{L}\sigma_{cm}$ [$[N/mm^2]$	0.15	0.11	0.11	0.10	0.14	0.47
_{短期} fk [$[N/mm^2]$	2.05	2.05	2.05	2.05	2.05	2.05
検定比		0.07	0.06	0.05	0.05	0.07	0.23
判定		OK	OK	OK	OK	OK	OK

表6-1-3 壁パネルの圧縮座屈に関する検定

荷重条件	=			長期荷	·		
壁番号		wx6.5-1	wx8-1	wx8-2	wx8-3	wx8-4	wx8-5
強度等級	ኒ	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5
CLT壁パネル厚	[mm]	150	150	150	150	150	150
パネル幅	[mm]	925	1,925	2,000	2,000	1,500	1,425
I ₀	[mm ⁴]	260,156,250	541,406,250	562,500,000	562,500,000	421,875,000	400,781,250
i ₀	[mm]	43.30	43.30	43.30	43.30	43.30	43.30
Q_{k}	[mm]	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00
λ		60.97	60.97	60.97	60.97	60.97	60.97
座屈低減係数		0.69	0.69	0.69	0.69	0.69	0.69
Fc [N/mm^2	8.10	8.10	8.10	8.10	8.10	8.10
F _k [N/mm^2	5.59	5.59	5.59	5.59	5.59	5.59
N(鉛直荷重)	[N]	19,120	36,430	70,877	29,108	28,490	30,820
A_0	[mm ²]	138,750	288,750	300,000	300,000	225,000	213,750
$_{L}\sigma_{cm}$ [N/mm^2	0.14	0.13	0.24	0.10	0.13	0.14
_{短期} fk [N/mm^2	2.05	2.05	2.05	2.05	2.05	2.05
検定比	検定比		0.06	0.12	0.05	0.06	0.07
判定		OK	OK	OK	OK	OK	OK

表6-1-4 壁パネルの圧縮座屈に関する検定

荷重条件				長期荷	苛重時		
壁番号		wy2-1	wy2-3	wy2-6	wy6-1	wy6-2	wy7-1
強度等級		Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5
CLT壁パネル厚	[mm]	150	150	150	150	150	150
パネル幅	[mm]	1,000	1,500	1,500	1,425	1,425	1,425
I _o	[mm ⁴]	281,250,000	421,875,000	421,875,000	400,781,250	400,781,250	400,781,250
i ₀	[mm]	43.30	43.30	43.30	43.30	43.30	43.30
Q _k	[mm]	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00
λ		60.97	60.97	60.97	60.97	60.97	60.97
座屈低減係数		0.69	0.69	0.69	0.69	0.69	0.69
Fc [1	N/mm^2	8.10	8.10	8.10	8.10	8.10	8.10
F _k [1	N/mm²]	5.59	5.59	5.59	5.59	5.59	5.59
N(鉛直荷重)	[N]	61,086	148,605	151,593	60,228	62,285	41,229
A ₀	[mm ²]	150,000	225,000	225,000	213,750	213,750	213,750
_ σ _{cm} [1	N/mm²]	0.41	0.66	0.67	0.28	0.29	0.19
_{短期} fk [N/mm²]		2.05	2.05	2.05	2.05	2.05	2.05
検定比			0.32	0.33	0.14	0.14	0.09
判定		OK	OK	OK	OK	OK	OK

表6-1-5 壁パネルの圧縮座屈に関する検定

荷重条件	=			長期荷	·		
壁番号		wy7-2	wy7-3	wy7-4	wy11-1	wy11-2	wy12.7-1
強度等級		Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5
CLT壁パネル厚	[mm]	150	150	150	150	150	150
パネル幅	[mm]	1,000	1,000	1,425	1,325	1,250	1,575
I ₀	[mm ⁴]	281,250,000	281,250,000	400,781,250	372,656,250	351,562,500	442,968,750
i ₀	[mm]	43.30	43.30	43.30	43.30	43.30	43.30
Q _k	[mm]	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00
λ		60.97	60.97	60.97	60.97	60.97	60.97
座屈低減係数		0.69	0.69	0.69	0.69	0.69	0.69
Fc [N/mm^2	8.10	8.10	8.10	8.10	8.10	8.10
F _k [N/mm ²]	5.59	5.59	5.59	5.59	5.59	5.59
N(鉛直荷重)	[N]	34,895	31,934	41,399	72,638	77,115	41,883
A_0	[mm ²]	150,000	150,000	213,750	198,750	187,500	236,250
$_{L}\sigma_{cm}$ [N/mm^2	0.23	0.21	0.19	0.37	0.41	0.18
_{短期} fk [N/mm ²]	2.05	2.05	2.05	2.05	2.05	2.05
検定比	検定比		0.10	0.09	0.18	0.20	0.09
判定	·	OK	OK	OK	OK	OK	OK

表6-1-6 壁パネルの圧縮座屈に関する検定

荷重条	件			長期荷	苛重時	
壁番号]	wy12.7-2	wy12.7-3	wy12.7-4	wy12.7-5	
強度等	級	Mx60-5-5	M×60-5-5	M×60-5-5	Mx60-5-5	
CLT壁パネル	享 [mm]	150	150	150	150	
パネル幅	[mm]	1,500	1,000	1,000	1,575	
I _o	[mm ⁴]	421,875,000	281,250,000	281,250,000	442,968,750	
i ₀	[mm]	43.30	43.30	43.30	43.30	
Q_{k}	[mm]	2,640.00	2,640.00	2,640.00	2,640.00	
λ		60.97	60.97	60.97	60.97	
座屈低減係数	攵	0.69	0.69	0.69	0.69	
Fc	$[N/mm^2]$	8.10	8.10	8.10	8.10	
F _k	[N/mm ²]	5.59	5.59	5.59	5.59	
N(鉛直荷重)	[N]	41,594	25,189	42,569	44,348	
A_0	[mm ²]	225,000	150,000	150,000	236,250	
$_{L}\sigma_{cm}$	[N/mm ²]	0.18	0.17	0.28	0.19	
_{短期} fk	[N/mm ²]	2.05	2.05	2.05	2.05	
検定と	Ł	0.09	0.08	0.14	0.09	
判定		OK	OK	OK	OK	

② 燃えしろ設計を行う壁パネルの圧縮座屈に関する検定 CLT壁パネルの圧縮座屈強度F_kは国土交通省告示第1024号による。

設計施工マニュアル第V部 第2章 2.2.4 (2)に検討方法 が解説されています。

軸力が最大となる1階壁で検討を行う。負担軸力が同じ箇所については省略する。

燃えしろ部分を考慮した箇所については、残存断面(150-60=90mm)にて断面算定を行う。

短期圧縮強度2/3*Fcに対して検定する。

以下に計算内容について記載する。

計算例:wx0-1

荷重条件: 長期、短期等の荷重条件 短期荷重時

壁番号 : 検定箇所の壁番号 wx0-1強度等級 : CLTパネルの種別 Mx60-5-5

CLTパネル厚 t[mm]: 厚み t=150-60 = 90

パネル幅 L[mm]:幅 = 1,925

 $I_0[mm^4]$: 面外方向の断面二次モーメント = $(L \times t^3)/12 = (1925 \times 90^3)/12$ = 116,943,750

 $A_0[mm^2]$: 断面積 $t \times L = 90 \times 1925$ = 173,250.00

 $i_0[mm]$: 断面二次半径 $\sqrt{(I_0/A_0)} = \sqrt{(,1169,438/173,250)} = 25.98$ $\ell_k[mm]$: 座屈長さ(CLT壁高さ) = 2,640

 λ : 有効細長比(弱軸) $2k/i_0=2640/25.98$ = 101.61

座屈低減係数 : 平成13年国土交通省告示第1024号による

 $= \lambda > 100 \rightarrow 3000 / \lambda^2$ $= 3,000 / 101.61^2$ = 0.29

Fc[N/mm²] : 圧縮基準強度 8.10N/mm² = 8.10

 $F_k[N/mm^2]$: 座屈強度(座屈低減係数×Fc) =810.0×0.29 = 2.35

N(鉛直荷重)[N]: 4-2で算定した鉛直荷重(単位kNからNに換算している。) = 31,995

 $_{\rm L}\sigma \, {\rm c[N/mm^2]}$: 長期圧縮応力度(N/Ao) =31,995/1,732.5 = 0.18 $_{\rm fll} \, {\rm fll} \, {\rm N/mm^2}$: 短期許容座屈応力度(2/3×Fk) =2/3×235.34 = 1.57

検定比 : μσc/μf_k =18.47/156.90 = 0.12

判定: 検定比が1.0以下であるかの判定 0.12≦1.0より = OK

表6-1-7 資料2より1時間準耐火構造Mx60-5-5(150mm) 強軸の場合の圧縮強度Fc

	ラミナ構成	強度等級	CLT幅(mm)
強軸万回	5層5プライ	Mx60-5-5	1000

屈	CLT幅	ラミナ厚	層断面積	ヤング係数	層	Ei•Ai	
層	(mm)	(mm)	Ai(mm)	Ei(N/mm³)	眉	121 741	
1	1000	30	30000	6000	平行	180000000	
2	1000	30	30000	0	直交	0	
3	1000	30	30000	3000	平行	90000000	
炭化層 4	900	0	0	0	直交	0	
炭化層 5	1000	0	0	6000	平行	0	
					Σ Ei•Ai	270000000	

 $E_0 = 6000 \, (N/m^2)$

 $A_0 = 90000 \, (m\mathring{n})$

 $AA = \Sigma EiAi/E_0 = 45000 \text{ (mm)}$

 $\sigma_{c,oml} = 21.6 (N/m \mathring{n})$ 表1.1による。

参考資料2で計算している燃えし ろ60mmを考慮した場合の基準 圧縮強度です。

以上より、

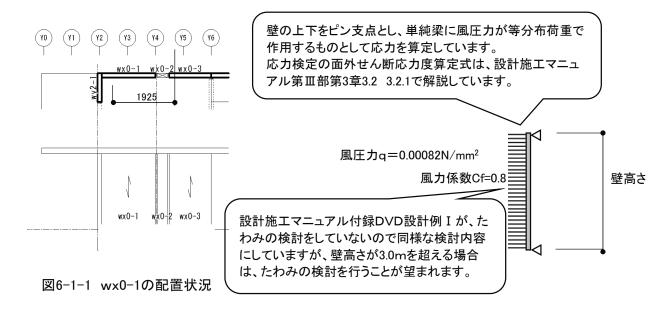
強軸Fc = **8.10** (N/m \mathring{n})

燃えしろ設計に該当している壁パネルについて計算をします。

表6-1-8 燃えしろ設計を行う壁パネルの圧縮座屈に関する検定

荷重条件	牛			長期荷	苛重時		
壁番号	 	wx0-1	wx0-2	wx0-3	wx4-1	wx4-2	wx8-1
強度等網	級	Mx60-5-5	Mx60-5-5	M×60-5-5	Mx60-5-5	Mx60-5-5	M×60-5-5
CLT壁パネル原	享 [mm]	90	90	90	90	90	90
パネル幅	[mm]	1,925	500	1,500	1,925.0	2,000	1,925
I _o	[mm ⁴]	116,943,750	30,375,000	91,125,000	116,943,750	121,500,000	116,943,750
i ₀	[mm]	25.98	25.98	25.98	25.98	25.98	25.98
Q _k	[mm]	2,640	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00
λ		101.61	101.61	101.61	101.61	101.61	101.61
座屈低減係数	ζ	0.29	0.29	0.29	0.29	0.29	0.29
Fc	$[N/mm^2]$	8.10	8.10	8.10	8.10	8.10	8.10
F _k	$[N/mm^2]$	2.35	2.35	2.35	2.35	2.35	2.35
N(鉛直荷重)	[N]	31,995	8,022	26,663	32,962	32,962	36,430
A_0	[mm ²]	173,250	45,000	135,000	173,250	180,000	173,250
$_{L}\sigma_{cm}$	$[N/mm^2]$	0.18	0.18	0.20	0.19	0.18	0.21
_{短期} fk	$[N/mm^2]$	1.57	1.57	1.57	1.57	1.57	1.57
検定比	検定比		0.11	0.13	0.12	0.12	0.13
判定		OK	OK	OK	OK	ОК	OK

表6-1-9 燃えしろ設計を行う壁パネルの圧縮座屈に関する検定


荷重条	件			長期荷	· 市重時		
壁番号	<u>1</u>	wx8-2	wy2-1	wy2-3	wy2-6	wy6-1	wy6-2
強度等	級	M×60-5-5	M33.1.0	M33.1.0	M33.1.0	M33.1.0	M33.1.0
CLT壁パネル	享 [mm]	90	90	90	90	90	90
パネル幅	[mm]	2,000	1,000	1,500	1,500	1,425	1,425
I ₀	[mm ⁴]	121,500,000	60,750,000	91,125,000	91,125,000	86,568,750	86,568,750
i ₀	[mm]	25.98	25.98	25.98	25.98	25.98	25.98
Q_k	[mm]	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00
λ		101.61	101.61	101.61	101.61	101.61	101.61
座屈低減係数		0.29	0.29	0.29	0.29	0.29	0.29
Fc	[N/mm ²]	8.10	8.10	8.10	8.10	8.10	8.10
F _k	[N/mm ²]	2.35	2.35	2.35	2.35	2.35	2.35
N(鉛直荷重)	[N]	70,877	61,086	148,605	151,593	60,228	62,285
A ₀	[mm ²]	180,000	90,000	135,000	135,000	128,250	128,250
L σ cm	[N/mm ²]	0.39	0.68	1.10	1.12	0.47	0.49
_{短期} fk	[N/mm ²]	1.57	1.57	1.57	1.57	1.57	1.57
検定比		0.25	0.43	0.70	0.72	0.30	0.31
判定		OK	OK	OK	OK	OK	OK

③ 風圧力に対する壁パネルの圧縮座屈に関する検定

判定

鉛直構面の長期荷重と風圧力に対する検定は、壁パネルの巾毎に検定する。

軸力が最大となる1階壁のみ検討を行う。以下に計算内容について記載する。 計算例:wx0-1 CLT壁パネル厚t[mm]: 150 パネル幅L[mm]: 1.925 パネル高さh[mm]: 2,640 壁断面積A₀[mm²]: $t \times L = 150 \times 1.925$ 288.750 $_{\rm S}\sigma \, {\rm c[N/mm^2]}$:短期圧縮応力度 $N/A_0=31,995/288,750$ 0.11 $_{\rm S}f_{\rm k}[{\rm N/mm}^2]$:短期座屈許容応力度 $Fk \times 2/3 = 5.59 \times 2/3$ = 3.73 圧縮検定比 =0.11/3.730.03 $: {}_{S}\sigma c/{}_{S}f_{k}$ 速度圧a[N/mm²]:速度圧 2-2より、 $a=0.82kN/m^2$ 0.00082 風力係数Cf :風力係数 0.80 負担巾[mm] : 図6-1-1による。 1,925 風圧力による荷重[N/mm] : 速度圧×風力係数×負担巾 =0.00082×0.8×2175 1.26 M[Nmm] :作用モーメント (風圧力分布荷重×lk2)/8=(1.43×2,640²)/8 = 1,100,151 $Z_0[mm^3]$:面外座屈方向断面係数 $=(1.925 \times 150^2)/6$ 7.218.750 = $_{\rm S}\sigma_{\rm h}[{\rm N/mm}^2]$: 短期曲げ応力度 $M/Z_0=1,243,028/7,218,750$ 0.15 = _{面外}Fb[N/mm²] : 面外曲げ強度 10.37 $_{\rm S}f_{\rm b}[{\rm N/mm}^2]$: 短期許容曲げ応力度(_{面外}Fb×2/3) $=2/3 \times 10.37$ 6.91 曲げ検定比 $: {}_{S}\sigma_{b}/{}_{S}f_{b}$ 0.02 =0.17/6.91: 圧縮検定比+曲げ検定比 複合検定比 =0.03+0.02 = 0.05 : 検定比が1.0以下であるかの判定 判定 0.05≦1.0より OK Q[N]: 作用せん断力(風圧力分布荷重×1,) $=1.43 \times 2640/2$ 1.667 В : せん断応力度分布係数 = 1.256 : 短期せん断応力度 $\beta \cdot Q/A_0 = 1.276 \times 1,883/288,750$ $_{\rm S} \tau [{\rm N/mm}^2]$ 0.01 面外F_S[N/mm²] :面外せん断基準強度 0.9 $_{\rm S}f_{\rm S}[{\rm N/mm}^2]$: 短期許容せん断応力度(_{面外}Fs×2/3) 0.6 $=2/3 \times 90$ せん断検定比 =0.80/60.00 0.01 $: {}_{S}\tau/{}_{S}f_{S}$ =

0.01≦1.0より

OK

: 検定比が1.0以下であるかの判定

表6-1-10 風圧力に対する壁パネルの圧縮座屈に関する検定

荷重条件	ŧ	短期風圧時						
壁番号		wx0-1	wx0-2	wx0-3	wx0-4	wx0-5	wx0-6	
強度等級	እ	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	
CLT壁パネル厚	[mm]	150	150	150	150	150	150	
パネル幅	[mm]	1,925	500	1,500	2,000	1,500	1,425	
I ₀	[mm ⁴]	541,406,250	140,625,000	421,875,000	562,500,000	421,875,000	400,781,250	
i _o	[mm]	43.30	43.30	43.30	43.30	43.30	43.30	
Q _k	[mm]	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00	2,640.00	
λ		60.97	60.97	60.97	60.97	60.97	60.97	
座屈低減係数		0.69	0.69	0.69	0.69	0.69	0.69	
Fc	$[N/mm^2]$	8.10	8.10	8.10	8.10	8.10	8.10	
F _k	[N/mm ²]	5.59	5.59	5.59	5.59	5.59	5.59	
N(鉛直荷重)	[N]	31,995	8,022	26,663	25,249	21,457	19,888	
A ₀	[mm ²]	288,750	75,000	225,000	300,000	225,000	213,750	
sσc	$[N/mm^2]$	0.11	0.11	0.12	0.08	0.10	0.09	
sfk	[N/mm ²]	3.73	3.73	3.73	3.73	3.73	3.73	
圧縮検定	比	0.03	0.03	0.03	0.02	0.03	0.02	
速度圧	[N/mm ²]	0.00082	0.00082	0.00082	0.00082	0.00082	0.00082	
風力係数Cf		0.80	0.80	0.80	0.80	0.80	0.80	
負担巾	[mm]	1,925	500	1,500	2,000	1,500	1,425	
風圧力分布荷重	[N/mm]	1.26	0.33	0.98	1.31	0.98	0.93	
М	[Nmm]	1,100,151	285,754	857,261	1,143,014	857,261	814,398	
Z ₀	[mm ³]	7,218,750	1,875,000	5,625,000	7,500,000	5,625,000	5,343,750	
sσb	[N/mm ²]	0.15	0.15	0.15	0.15	0.15	0.15	
_{面外} Fb	[N/mm ²]	10.37	10.37	10.37	10.37	10.37	10.37	
sfb	[N/mm ²]	6.91	6.91	6.91	6.91	6.91	6.91	
曲げ検定	比	0.02	0.02	0.02	0.02	0.02	0.02	
複合検定	比	0.05	0.05	0.05	0.04	0.05	0.05	
判定		OK	OK	OK	OK	OK	OK	
Q	[N]	1,667	433	1,299	1,732	1,299	1,234	
Sτ	[N/mm ²]	0.01	0.01	0.01	0.01	0.01	0.01	
せん断応力度分	布係数β	1.257	1.257	1.257	1.257	1.257	1.257	
_{面外} F _S	[N/mm ²]	0.90	0.90	0.90	0.90	0.90	0.90	
_S f _S	[N/mm ²]	0.60	0.60	0.60	0.60	0.60	0.60	
せん断検되	比	0.01	0.01	0.01	0.01	0.01	0.01	
判定		OK	OK	OK	OK	OK	OK	

表6-1-11 風圧力に対する壁パネルの圧縮座屈に関する検定 wy12.7-1~5は、開口部も風圧力を受け、隣接する壁に作用するとして安産側な算定をしている。

荷重条件	‡			短期原	虱圧時		
壁番号		wy2-1	wy2-3,wy2-9	wy2-6	wy11-1	wy12.7-1	wy12.7-2
強度等約	及	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5	Mx60-5-5
CLT壁パネル厚	[mm]	150	150	150	150	150	150
パネル幅	[mm]	1,000	1,500	1,500	1,325	1,575	1,500
I ₀	[mm ⁴]	281,250,000	421,875,000	421,875,000	372,656,250	442,968,750	421,875,000
i ₀	[mm]	43.30	43.30	43.30	43.30	43.30	43.30
$Q_{\mathbf{k}}$	[mm]	2,640	2,640	2,640	2,640	2,640	2,640
λ		60.97	60.97	60.97	60.97	60.97	60.97
座屈低減係数		0.69	0.69	0.69	0.69	0.69	0.69
Fc	$[N/mm^2]$	8.10	8.10	8.10	8.10	8.10	8.10
F _k	[N/mm ²]	5.59	5.59	5.59	5.59	5.59	5.59
N(鉛直荷重)	[N]	61,086	148,605	151,593	72,638	41,883	41,594
A_0	[mm ²]	150,000	225,000	225,000	198,750	236,250	225,000
sσc	$[N/mm^2]$	0.41	0.66	0.67	0.37	0.18	0.18
sfk	$[N/mm^2]$	3.73	3.73	3.73	3.73	3.73	3.73
圧縮検定	比	0.11	0.18	0.18	0.10	0.05	0.05
速度圧	[N/mm ²]	0.00082	0.00082	0.00082	0.00082	0.00082	0.00082
風力係数Cf		0.80	0.80	0.80	0.80	0.80	0.80
負担巾	[mm]	2,163	3,913	4,000	2,700	3,075	3,000
風圧力分布荷重	[N/mm]	1.42	2.57	2.62	1.77	2.02	1.97
М	[Nmm]	1,235,884	2,236,022	2,286,029	1,543,069	1,757,385	1,714,522
Z ₀	[mm ³]	3,750,000	5,625,000	5,625,000	4,968,750	5,906,250	5,625,000
sσb	[N/mm ²]	0.33	0.40	0.41	0.31	0.30	0.30
_{面外} Fb	[N/mm ²]	10.37	10.37	10.37	10.37	10.37	10.37
sfb	[N/mm ²]	6.91	6.91	6.91	6.91	6.91	6.91
曲げ検定	比	0.05	0.06	0.06	0.04	0.04	0.04
複合検定	比	0.16	0.23	0.24	0.14	0.09	0.09
判定		OK	OK	OK	OK	OK	OK
Q	[N]	1,873	3,388	3,464	2,338	2,663	2,598
Sτ	[N/mm ²]	0.01	0.02	0.02	0.01	0.01	0.01
せん断応力度分		1.257	1.257	1.257	1.257	1.257	1.257
面外Fs	[N/mm ²]	0.90	0.90	0.90	0.90	0.90	0.90
sfs	[N/mm ²]	0.60	0.60	0.60	0.60	0.60	0.60
せん断検定	比	0.03	0.03	0.03	0.02	0.02	0.02
判定		OK	OK	OK	OK	OK	OK

表6-1-12 風圧力に対する壁パネルの圧縮座屈に関する検定

荷重条件	‡			短期風		
壁番号		wy12.7-3	wy12.7-4	wy12.7-5		
強度等級	<u></u>	Mx60-5-5	Mx60-5-5	Mx60-5-5		
CLT壁パネル厚	[mm]	150	150	150		
パネル幅	[mm]	1,000	1,000	1,575		
I _o	[mm ⁴]	281,250,000	281,250,000	442,968,750		
i ₀	[mm]	43.30	43.30	43.30		
Q _k	[mm]	2,640	2,640	2,640		
λ		60.97	60.97	60.97		
座屈低減係数		0.69	0.69	0.69		
Fc	[N/mm ²]	8.10	8.10	8.10		
F _k	[N/mm ²]	5.59	5.59	5.59		
N(鉛直荷重)	[N]	25,189	42,569	44,348		
A ₀	[mm ²]	150,000	150,000	236,250		
sσc	[N/mm ²]	0.17	0.28	0.19		
sfk	[N/mm ²]	3.73	3.73	3.73		
圧縮検定	比	0.05	0.08	0.05		
速度圧	[N/mm ²]	0.00082	0.00082	0.00082		
風力係数Cf		0.80	0.80	0.80		
負担巾	[mm]	1,750	3,250	3,075		
風圧力分布荷重	[N/mm]	1.15	2.13	2.02		
М	[Nmm]	1,000,138	1,857,398	1,757,385		
Z ₀	[mm ³]	3,750,000	3,750,000	5,906,250		
sσb	$[N/mm^2]$	0.27	0.50	0.30		
_{面外} Fb	$[N/mm^2]$	10.37	10.37	10.37		
sfb	[N/mm ²]	6.91	6.91	6.91		
曲げ検定	比	0.039	0.072	0.043		
複合検定	比	0.08	0.15	0.09		
判定		OK	OK	OK		
Q	[N]	1,515.36	2,814.24	2,662.70		
Sτ	[N/mm ²]	0.01	0.02	0.01		
せん断応力度分	布係数β	1.257	1.257	1.257		
_{面外} F _S	[N/mm ²]	0.90	0.90	0.90		
sfs	[N/mm ²]	0.60	0.60	0.60		
せん断検定	比	0.02	0.04	0.02		
判定		OK	OK	OK		

6-2 床・屋根パネルの検定

① 長期荷重

床・屋根パネルを単純梁モデルに、片持ち床・屋根パネルを連梁モデルにそれぞれ置換し、長期荷重による曲げ、せん断及びたわみに対する断面検定を行う。スパンが最大となる箇所に対して検定を行う。今回の検討では床パネル・屋根パネルは同スパン、同材を使用しており、なおかつ床荷重の方が重い為、屋根パネルの検討は省略する。以下に検定に用いる数値の計算内容について記載する。

77 P 10 10 20 C 10 4% 7 10 0		算定例∶Ⅰ	末パネ	ルY7-Y11間
荷重条件	:長期、短期等の荷重条件			長期時(DL+LL)
検定箇所	:検討箇所			2,3階床
強度等級	:CLTパネルの種別		=	Mx60-5-7
CLT屋根パネル厚 [mm]	:厚み		=	210
負担幅 [cm]	:幅		=	2500
応力検定用重量 [N/mm²]	:応力検定用重量は、表2-1-	-1の3720N/m ² を用いている。	=	0.00372
スパンL [mm]	:スパン		=	4,000
応力検定用等分布荷重w[N/mm]	:荷重	$=0.372 \times 2,500$	=	9.30
M [Nmm]	:曲げモーメント	$=(930 \times 4,000^2)/8$	=	18,600,000
Z_0 [mm ³]	:断面係数	$=(2,500\times210^2)/6$	=	18,375,000.00
$_{L}\sigma_{b}[\text{N/mm}^{2}]$:長期曲げ応力度	=1,860,000,000/18,375,000	=	1.01
$_{\overline{\mathrm{m}}\mathrm{h}}F_{b}[N/mm^2]$:面外曲げ基準強度		=	12.14
$_{L}f_{b}\left[N/mm^{2}\right]$: 長期曲げ許容応力度	面外Fbx1.1/3=12.14×1.1/3	=	4.45
検定比	$:_{L}\sigma b/_{L}Fb$	=101.22/4.45	=	0.23
判定	:検定値が1未満であるかの	判定	=	OK
Q[N]	:作用せん断力	$=930 \times 4000/2$	=	18,600
$A_0 [mm^2]$:断面積	$=210 \times 2500$	=	525,000
$_{L} \tau [N/mm^{2}]$:長期せん断応力度	=1,860,000/525,000	=	0.04
$_{\overline{\text{m}}\text{M}}F_{S}\left[N/mm^{2}\right]$:面外せん断基準強度		=	0.9
$_{L}f_{S}[N/mm^{2}]$:長期許容せん断応力度(_{面外}	$Fsx1.1/=0.9 \times 1.1/3$	=	0.33
β	: せん断応力度分布係数		=	1.344
$I_0 [mm^4]$:断面二次モーメント	$=(2500\times210^3)/12$	=	1,929,375,000
$_{\overline{\mathrm{m}}h}E_{\mathrm{\mathring{m}}}$ $[N/mm^2]$:面外強軸方向の曲げヤンク	で係数	=	5,536
曲げたわみ $\delta_{b}[{\sf mm}]$:曲げたわみ(5wL ⁴ /384EI ₀)			
	$=(5 \times 6.30 \times 4000^4)/(384 \times 5.5)$	536 × 1,929,375,000)	=	1.97
$G[N/mm^2]$: せん断弾性係数		=	29.76
せん断たわみ δ_{s} [mm]	: せん断たわみ(βwl²/8GA ₀)			
	(せん断たわみの計算式は	、設計施エマニュアルDVD計算	[例 I (こ記載されている。)
	$=(1.344 \times 6.30 \times 4000^2)/(8 \times 2000^2)$	$29.76 \times 525,000$	=	1.08
変形増大係数 \	:変形増大係数		=	2.0
たわみ [rad] \ \	:たわみ(角度)	$=1/(4000/((1.97+1.08)\times 2.0)$	=	1/ 656
制限値 [rad]	:平成12年建設省告示第145 \		=	1/250
判定		1/656≦1/250		OK

曲げたわみ、せん断たわみを算定するための荷重wは、 平12建告1459号第2第一号の規定より、積載荷重が地 震時用の床荷重2520N/m²を用いて計算を行っていま

①-(1) 床パネルY7~Y11間は、安全側なので単純梁モデルで算定する。

表6-2-1 設計条件

荷重条件	長期時(DL+LL)
検定箇所	2,3階床
CLT屋根パネル厚	210.0 [mm]
スパンL	4000 [mm]
強度等級	Mx60-5-7

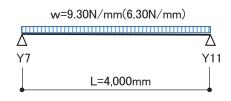


表6-2-2 設計荷重

図6-2-1 荷重状態

0.00372	$[N/mm^2]$
0.00252	$[N/mm^2]$
2500	[mm]
9.30	[N/mm]
6.30	[N/mm]
	0.00252 2500 9.30

応力検定用重量は、表2-1-1の3720N/m²を用いている。 積載荷重LL=600N/m²を採用し2520N/m²を用いる。

表6-2-3 曲げの検定

М	Z_0	Lσb	面外F₀	∟F♭	検定比	判定
[N/mm]	[mm ³]	[N/mm ²]	$[N/mm^2]$	[N/mm ²]	1天足比	T1/C
18,600,000	18,375,000	1.01	12.14	4	0.23	ОК

表6-2-4 せん断の検定

Q [N]	A ₀ [mm ²]	$_{\perp}\tau$ [N/mm ²]	_{面外} F _S [N/mm²]	Lf _S	β	検定比	判定
18,600	525,000	0.05	0.9	0.33	1.344	0.22	OK

表6-2-5 たわみの検討

I ₀	_{面外} E _{強軸}	曲げたわみ	せん断たわみ		たわみ	制限値	検定比	判定
[mm ⁴]	$[N/mm^2]$	δ_b [mm]	δ_{s} [mm]	数	[rad]	[rad]	快足几	刊足
1,929,375,000	553,600	1.97	1.08	2.0	1/ 656	1/250	0.38	ОК

①-(2) Y0~Y6間は、跳ね出しバルコニーを有する床パネルなので連梁モデルとして算定する。

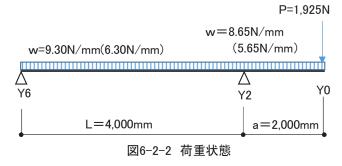


表6-2-6 設計条件:跳ね出し部分

荷重条件	バルコニー・共用廊下	床部分は
検定箇所	バルコニー	
CLT屋根パネル厚	210 [mm]	
スパンa	2000 [mm]	
強度等級	Mx60-5-7	

床部分は、表6-2-1を用いる。

表6-2-7 設計荷重

24 - 1 H241117			
応力検定用重量(2,3階床)	0.00372	[N/mm ²]	応
たわみ量検定用重量(2,3階床)	0.00252	[N/mm ²]	積
負担幅	2500	[mm]	
応力検定用等分布荷重w1	9.30	[N/mm]	
たわみ量検定用等分布荷重w1	6.30	[N/mm]	
応力検定用重量(バルコニー)	0.00346	[N/mm ²]	応
たわみ検定用重量(バルコニー)	0.00226	[N/mm ²]	積
先端荷重(手摺)	700	$[N/m^2]$	
手摺高さ	1.10	[m]	
応力検定用先端荷重P	1,925	[N]	=
負担幅	2500	[mm]	
応力検定用等分布荷重w2	8.65	[N/mm]	
たわみ量検定用等分布荷重w2	5.65	[N/mm]	

5力検定用重量は、表6-2-2の3720N/m²を用いる。 賃載荷重LL=600N/m²を採用し2520N/m²を用いる。

5力検定用重量は、表2-1-1の3460N/m²を用いている。 賃載荷重LL=600N/m²を採用し2260N/m²を用いる。

(5.65N/mm)

a = 2,000 mm

С

$$=700 \times 1.1 \times 2.5$$

跳ね出しバルコニー部分BC間は、支点を固定端として応力、たわみを算定します。 算定値は、連梁モデルより安全側な数値になります。

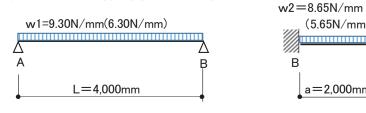
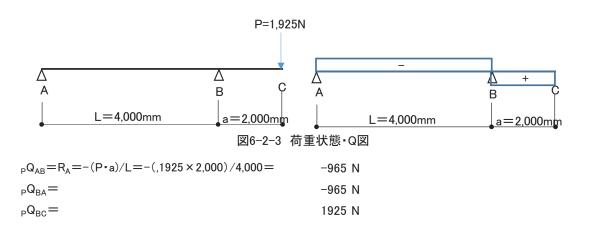
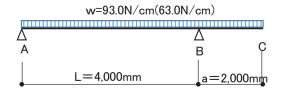


図6-2-2 荷重状態


a. 断面検定用応力の算定

 $M_{BC} = 1/2 \cdot w^2 \cdot a^2 + P \cdot a = 1/2 \times 8.65 \times ,2000^2 + 1,925 \times 2,000 = 21,150,000 \text{ Ncm}$ $M_{AB+\pm} = 1/8 \cdot w1 \cdot L^2 - M_{BC}/2 = 1/8 \times 9.30 \times 4,000^2 - 21,150,000/2 =$ 8,025,000 Ncm

上記は、単純梁AB間のB端に跳ね出し部分B端の曲げモーメントが作用した場合のAB間中央の曲げモーメントを 算定しています。


 $Q_{BC} = w2 \cdot a + P = 8.65 \times 2000 + 1925 =$ 19,225 N

a-1.集中荷重Pの作用している場合のせん断力の算定

a-2.等分布荷重wの作用している場合のせん断力の算定

バルコニー部分w2=8.65N/mmを、w1=9.30N/mmとして均一な等分布荷重とみなして算定する。

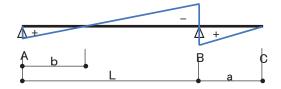


図6-2-4 荷重状態·Q図

 $wQ_{AB} = RA = (w \cdot (L^2 - a^2))/(2 \cdot L) =$ 13,950 N $wQ_{BA} = RA - w \cdot L =$ -23,250 N $wQ_{BC} = w \cdot L =$ 18,600 N

a-3.集中荷重P、等分布荷重wの作用したせん断力を、a-1、a-2の結果を足し合わせて算定する。

 $Q_{AB} = Q_{AB} + wQ_{AB} =$ 12,985 N $Q_{BA} = Q_{BA} + wQ_{BA} =$ -24,215 N $Q_{BC} = Q_{BC} + wQ_{BC} =$ 20.525 N

b. バルコニー先端のたわみδcの算定

先端荷重P=1930Nは、固定端支点で等しい曲げモーメントになる等分布荷重に換算して扱う。 作用荷重を等分布荷重にすることで、計算を簡単にする。

 $1,925 \times ,2000 = 1/2 \times W_P \times a^2$

 $W_p = (1,925 \times 2,000) \times 2/2,000^2 =$ 1.93 N/mmをw2に加算する。

 $\delta bc = w2 \cdot a^4 / 8EI = ((5.65 + 1.93) \times 2.000^4) / (8 \times 5.536 \times 1.929.375.000) =$

 $\delta_{AB+\pm} = \delta_{BA+\pm} + \delta_{SAB+\pm} =$

 $\delta sc = \beta \cdot w2 \cdot a^2 / 2GA_0 = (1.344 \times (5.65 + 1.93) \times 2,000^2) / (2 \times 29.76 \times 525,000) =$ 1.30 mm

> $\delta c = \delta sc + \delta bc =$ 2.72 mm

1.42 mm

c. AB間中央のたわみ δ_{AB中央}の算定

 $M_{BC} = 1/2w2 \cdot a^2 + P \cdot a = -(1/2 \times 5.65 \times 2,000^2 + 1,925 \times 2,000) =$ -15,150,000 Ncm $M_{ABp+} = 1/8 \text{w} \cdot L^2 - M_{BC}/2 = 1/8 \times 6.30 \times 4,000^2 - 15,150,000/2 =$ 5025000 Ncm $w1_{\pm\pm} = (8 \cdot M_{AB\pm\pm})/L^2 = (8 \times 502,500)/4000^2 =$ 2.51 N/mm.

AB間中央に生じる曲げ モーメントを、両端ピン の単純梁中央の曲げ モーメントに置き換えて 等分布荷重を算定し、ス パンLの単純梁としてせ ん断剛性を考慮したた わみの算定をします。

 $\delta b_{AB+\pm} = (5 \cdot w1_{\pm\pm} \cdot L^4)/(384 \cdot E \cdot I) = (5 \times 2.51 \times 4000^4)/(384 \times 5536 \times 1929375000) =$ $\delta s_{AB \oplus \pm} = (\beta \cdot w1_{\oplus \pm} \cdot L^2)/(8 \cdot G \cdot A_0) = (1.344 \times 2.51 \times 4000^2)/(8 \times 29.76 \times 525000) =$

0.78 mm

0.43 mm

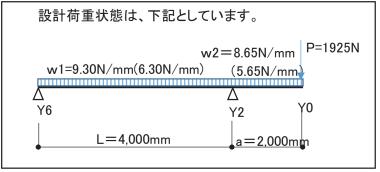
1.22 mm

表6-2-8 曲げの検定

X H M.								
М	Z_0	Lσb	面外Fb	LFb	検定比	判定		
[Nmm]	[mm²]	[N/mm ²]	[N/mm ²]	[N/mm ²]	一 探足比			
21,150,000	0,000 18,375,000		12.14	4.45	0.26	ок		

表6-2-9 せん断の検定

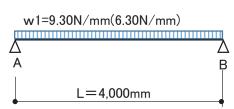
Q [N]	A ₀ [mm ²]	$_{\perp}\tau$ [N/mm 2]	_{面外} F _S [N/mm²]	Lfs [N/mm²]	β	検定比	判定
24,215	525,000	0.05	0.9	0.33	1.344	0.19	ок

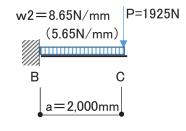

表6-2-10 たわみの検討 (たわみ量計算用積載荷重は施行令85条(い)欄を採用する

lo	_{面外} E _{強軸}	たわみ (曲げたわみ+せん断たわみ)	変形増大 係数	たわみ	制限値	検定比	判定
[mm ⁴]	$[N/mm^2]$	[mm]		[rad]	[rad]		
1,929,375,000	5,536	2.72	2.0	1/ 367	1/250	0.68	ок

 $G = 29.76 \, N/mm^2$

□跳ね出し部分を有する連梁の計算方法の例


計算例で示した計算方法以外に以下に示す方法①、方法②が考えられます。ここで示す計算方法を用いる場合は、構造設計者の判断で行ってください。



設計施エマニュアル DVDの設計例 I は、右 図の片持ち梁モデルで 検定しています。

(1) 方法①

Y0~Y2間の跳ね出し部分とY2~Y6間の単純梁部分に分けて計算する方法です。 跳ね出しバルコニー部分を、片持ち梁固定端モデルで応力、たわみを算定します。

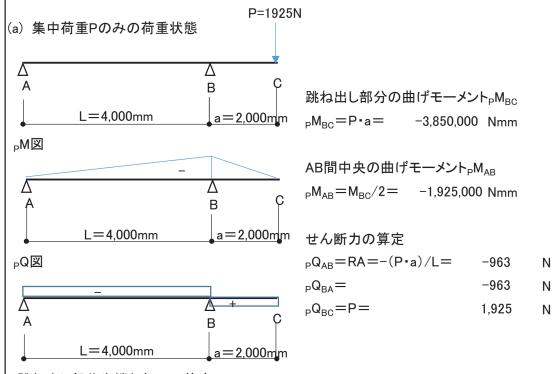
a. 断面検定用応力の算定

$$\begin{split} M_{BC} &= 1/2 w 2 \cdot a^2 + P \cdot a = -(1/2 \times 8.65 \times 2,000^2 + 1,925 \times 2,000) = & -21,150,000 \text{ Nmm} \\ M_{AB + \pm} &= 1/8 w 1 \cdot L^2 - M_{BC}/2 = 1/8 \times 9.30 \times 4,000^2 - 21,150,000/2 = & 8,025,000 \text{ Nmm} \\ Q_{BC} &= w 2 \cdot a + P = 8.65 \times 2,000 + 1,925 = & 19,225 \text{ N} \\ Q_{BA} &= Q_{AB} = w 1 \cdot L/2 = 9.30 \times 4,000/2 = & 18,600 \text{ N} \end{split}$$

b. バルコニー先端のたわみδcの算定

先端荷重P=1925Nは、固定端支点で等しい曲げモーメントになる等分布荷重に換算して扱います。 1,925×2,000=1/2×W_P× a^2 W_P= $(1,925\times2,000)\times2/2,000^2$ = 1.925 N/mmをw2に加算する。 $_{\text{曲if}}\delta$ bc= $w2\cdot a^4/8$ EI= $(((5.65+1.925)+\times2,000^4)/(8\times5,536\times1,929,375,000)$ = 1.42 mm $_{\text{せん断}}\delta$ bc= β ·w2· $a^2/2$ GA $_0$ = $(1.344\times(5.65+1.925)\times2,000^2)/(2×29.76×525,000)$ = 1.30 mm $_{\delta}$ c= $_{\delta}$ sc+ $_{\delta}$ bc= 2.72 mm

c. AB間の中央のたわみ δ _{AB中央}の算定


AB間を単純梁として算定する。

$$\Sigma M_{B} =$$
 -21,150,000 Nmm
 $\Sigma M_{ABmax} =$ 8,025,000 Nmm
 $\Sigma Q_{BC} =$ 19,225 N
 $\Sigma Q_{BA} =$ -18,600 N
 $\Sigma Q_{AB} =$ 18,600 N

跳ね出し先端 Σ δ c = 2.72 mm (せん断力によるたわみを考慮している。) Σ $\delta_{AB+\pm}$ = 3.05 mm (せん断力によるたわみを考慮している。)

(2) 方法② 連梁として算定する場合には、せん断応力度分布係数 β を用いたたわみ算定式が 設計施工マニュアルに示されていないので、曲げたわみのみ算定することになる点に 注意が必要となります。

方法②は、設計荷重を作用している集中荷重と等分布荷重に分けて連梁モデルで計算する方法です。 連梁モデルで応力、たわみを算定します。

跳ね出し部分先端たわみの算定

$$_{P}\delta_{C}$$
= $(P \cdot a^{2}/3E \cdot I) \cdot (L+a)$ = $((1,925 \times 2,000^{2})/(3 \times 5,536 \times ,1929,375,000)) \times (4,000+2,000)$ 1.44 mm AB間最大たわみの算定

 $_{P}\delta_{AB}$ =-0.0642 • (P•a•L²)/E•I=-0.0642 × (1,925 × 2,000 × 4,000²)/(5,536 × 1,912,375,000) = -0.37 mm $_{P}\delta_{AB}$ 位置 x=L/ $\sqrt{3}$ = 2309 mm

(b) 等分布荷重wのみの荷重状態

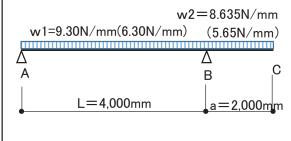
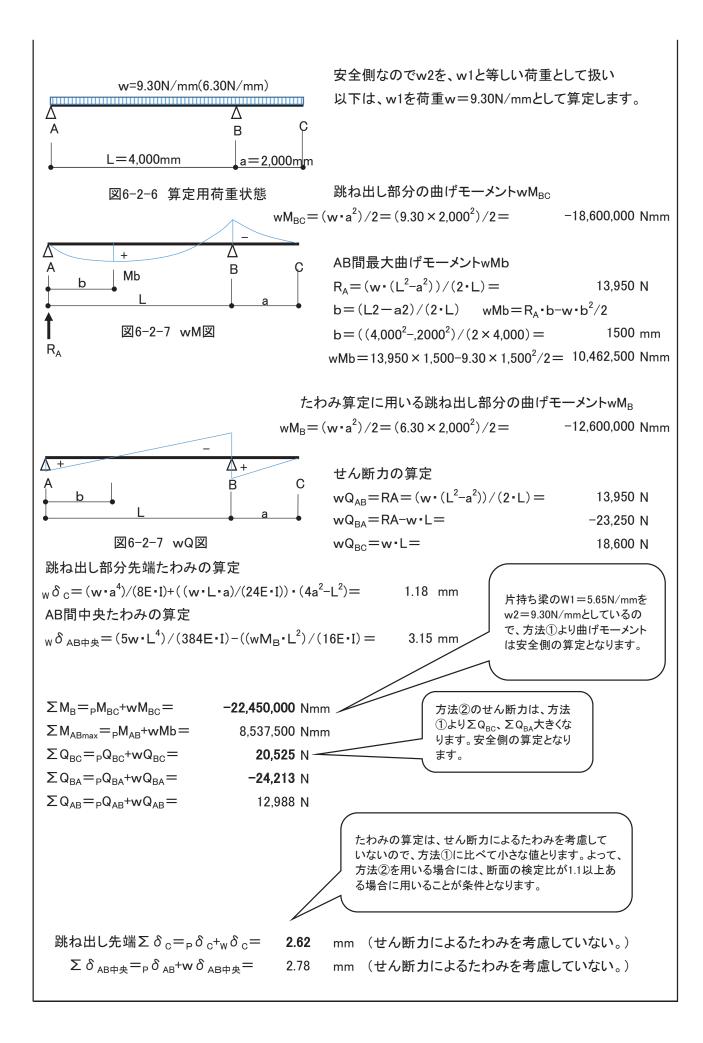



図6-2-5 荷重状態

②長期荷重 [燃えしろ設計]

床・屋根パネルを単純梁モデルに、片持ち床・屋根パネルを連梁モデルにそれぞれ置換し、長期荷重による曲げ、せん断及びたわみに対する断面検定を行う。スパンが最大となる箇所に対して検定を行う。床・屋根パネルは同スパン、同材を使用し床荷重の方が重い為、屋根パネルの検討は省略する。

表6-2-11 資料4 燃えしろを考慮したMx60-5-7のFb

燃えしろ設計については、設計施工マニュアル第V部第2章に記載されています。

	CLT幅	ラミナ厚	層断面積	ヤング係数		T: 4:	断面二次モーメント	中立軸との距離	Ei•Ii+
層	(mm)	(mm)	Ai(mm)	Ei(N/mm)	層	Ei•Ai	Ii (mm4)	zi (mm)	Ei•Ai•zi²
1	1000	30	30000	6000	平行	180000000	2250000	30	1.755E+11
2	1000	30	30000	6000	平行	180000000	2250000	0	1.35E+10
3	1000	30	30000	0	直交	0	2250000	30	0
4	1000	30	30000	3000	平行	90000000	2250000	60	3.308E+11
5	1000	30	30000	0	直交	0	2250000	90	0
炭化層6	1000	0	0	6000	平行	0	0	0	0
炭化層7	1000	0	0	6000	平行	0	0	0	0
						450000000	Σ Εί	•Ii+Ei•Ai•zi²	5.198E+11

 $E_0 = 6000 (N/mm^2)$

 $I_0 = 2.81E+08 \text{ (mm}^4)$

 $egin{array}{lll} A_0 & = & 150000 \, (\mbox{mm}) \\ A_A & = & 75000 \, (\mbox{mm}) \\ \end{array}$

CLT幅(mm)

1000

 ${
m IA} = 86625000 \, (mm^4) \ \sigma_{
m b,oml} = 27.0 \, (N/mm^2)$

ラミナ構成

5層7プライ

強軸方向

表1.3による。

以上より、

積層(面外)方向強軸 Fb = 4.05 (N/mm)

強度等級

Mx60-5-7

表6-2-12 資料4 燃えしろを考慮したMx60-5-7のせん断応力度分布係数 β

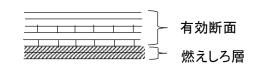
強軸方向	ラミナ構成	強度等級	強度等級 パネル厚さ t _{gross} (mm)		CLTパネル中立軸より 外側のラミナ総数 m
	5層7プライ	Mx60-5-7	150	1000	1
		E₀(N∕mm)̇́	ラミナ厚(mm)		
		6000	30		
		3000	30		

							T.	
層	CLT幅	ラミナ厚	ヤング係数	層	xi	xi² - xi-1²	Ei•	E1• x12
/ <u>=</u>	(mm)	(mm)	Ei(N∕mm)̇́)	/	AI	AI AI	$(xi^2 - xi^{-1^2})$	H- A-
X2	1000	30	6000	平行	45	1800	10800000	-
X1	1000	30	6000	平行	15	225	1350000	1350000
	1000	30	0	直交				
	1000	30	3000	平行				
	1000	30	0	直交				
炭化層6	1000	0	6000	平行				
炭化層7	1000	0	6000	平行				
				x1を除く	ΣΕί•	(xi ² - xi ⁻¹²)	12150000	

面外方向の弾性係数・断面二次モーメント

 $\mathrm{E}~=~1848.00~(N/m\textrm{m}^{2})$

面外方向強軸の曲げヤング係数の算定による。


 $I_0 = 2.81E+08 \text{ (mm}^4)$ $A_0 = 150000 \text{ (mm}^3)$ 面外方向強軸の曲げヤング係数の算定による。 面外方向強軸の曲げヤング係数の算定による。

以上より、 β = **1.948**

②-(1) 床パネルY7~Y11間は、安全側なので単純梁モデルで算定する。 [燃えしろ]準耐火性能1時間とし燃えしろ寸法を60mmとしている。(t=210-60=150)

表6-2-13 設計条件

荷重条件	長期時(DL+LL)
検定箇所	2,3階床
CLT屋根パネル厚t	150 [mm]
強度等級	Mx60-5-7

表6-2-14 設計荷重

応力検定用重量(2,3階床)	0.00372 [N/mm ²]
負担幅b	2500 [mm]
スパンL	4000 [mm]
応力検定用等分布荷重w	9.30 [N/mm]

曲げモーメントM、せん断力Qは、6-2 ①で算定した値を用います。 断面検定では、長期荷重で生じる応 カに対して、短期許容応力度を用い た検定を行います。

表6-2-15 曲げの検定

 $Z_0 = (b \cdot t^2)/6 = (250 \times 15^2)/6$

М	Z ₀	_F σb	面外F _b	sfb	sfb 検定比	
[N.cm]	[cm³]	[N/cm²]	[N/c m ²]	[N/c m ²]	快化儿	判定
18,600,000.00	9,375,000.00	1.98	4.05	2.70	0.73	ок

表6-2-16 せん断の検定

 $A_0 = b \cdot t = 250 \times 15$

Q	A_0	Fτ	面外Fs	sfs	ρ	検定比	判定
[N]	[c m [†]]	[N/cm²]	[N/cm³]	[N/cm²]	β	快化儿	刊化
18,600.00	375,000.00	0.07	0.9	0.60	1.948	0.24	OK

②-(2) Y0~Y6間は、跳ね出しバルコニーを有する床パネルなので連梁モデルとして算定する。 [燃えしろ] (t=210-60=150)

表6-2-17 設計条件

荷重条件	バルコニー・共用廊下
検定箇所	バルコニー
CLT屋根パネル厚	150 [mm]
強度等級	Mx60-5-7

表6-2-18 設計荷重

応力検定用重量(ベランダ)	0.00346	$[N/mm^2]$],
先端荷重(手摺)	700	[N/m²]],
手摺高さ	1.10	[m]]
応力検定用先端荷重P	1,925	[N]]
負担幅	2500	[mm]	
スパンL	2000	[mm]	
応力検定用等分布荷重w	0.0009	[N/cm]]

応力検定用重量は、表2-1-1の3460N/m²を 用いている。

表6-2-19 曲げの検定

М	Z ₀	_F σb	面外F _b	sfb	松山山	如一
[N.cm]	[cm³]	[N/c m ²]	[N/c m ²]	[N/c m ²]	検定比	判定
21,150,000.00	9,375,000.00	2.26	4.05	2.70	0.84	ОК

表6-2-20 せん断の検定

Q		A ₀	F T	_{面外} Fs	sfs	β	検定比	判定
[N]		[c m ²]	[N/cm²]	[N/cm²]	[N/cm²]			
24,215.0	00	375,000.00	0.06	0.9	0.60	1.948	0.21	OK

6-3 垂れ壁パネルの検定

①長期荷重

垂れ壁パネルを単純梁モデルに置換し、長期荷重による面内応力に対する検定及び壁パネルとの接合部に対する検定を行う。

R階垂れ壁の検定は、同一部材を使用しR階より作用荷重の大きな2、3階の検定による。

計算内容は、[6-2 床・屋根パネルの検定」と同様であるため、省略する。

①-(1) 垂れ壁パネルスパン3,000mm (t=150) (2,3階)

表6-3-1 設計条件

荷重条件	長期時(DL+LL)
検定箇所	Y12.7通り: X2.5~5.5間
CLTパネル厚	150 [mm]
CLTパネルせい	500 [mm]
強度等級、ラミナ構成	S60-5-5

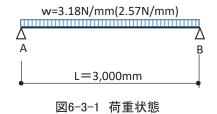


表6-3-2 設計荷重

応力検定用重量(2,3階通路)	0.00296	$[N/mm^2]$
たわみ量検定用重量(2,3階通路)	0.00226	$[N/mm^2]$
通路負担幅	875	[mm]
スパンL	3000	[mm]
垂れ壁重量	0.00118	[N/mm ²]
垂れ壁高さ	500	[mm]
応力検定用等分布荷重w	3.18	[N/mm]
たわみ量検定用等分布荷重w	2.57	[N/mm]

応力検定用重量は、表2-1-1の2960N/m²を用いている。 応力検定用重量は、表2-1-1の2260N/m²を用いている。 =175/2

2-1 (2) ②外壁より1180N/m²

 $= (0.00296 \times 875) + (0.00118 \times 500)$

 $= (0.00226 \times 875) + (0.00118 \times 500)$

表6-3-3 曲げの検定

М	Zo	Lσb	面内F。	∟Fb	検定比	判定
[Nmm]	[mm ³]	[N/mm ²]	[N/mm ²]	[N/mm ²]	快化儿	
3,577,500	6,250,000	0.57	8.10	2.970	0.19	ОК

表6-3-4 せん断の検定

Q [N]	Ao [mm²]	_ τ [N/mm²]	Fs [N/mm²]	Lfs [N/mm²]	検定比	判定
4,770	75,000	0.06	2.02	0.74	0.09	OK

表6-3-5 たわみの検討

lo [mm ⁴]	_{面内} E _{強軸} [N/mm²]	曲げたわみ δ b [mm]	せん断たわみ δs[mm]	変形増大 係数	たわみ [rad]	制限値 [rad]	検定比	判定
###########	3,000	0.58	0.08	2.0	1/ ###	1/ 250	0.11	OK

 $\%G = 500 \text{ N/mm}^2$

表6-3-6 接合部(せん断金物 SP)の検討

Q [N]	_{長期} Qa [N]	検定比	判定
4,770.00	28,600	0.17	OK

SP金物の短期せん断耐力は、2/3F=52kNより 長期Qa=1.1/3×(3/2×52)= 28.6 kN

垂れ壁パネルと耐力壁パネルの接合部に用いているクロスマーク金物2枚1組のSPは、告示解説書 第2章 2.2 図2.2.4-1に示されている様に、水平力が鉛直構面に作用した際に垂れ壁パネルの両端に生じる鉛直方向のせん断力に抵抗させる目的で配置されています。長期の鉛直力を支持する金物ではありません。

計算例では、鉛直荷重を平成28国土交通省告示第611号第八第二号ホに規定されている受け材を設けて支持されています。従って、せん断力は生じていない状態です。

しかし、設計施工マニュアルDVDの設計例 I に計算が示されているので、同様に表6-3-6を記載しています。 SP金物は、地震時に機能する金物なので、表6-3-6の検討は意味がないと考えられます。よって、設計者判断で省略することができます。

(2,3階)

表6-3-7 CLTパネルのめり込み検討

Q/2	A ₀	Lσcv	Fcv	Lfcv	検定比	判定
[N]	[mm]	[N/mm ²]	[N/mm ²]	[N/mm ²]	快龙山	
2,385.00	6,750	0.35	6.0	2.20	0.16	ОК

A₀=受け材面積=45mm*150mm=6750mm²

(1)-(2) 垂れ壁パネルスパン2,500mm (t=150)

Fcvは、1-8 表1-8-6によります。

表6-3-8 設計条件

荷重条件	長期時(DL+LL)
検定箇所	Y2通り: X4.75~7.25間
CLTパネル厚	150 [mm]
CLTパネルせい	500 [mm]
強度等級、ラミナ構成	S60-5-5

w=136.2N/cm(108.2N/cm)

A

B

L=2,500mm

図6-3-2 荷重状態

表6-3-9 設計荷重

応力検定用重量(2,3階床) $0.00322 [N/mm^2]$ たわみ量検定用重量(2,3階床) $0.00252 [N/mm^2]$ 応力検定用重量(バルコニー) $0.00296 [N/mm^2]$ たわみ量検定用重量(バルコニー) $0.00226 [N/mm^2]$ バルコニー先端荷重 0.77 [N/mm] 床負担幅 2000 [mm] バルコニー負担幅 2000 [mm] スパンL 2500 [mm] 垂れ壁重量 $0.00098 [N/mm^2]$ 垂れ壁高さ 500 [mm] 応力検定用等分布荷重w 13.62 [N/mm] たわみ量検定用等分布荷重w 10.82 [N/mm]

応力検定用重量は、表2-1-1の3220N/m²を用いている。 応力検定用重量は、表2-1-1の2520N/m²を用いている。 応力検定用重量は、表2-1-1の2960N/m²を用いている。 応力検定用重量は、表2-1-1の2260N/m²を用いている。 700×手摺高さ1.1/1000=0.77N/mm

床パネル支持スパンの1/2=4000/2

2-1 (2) ②外壁より980N/m²

=(0.00322 × 2000+0.00296 × 2000)+0.77+(0.00098 × 500) =(0.00252 × 2000+0.00226 × 2000)+0.77+(0.00098 × 500)

表6-3-10 曲げの検定

Ī	М	Z ₀	Lσb	面内F。	∟Fb	検定比	判定
	[N.cm]	[cm³]	[N/c m ²]	[N/c m ²]	[N/cm²]	快た比	十九
	10,640,625	6,250,000	1.70	8.10	2.97	0.57	ОК

表6-3-11 せん断の検定

Q [N]	A₀ [c㎡]	∟ <i>τ</i> [N/cm²]	Fs [N/cm²]	∟fs [N/cm³]	検定比	判定
17,025	75,000	0.23	2.02	0.74	0.31	ок

表6-3-12 たわみの検討

l ₀ [mm⁴]	_{面内} E _{強軸} [N/mm²]	曲げたわみ δ b [mm]	せん断たわみ δ s [mm]	変形増大 係数	たわみ [rad]	制限值 [rad]	検定比	判定
############	3,000	1.17	0.23	2.0	1/ 893	1/ 250	0.28	ОК

 $\%G = 500 \text{ N/mm}^2$

表6-3-6の吹き出しを参照してください。

表6-3-13 接合部(せん断金物 SP)の検討-

Q [N]	_{長期} Qa [N]	検定比	判定
17,025.00	28,600	0.60	OK

表6-3-14 CLTパネルのめり込み検討

Q/2 [N]	A ₀ [mm ²]	_L σcv [N/mm²]	Fcv [N/mm²]	Lfcv	検定比	判定
8,513	6,750	1.26	6.0	2.20	0.57	ОК

②長期荷重 [燃えしろ]

垂れ壁パネルを単純梁モデルに置換し、長期荷重による曲げ、せん断及び接合部に対す る断面検定を行う。

R階垂れ壁は、同材を使用し2、3階の床荷重の方が重い為、検討を省略する。

表6-3-15 資料2より1時間準耐火構造Mx60-5-5(150mm) 強軸の場合の曲げ強度Fb

み軸方向	ラミナ構成	強度等級	CLT幅(mm)
独粬力问	5層5プライ	Mx60-5-5	1000

層	CLT幅	ラミナ厚	層断面積	ヤング係数	層	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	眉	El·Ai
1	1000	30	30000	6000	平行	180000000
2	1000	30	30000	0	直交	0
3	1000	30	30000	3000	平行	90000000
炭化層 4	1000	0	0	0	直交	0
炭化層 5	1000	0	0	6000	平行	0
					Σ Ei•Ai	270000000

 $E_0 =$ 6000 (N/mm)

 $I_0 = 60750000 \, (mm^4)$

90000 (mm) $A_0 =$ 45000 (mm)

AA =

 σ b,oml = 27.0 (N/mm) 表13による。

以上より、

幅(面内)方向強軸*Fb*= 8.10 (N/mm)

表6-3-16 資料2より1時間準耐火構造Mx60-5-5(150mm) 強軸の場合のせん断強度Fs

m=3	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層5プライ	Mx60-5-5	90	500	120	2	3

150-60=90 4から2へ

fv,lam,0		2.700	
$f_{V,lam,90} \cdot (t_{net}=30/t_{gross}=90)$	5層5プライ	2.700	1.68
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²)+2/fR • (1/m-1/m²))		1.688	

算定結果は、小数点第3位切り捨てとする。

左図より、m=3とする。 ラミナ幅120mmを有する箇所をカウントする。

以上より、

積層(面外)方向	<i>Fs</i> y =	0.9	(N/mm))
幅(面内)方向	<i>Fs</i> × =	1.68	(N/mm))

面外方向は、ラミナ構成に関係なく $_{\text{my}}$ Fs=0.9N/mm²とする。

②-(1) 垂れ壁パネルスパン3,000mm (t=150-60=90) (2,3階)

表6-3-17 設計条件

荷重条件	長期時(DL+LL)
検定箇所	Y12.7通り: X2.5~5.5間
CLTパネル厚	90 [mm]
CLTパネルせい	500 [mm]
強度等級、ラミナ構成	S60-5-5

表6-3-18 設計荷重

応力検定用重量(2,3階通路)	0.00296	$[N/mm^2]$
たわみ量検定用重量(2,3階通路)	0.00226	$[N/mm^2]$
通路負担幅	875.0	[mm]
スパンL	3000.0	[mm]
垂れ壁重量	0.00118	[N/mm ²]
垂れ壁高さ	500.0	[mm]
応力検定用等分布荷重w	3.18	[N/mm]
たわみ量検定用等分布荷重w	2.57	[N/mm]

曲げモーメントM、せん断力Qは、6-3 ①で算定した値を用います。

表6-3-19 曲げの検定

М	Z_0	_F σb	面内F。	sFb	検定比	判定
[Nmm]	[mm ²]	[N/mm ²]	$[N/mm^2]$	[N/mm ²]	快足LL	刊化
3,577,500	3,750,000	0.95	8.10	5.40	0.18	ОК

表6-3-20 せん断の検定

Q	A ₀	_F T	Fs	sfs	検定比	判定
[N]	[mm ²]	[N/mm ²]	$[N/mm^2]$	[N/mm ²]	快足几	刊足
4,770	45,000	0.11	1.68	1.12	0.09	OK

②-(2) 垂れ壁パネルスパン2,500mm (t=150-60=90) (2,3階)

表6-3-20 設計条件

荷重条件	長期時(DL+LL)
検定箇所	Y2通り: X4.75~7.25間
CLTパネル厚	90 [mm]
CLTパネルせい	500 [mm]
強度等級、ラミナ構成	Mx60-5-5

表6-3-21 設計荷重

応力検定用重量(2,3階床)	0.00322	[N/mm ²]
たわみ量検定用重量(2,3階床)	0.00252	$[N/mm^2]$
応力検定用重量(バルコニー)	0.00296	$[N/mm^2]$
たわみ量検定用重量(バルコニー)	0.00226	$[N/mm^2]$
バルコニー先端荷重	0.77	[N/mm]
床負担幅	2000	[mm]
バルコニー負担幅	2000	[mm]
スパンL	2500	[mm]
垂れ壁重量	0.00098	$[N/mm^2]$
垂れ壁高さ	500	[mm]
応力検定用等分布荷重w	13.62	[N/mm]
たわみ量検定用等分布荷重w	10.82	[N/mm]

表6-3-22 面外曲げの検定

М	Z ₀	_F σb	面内F。	sfb	検定比	判定
[N.cm]	[mm ³]	[N/mm ²]	$[N/mm^2]$	[N/mm ²]	快化儿	刊化
10,640,625	3,750,000	2.84	8.10	5.40	0.53	ОК

○面内せん断の検定

Q	A_0	_F T	Fs	sfs	検定比	判定
[N]	[mm ²]	[N/mm ²]	$[N/mm^2]$	[N/mm ²]	快化儿	刊化
17,025	45,000	0.38	1.68	1.12	0.34	OK

6-4 梁の検定

① 長期荷重

梁を単純梁モデルに置換し、長期荷重による曲げ、せん断及び接合部に対する断面 検定を行う。R階に設ける梁は、同材を使用し2,3階の床荷重の方が重い為、検討を省略する。

①-(1) 梁スパン2,750mm

(2,3階)

表6-4-1 設計条件

荷重条件	長期時(DL+LL)
検定箇所	Y11通り: X1~X4間
梁幅	150 [mm]
梁高さ	330 [mm]
強度等級、ラミナ構成	オウシュウアカマツE105-F300



表6-4-2 設計荷重

応力検定用重量(2,3階床)	0.00322	[N/mm ²]
たわみ検定用重量(2,3階床)	0.00252	$[N/mm^2]$
床負担幅	2000	[mm]
応力検定用重量(共用廊下)	0.00296	$[N/mm^2]$
たわみ検定用重量(共用廊下)	0.00226	$[N/mm^2]$
共用廊下負担幅	875	[mm]
垂れ壁重量	0.00118	$[N/mm^2]$
垂れ壁高さ	500	[mm]
スパンL	2750	[mm]
応力検定用等分布荷重w	9.62	[N/mm]
たわみ検定用等分布荷重w	7.61	[N/mm]

表6-4-3 曲げの検定

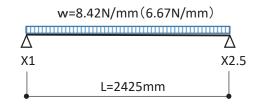
М	Z ₀	Lσb	Fb	∟Fb	検定比	判定
[Nmm]	[mm ³]	[N/mm ²]	$[N/mm^2]$	[N/mm ²]	快た山	刊化
9,093,906	2,722,500	3.34	30.0	11.0	0.30	ОК

表6-4-4 せん断の検定

Q	A ₀	L T	Fs	Lfs	検定比	判定
[N]	[mm ²]	[N/mm ²]	[N/mm²]	[N/mm ²]	快定几	
13,227.50	49,500.00	0.27	3.0	1.10	0.24	OK

表6-4-5 たわみの検討

lo	E _{強軸}	たわみ	変形増大	たわみ	制限值	検定比	判定
[mm ⁴]	$[N/mm^2]$	δ [mm]	係数	[rad]	[rad]	快化儿	刊化
449,212,500	9,000	1.401	2.00	1/ 981	1/ 250	0.25	OK


 $981 = L/(\delta \times 2) = 2750/(1.401 \times 2)$

①-(2) 梁スパン2,425mm

(2,3階)

表6-4-6 設計条件

荷重条件	長期時(DL+LL)
検定箇所	Y6通り: X1~X2.5間
梁幅	150 [mm]
梁高さ	300 [mm]
強度等級、ラミナ構成	オウシュウアカマッE105-F300

表6-4-7 設計荷重

応力検定用重量(2,3階床)	0.00322	[N/mm ²]
たわみ検定用重量(2,3階床)	0.00252	$[N/mm^2]$
負担幅	2500	[mm]
垂れ壁荷重	0.00074	$[N/mm^2]$
垂れ壁高さ	500	[mm]
スパンL	2425	[mm]
応力検定用等分布荷重w	8.42	[N/mm]
たわみ検定用等分布荷重w	6.67	[N/mm]

=5000/2

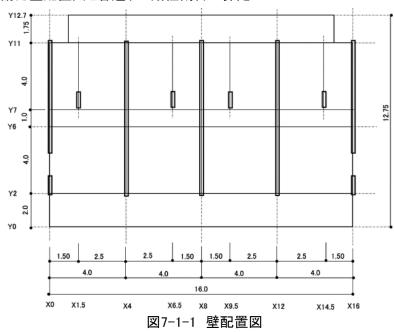
表6-4-8 曲げの検定

М	Z ₀	Lσb	面内F。	∟Fb	検定比	判定
[Nmm]	[mm ³]	[N/mm ²]	$[N/mm^2]$	[N/mm ²]	快化儿	
6,189,358	2,250,000	2.75	30.0	11.0	0.25	ОК

表6-4-9 せん断の検定

Q [N]	A ₀	L τ [N/mm²]	Fs [N/mm²]	∟fs [N/mm²]	検定比	判定
10,209.25	45,000.00	0.23	3.0	1.10	0.21	ОК

表6-4-10 たわみの検討


lo	E _{強軸}	たわみ	変形増大係数	たわみ	制限值	検定比	判定
[cm ⁴]	[N/c m ²]	[cm]		[rad]	[rad]	快化儿	刊足
337,500,000	9,000	0.989	2.00	1/ 1,226	1/ 250	0.20	ОК

 $1,226 = L/(\delta \times 2) = 2425/(0.989 \times 2)$

7. 水平構面の設計

水平構面に作用する荷重により生じるせん断応力、曲げモーメントを算定して検討を行う。 検討方向は、荷重作用時に不利な応力となるY方向について検討を行う。 地震力については、C₀=0.3となるように3-1で算定した地震力を1.5倍し、各通りの負担

7-1 耐力壁配置図と各通りの剛性割合の算定

QaLは、剛性に比例している値なので(通りのQaL)/ Σ QaLを算定し、各通りの剛性割合を求める。

表7-1-1 各通りの剛性割合

通り	壁長さの算定	表3-2-2で 算定した各 通りのQaLi (kN)	剛性割合 (通りのQa·Li)/∑Qa·Li
Х0	1.925+1.5+2.0+1.5+1.425	83.50	0.18
X1.5	0.925	9.25	0.02
X4	1.925+2.0+2.0+1.5+1.575	90.00	0.19
X6.5	0.925	9.25	0.02
X8	1.925+2.0+2.0+1.5+1.425	88.50	0.19
X9.5	0.925	9.25	0.02
X12	1.925+2.0+2.0+1.5+1.575	90.00	0.19
X14.5	0.925	9.25	0.02
X16	1.925+1.5+2.0+1.5+1.425	83.50	0.18
	ΣQa•Li	472.50	1.00

7-2 水平構面の各通りの負担せん断力Pxiの算定

(1) 各階の地震力 (2-3の算定結果を下表に記載する。この地震力はC0=0.2の場合である。)

表7-2-1 各階地震力

階	Q _{ei} kN
3	164.78
2	323.82
1	436.19

(2) Y方向各階の各通り耐力壁の負担せん断力の算定

表7-2-2 3階の各通り耐力壁の負担せん断力の算定

階	通り	剛性割合 (通りのQa・Li)/∑Qa・ Li	1.5 × Q _{ei} (kN)	負担せん 断力P _{xi} (kN)
	X0	0.18		43.68
	X1.5	0.02		4.84
	X4	0.19		47.08
	X6.5 0.02		4.84	
3	X8	0.19	247.17	46.30
3	X9.5	0.02		4.84
	X12	0.19		47.08
	X14.5	0.02		4.84
	X16	0.18		43.68
	Σ	1.00		247.17

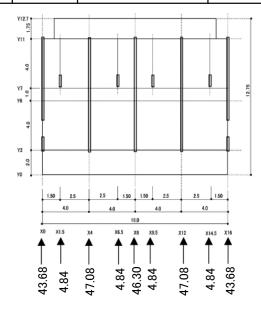


図7-2-1 3階負担せん断力

表7-2-3 2階の各通り耐力壁の負担せん断力の算定

階	通り	剛性割合 (通りのQa·Li)/∑Qa· Li	1.5 × Q _{ei} (kN)	負担せん 断力P _{xi} (kN)
	X0	0.18		85.84
	X1.5	0.02		9.51
	X4	0.19		92.52
	X6.5	0.02		9.51
2	X8	0.19	485.73	90.98
2	X9.5	0.02		9.51
	X12	0.19		92.52
	X14.5	0.02		9.51
	X16	0.18		85.84
	Σ	1.00		485.73

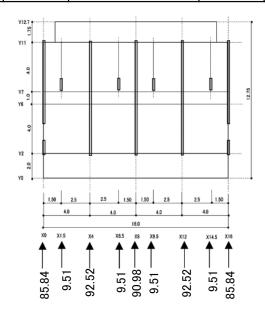


図7-2-2 2階負担せん断力

表7-2-4 1階の各通り耐力壁の負担せん断力の算定

階	通り	剛性割合 (通りのQa·Li)/∑Qa· Li	1.5 × Q _{ei} (kN)	負担せん 断力P _{xi} (kN)
	X0	0.18		115.62
	X1.5	0.02		12.81
	X4	0.19		124.63
	X6.5	0.02		12.81
1	X8	0.19	654.29	122.55
'	X9.5	0.02		12.81
	X12	0.19		124.63
	X14.5	0.02	•	12.81
	X16 0.	0.18		115.62
	Σ	1.00		654.29

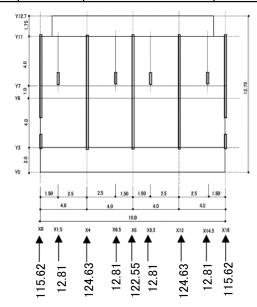
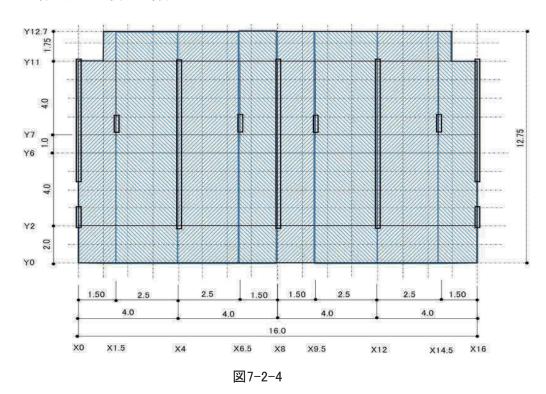



図7-2-3 1階負担せん断力

(3) 各区画の地震力の算定

区間面積の算定及び負担割合

表7-2-5 区間面積の算定及び負担割合

位置	算定式	区間面積 Axi-xj (m²)	Xi-Xj区間 地震力負担割合 R=Axi-xj/∑Axi-xj
X0-X1.5	$1.50 \times (2.0+9.0) + 0.5 \times 1.75$	17.38	0.087
X1.5-X4	2.50 × (2.0+9.0+1.75)	31.88	0.159
X4-X6.5	2.50 × (2.0+9.0+1.75)	31.88	0.159
X6.5-X8	1.50 × (2.0+9.0+1.75)	19.13	0.095
X8-X9.5	1.50 × (2.0+9.0+1.75)	19.13	0.095
X9.5-X12	2.50 × (2.0+9.0+1.75)	31.88	0.159
XC12-X14.5	2.50 × (2.0+9.0+1.75)	31.88	0.159
X14.5-X16	$1.50 \times (2.0+9.0) + 0.5 \times 1.75$	17.38	0.087
	ΣAxi-xj	200.50	1.000

表7-2-6 R階屋根区間地震力の算定

位置	算定式⊿Qe =1.50×(Qe下-Qe上) (kN)	⊿Qe(kN)	区間地震力 Pki−j=R×⊿Qe(kN)
X0-X1.5			21.42
X1.5-X4			39.29
X4-X6.5			39.29
X6.5-X8	1.5 × (164.78-0.00)	247.17	23.58
X8-X9.5	1.5 ^ (104.76-0.00)	247.17	23.58
X9.5-X12			39.29
XC12-X14.5			39.29
X14.5-X16			21.42
		Σ	247.17

表7-2-7 3階床区間地震力の算定

位置	算定式⊿Qe =1.50×(Qe下-Qe上) (kN)	⊿Qe(kN)	区間地震力 Pki−j=R×⊿Qe(kN)
X0-X1.5			20.67
X1.5-X4			37.93
X4-X6.5			37.93
X6.5-X8	1.50 × (323.82-164.78)	238.56	22.76
X8-X9.5		236.30	22.76
X9.5-X12			37.93
XC12-X14.5			37.93
X14.5-X16			20.67
Σ			238.56

表7-2-8 2階床区間地震力の算定

位置	算定式⊿Qe =1.50×(Qe下-Qe上) (kN)	⊿Qe(kN)	区間地震力 Pki−j=R×⊿Qe(kN)
X0-X1.5			14.61
X1.5-X4			26.80
X4-X6.5			26.80
X6.5-X8	1.50 × (436.19-323.82)	168.56	16.08
X8-X9.5	1.50 × (430.19=323.62)	100.30	16.08
X9.5-X12			26.80
XC12-X14.5			26.80
X14.5-X16			14.61
		Σ	168.56

7-3 水平構面の各階の通りの負担せん断力Qi-jの算定

以下に水平構面の各階の通りの負担せん断力Qi-jの算定式を記載します。

表7-3-1 せん断力算定式

位置	算定式	Qij (kN)
Qx0-x1.5	P _{X0} ±-P _{X0} ¬¬	Q _{0-1.5}
Qx1.5-x0	(Q _{0-1.5})-P _{K0-1.5}	Q _{1.5-0}
Qx1.5-x4	(Q _{1.5-0})+P _{X1.5上} -P _{X1.5下}	Q _{1.5-4}
Qx4-x1.5	(Q _{1.5-4})-P _{K1.5-4}	Q _{4-1.5}
Qx4-x6.5	(Q _{4-1.5})+P _{X4} -P _{X4} -F	Q _{4-6.5}
Qx6.5-x4	(Q _{4-6.5})-P _{K4-6.5}	Q _{6.5-4}
Qx6.5-x8	(Q _{6.5-4})+P _{X6.5上} -P _{X6.5下}	Q _{6.5-8}
Qx8-x6.5	(Q _{6.5-8})-P _{K6.5-8}	Q _{8-6.5}
Qx8-x9.5	Q _{8-6.5} +P _{X8} -P _{X8} -	Q _{8-9.5}
Qx9.5-x8	(Q _{8-9.5})-P _{K8-9.5}	Q _{9.5-8}
Qx9.5-x12	(Q _{9.5-8})+P _{X9.5上} -P _{X9.5下}	Q _{9.5-12}
Qx12-x9.5	(Q _{9.5-12})-P _{K9.5-12}	Q _{12-9.5}
Qx12-x14.5	(Q _{12-9.5})+P _{X12上} -P _{X12下}	Q _{12-14.5}
Qx14.5-x12	(Q _{12-14.5})-P _{K12-14.5}	Q _{14.5-12}
Qx14.5-x16	$(Q_{14.5-12}))+P_{X14.5}+P_{X14.5}$	Q _{14.5-16}
Qx16-x14.5	(Q _{14.5-16})-P _{K14.5-16}	Q _{16-14.5}

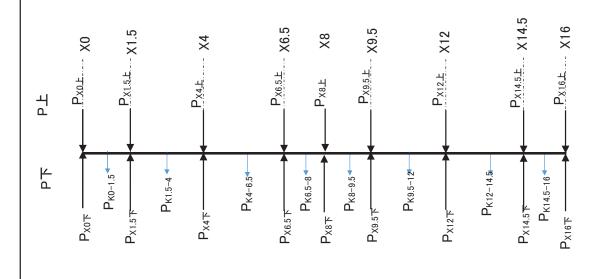
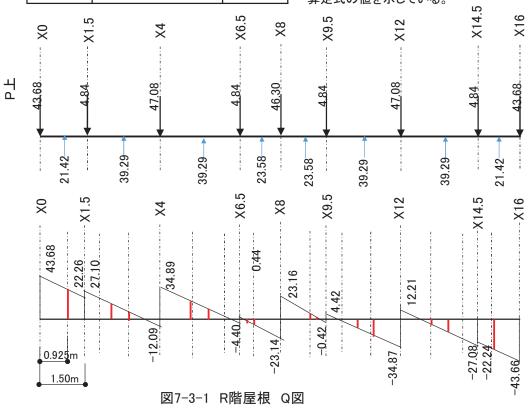
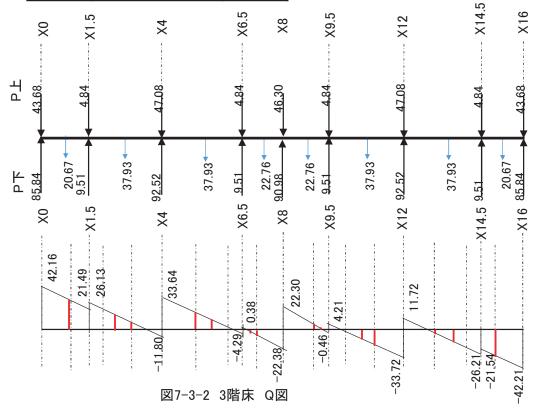



表7-3-2 R階屋根水平構面の負担せん断力

位置	算定式	Qij (kN)
Qx0-x1.5	43.68	43.68
Qx1.5-x0	43.68-21.42	22.26
Qx1.5-x4	22.26+4.84	27.1
Qx4-x1.5	27.10-39.29	-12.19
Qx4-x6.5	(-12.19)+47.08	34.89
Qx6.5-x4	34.89-39.29	-4.4
Qx6.5-x8	(-4.4)+4.84	0.44
Qx8-x6.5	0.44-23.58	-23.14
Qx8-x9.5	(-23.14)+46.30	23.16
Qx9.5-x8	23.16-23.58	-0.42
Qx9.5-x12	(-0.42)+4.84	4.42
Qx12-x9.5	4.42-39.29	-34.87
Qx12-x14.5	(-34.87)+47.08	12.21
Qx14.5-x12	12.21-39.29	-27.08
Qx14.5-x16	(-27.08)+4.84	-22.24
Qx16-x14.5	(-22.24)-21.42	-43.66

小数点2桁以降の影響で計算に 誤差が生じているが 安全性の確認には問題が無いので、 算定式の値を示している。

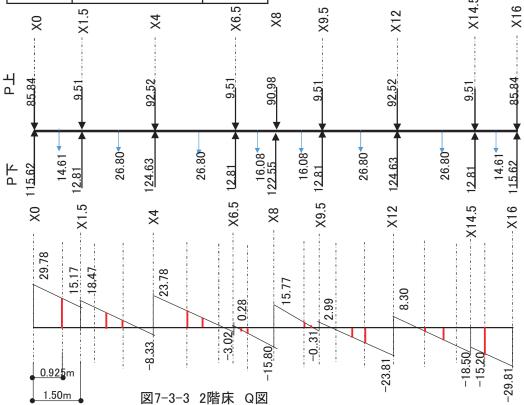

床パネル突合せ長さ Lt=5.0m (R階床パネル伏図X1通りY6~Y11間)

X1通りスプライン接合部分Qmax=(43.86-(43.86-22.26)/1.50×0.925)/5.0=

6.11 kN/m

表7-3-3 3階床水平構面の負担せん断力

位置	算定式	Qij (kN)
Qx0-x1.5	85.84-43.68	42.16
Qx1.5-x0	42.16-20.67	21.49
Qx1.5-x4	21.46+9.51-4.84	26.13
Qx4-x1.5	26.13-37.93	-11.80
Qx4-x6.5	(-11.8)+92.52-47.08	33.64
Qx6.5-x4	33.64-37.93	-4.29
Qx6.5-x8	(-4.29)+9.51-4.84	0.38
Qx8-x6.5	0.38-22.76	-22.38
Qx8-x9.5	(-22.38)+90.98-46.30	22.30
Qx9.5-x8	22.30-22.76	-0.46
Qx9.5-x12	(-0.46)+9.51-4.84	4.21
Qx12-x9.5	4.21-37.93	-33.72
Qx12-x14.5	(-33.72)+92.52-47.08	11.72
Qx14.5-x12	11.72-37.93	-26.21
Qx14.5-x16	(-26.21)+9.51-4.84	-21.54
Qx16-x14.5	(-21.54)-20.67	-42.21



床パネル突合せ長さLt=5.0m (3階床パネル伏図X1通りY6~Y11間)

X1通りスプライン接合部分Qmax=(42.16-(42.16-21.49)/1.50×0.925)/5.0= 5.88 kN/m

表7-3-4 2階床水平構面の負担せん断力

位置	算定式	Qij (kN)
Qx0-x1.5	115.62-85.84	29.78
Qx1.5-x0	29.78-14.61	15.17
Qx1.5-x4	15.17+12.81-9.51	18.47
Qx4-x1.5	18.47-26.80	-8.33
Qx4-x6.5	(-8.33)+124.63-92.52	23.78
Qx6.5-x4	23.78-26.80	-3.02
Qx6.5-x8	(-3.02)+12.81-9.51	0.28
Qx8-x6.5	0.28-16.08	-15.80
Qx8-x9.5	(-15.80)+122.55-90.98	15.77
Qx9.5-x8	15.77-16.08	-0.31
Qx9.5-x12	(-0.31)+12.81-9.51	2.99
Qx12-x9.5	2.99-26.80	-23.81
Qx12-x14.5	(-23.81)+124.63-92.52	8.30
Qx14.5-x12	8.30-26.80	-18.50
Qx14.5-x16	(-18.50)+12.81-9.51	-15.20
Qx16-x14.5	(-15.20)-14.61	-29.81

床パネル突合せ長さLt=5.0m (2階床パネル伏図X1通りY6~Y11間)

X1通りスプライン接合部分Qmax=(29.78-(29.78-15.17)/1.50×0.925)/5.0=

4.15 kN/m

7-4 水平構面引張接合部の引張応力の計算方法 (水平構面の曲げモーメントの算定)

(1) R階屋根水平構面の曲げモーメント

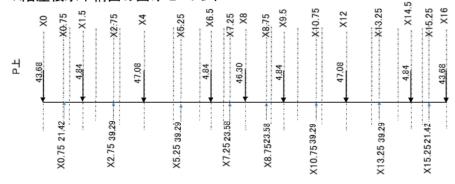


図7-4-1 R階床作用荷重

表7-4-1 R階屋根の曲げモーメント①

1 1 1	ド陌座板の 	ші) С -/-				
位置	荷重位置	P _{Xi} (kN)	Pki−j (kN)	l m	P _{Xi} ×ℓ 又は P _{Ki-j} ×ℓ kNm	$Mi = \sum_{k} P_{X_i} \times \ell + P_{K_{i-j}} \times \ell$ (kNm)
M _{×0.75}	X0.75	43.68		0.75	32.76	32.76
M _{×1.5}	X0	43.68		1.50	65.52	
	X0.75		-21.42	0.75	-16.07	49.46
$M_{x2.75}$	X0	43.68		2.75	120.12	
	X0.75		-21.42	2.00	-42.84	
	X1.5	4.84		1.25	6.05	83.33
$M_{\times 4}$	X0	43.68		4.00	174.72	
	X0.75		-21.42	3.25	-69.62	
	X1.5	4.84		2.50	12.1	
	X2.75		-39.29	1.25	-49.11	68.09
$M_{x5.25}$	X0	43.68		5.25	229.32	
	X0.75		-21.42	4.50	-96.39	
	X1.5	4.84		3.75	18.15	
	X2.75		-39.29	2.50	-98.23	
	X4	47.08		1.25	58.85	111.71
$M_{x6.5}$	X0	43.68		6.50	283.92	
	X0.75		-21.42	5.75	-123.17	
	X1.5	4.84		5.00	24.20	
	X2.75		-39.29	3.75	-147.34	
	X4	47.08		2.50	117.70	
	X5.25		-39.29	1.25	-49.11	106.21
$M_{\times 7.25}$	X0	43.68		7.25	316.68	
	X0.75		-21.42	6.50	-139.23	
	X1.5	4.84		5.75	27.83	
	X2.75		-39.29	4.50	-176.81	
	X4	47.08		3.25	153.01	
	X5.25		-39.29	2.00	-78.58	
	X6.5	4.84		0.75	3.63	106.54

表7-4-2 R階屋根の曲げモーメント②

		皿() し				
 位置 	荷重位置	P _{Xi} (kN)	Pki–j (kN)	l m	P _{Xi} ×ℓ 又は P _{Ki-j} ×ℓ kNm	$Mi = \sum P_{Xi} \times \ell + P_{Ki-j} \times \ell$ (kNm)
M _{×8}	X0	43.68		8.00	349.44	
,,,	X0.75		-21.42	7.25	-155.30	
	X1.5	4.84		6.50	31.46	
	X2.75		-39.29	5.25	-206.27	
	X4	47.08		4.00	188.32	
	X5.25		-39.29	2.75	-108.05	
	X6.5	4.84		1.50	7.26	
	X7.25		-23.58	0.75	-17.69	89.18
M _{×8.75}	X0	43.68		8.75	382.20	
	X0.75		-21.42	8.00	-171.36	
	X1.5	4.84		7.25	35.09	
	X2.75		-39.29	6.00	-235.74	
	X4	47.08		4.75	223.63	
	X5.25		-39.29	3.50	-137.52	
	X6.5	4.84		2.25	10.89	
	X7.25		-23.58	1.50	-35.37	
	X8	46.30		0.75	34.73	106.55
M _{×9.5}	X0	43.68		9.50	414.96	
	X0.75		-21.42	8.75	-187.43	
	X1.5	4.84		8.00	38.72	
	X2.75		-39.29	6.75	-265.21	
	X4	47.08		5.50	258.94	
	X5.25		-39.29	4.25	-166.98	
	X6.5	4.84		3.00	14.52	
	X7.25		-23.58	2.25	-53.06	
	X8	46.30		1.50	69.45	
	X8.75		-23.58	0.75	-17.69	106.24
M _{×10.75}	X0	43.68		10.75	469.56	
	X0.75		-21.42	10.00	-214.20	
	X1.5	4.84		9.25	44.77	
	X2.75		-39.29	8.00	-314.32	
	X4	47.08		6.75	317.79	
	X5.25		-39.29	5.50	-216.10	
	X6.5	4.84		4.25	20.57	
	X7.25		-23.58	3.50	-82.53	
	X8	46.30		2.75	127.33	
	X8.75		-23.58	2.00	-47.16	
	X9.5	4.84		1.25	6.05	111.76

表7-4-3 R階屋根の曲げモーメント③

		二 () し ク.	'	П		1
位置	荷重位置	P _{Xi} (kN)	Pki-j (kN)	l m	P _{Xi} ×ℓ 又は P _{Ki-j} ×ℓ kNm	$Mi = \sum_{i} P_{Xi} \times \ell + P_{Ki-j} \times \ell$ (kNm)
M _{×12}	X0	43.68		12.00	524.16	
	X0.75		-21.42	11.25	-240.98	
	X1.5	4.84		10.50	50.82	
	X2.75		-39.29	9.25	-363.43	
	X4	47.08		8.00	376.64	
	X5.25		-39.29	6.75	-265.21	
	X6.5	4.84		5.50	26.62	
	X7.25		-23.58	4.75	-112.01	
	X8	46.30		4.00	185.20	
	X8.75		-23.58	3.25	-76.64	
	X9.5	4.84		2.50	12.10	
	X10.75		-39.29	1.25	-49.11	68.17
M _{×13.25}	X0	43.68		13.25	578.76	
	X0.75		-21.42	12.50	-267.75	
	X1.5	4.84		11.75	56.87	
	X2.75		-39.29	11.00	-432.19	
	X4	47.08		9.75	459.03	
	X5.25		-39.29	8.50	-333.97	
	X6.5	4.84		7.25	35.09	
	X7.25		-23.58	6.50	-153.27	
	X8	46.30		5.75	266.23	
	X8.75		-23.58	5.00	-117.90	
	X9.5	4.84		4.25	20.57	
	X10.75		-39.29	3.00	-117.87	
	X12	47.08		1.75	82.39	75.99
M _{x14.5}	X0	43.68		14.50	633.36	
	X0.75		-21.42	13.75	-294.53	
	X1.5	4.84		13.00	62.92	
	X2.75		-39.29	11.75	-461.66	
	X4	47.08		10.50	494.34	
	X5.25		-39.29	9.25	-363.43	
	X6.5	4.84		8.00	38.72	
	X7.25		-23.58	7.25	-170.96	
	X8	46.30		6.50	300.95	
	X8.75		-23.58	5.75	-135.59	
	X9.5	4.84		5.00	24.20	
	X10.75		-39.29	3.75	-147.34	
	X12	47.08		2.50	117.70	
	X13.25		-39.29	1.25	-49.11	49.59

表7-4-4 R階屋根の曲げモーメント④

位置	荷重位置	P _{Xi} (kN)	Pki−j (kN)	l m	P _{Xi} ×l 又は P _{Ki-j} ×l kNm	$Mi = \sum_{k} P_{x_i} \times \ell + P_{k_{i-j}} \times \ell $ (kNm)
$M_{x15.25}$	X0	43.68		15.25	666.12	
	X0.75		-21.42	14.50	-310.59	
	X1.5	4.84		13.75	66.55	
	X2.75		-39.29	12.50	-491.13	
	X4	47.08		11.25	529.65	
	X5.25		-39.29	10.00	-392.90	
	X6.5	4.84		8.75	42.35	
	X7.25		-23.58	8.00	-188.64	
	X8	46.30		7.25	335.68	
	X8.75		-23.58	6.50	-153.27	
	X9.5	4.84		5.75	27.83	
	X10.75		-39.29	4.50	-176.81	
	X12	47.08	·	3.25	153.01	
	X13.25		-39.29	2.00	-78.58	
	X14.5	4.84		0.75	3.63	32.90

表7-4-5 X0をM=0とした力の補正モーメント ∑Miの算定

位置	荷重位置	P _{Xi} (kN)	Pki−j (kN)	l m	P _{Xi} ×l 又は P _{Ki−j} ×l kNm	$\sum_{\mathbf{M}i} = \sum_{\mathbf{P}_{Xi}} \times \mathbf{l} + \mathbf{P}_{Ki-j} \times \mathbf{l}$ $\mathbf{l} (\mathbf{k}\mathbf{N}\mathbf{m})$
$M_{\times 0}$	X0.75		-21.42	0.75	-16.07	
	X1.5	4.84		1.50	7.26	
	X2.75		-39.29	2.75	-108.05	
	X4	47.08		4.00	188.32	
	X5.25		-39.29	5.25	-206.27	
	X6.5	4.84		6.50	31.46	
	X7.25		-23.58	7.25	-170.96	
	X8	46.30		8.00	370.40	
	X8.75		-23.58	8.75	-206.33	
	X9.5	4.84		9.50	45.98	
	X10.75		-39.29	10.75	-422.37	
	X12	47.08		12.00	564.96	
	X13.25		-39.29	13.25	-520.59	
	X14.5	4.84		14.5	70.18	
	X15.25		-21.42	15.25	-326.66	
	X16	43.68		16.00	698.88	0.16

補正モーメントが小さいことから補正しない応力状態を採用して引張力の検定を行う。

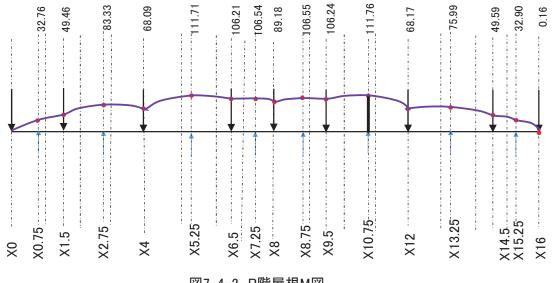


図7-4-2 R階屋根M図

Mmax= 111.76 kNm 水平構面の奥行D= 10.75 m

突合せ部最大引張力:X10.75通り T_{RF}=Mmax/D= 10.40 kN

口X4通りの曲げモーメントの求め方 X7.2523.58 X13.25 39.29 X0.75 21.42 X8.7523.58 図7-4-3 R階屋根作用荷重 2.50 3.25 4.00 以下の釣合い式からX4通りの位置の曲げモーメントを算定します。 X4通りの曲げモーメント算定式 43.68×4.00+(-21.42)×3.25+4.84×2.50+(-39.29)×1.25

68.09 kNm

2) 3階床水平構面の曲げモーメント

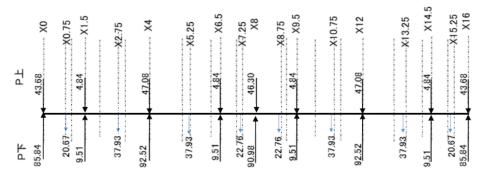


図7-4-4 3階床作用荷重

表7-4-6 3階床の曲げモーメント①

位置	荷重位置	P下-P上(kN)	P _{Xi} (kN)	Pki-j (kN)	l m	P _{Xi} ×l XIt P _{Ki−j} ×l kNm	$Mi = \sum P_{X_i} \times \ell + P_{K_i - j} \times \ell $ (kNm)
M _{×0.75}	X0.75	85.84-43.68	42.16		0.75	31.62	31.62
$M_{x1.5}$	X0	85.84-43.68	42.16		1.50	63.24	
	X0.75			-20.67	0.75	-15.50	47.74
M _{×2.75}	X0	85.84-43.68	42.16		2.75	115.94	
	X0.75			-20.67	2.00	-41.34	
	X1.5	9.51-4.84	4.67		1.25	5.8375	80.44
$M_{\times 4}$	X0	85.84-43.68	42.16		4.00	168.64	
	X0.75			-20.67	3.25	-67.18	
	X1.5	9.51-4.84	4.67		2.50	11.675	
	X2.75			-37.93	1.25	-47.41	65.73
M _{×5.25}	X0	85.84-43.68	42.16		5.25	221.34	
	X0.75			-20.67	4.50	-93.02	
	X1.5	9.51-4.84	4.67		3.75	17.5125	
	X2.75			-37.93	2.50	-94.83	
	X4	92.52-47.08	45.44		1.25	56.8	107.81
M _{×6.5}	X0	85.84-43.68	42.16		6.50	274.04	
	X0.75			-20.67	5.75	-118.85	
	X1.5	9.51-4.84	4.67		5.00	23.35	
	X2.75			-37.93	3.75	-142.24	
	X4	92.52-47.08	45.44		2.50	113.60	
	X5.25			-37.93	1.25	-47.41	102.49
M _{×7.25}	X0	85.84-43.68	42.16		7.25	305.66	
	X0.75			-20.67	6.50	-134.36	
	X1.5	9.51-4.84	4.67		5.75	26.85	
	X2.75			-37.93	4.50	-170.69	
	X4	92.52-47.08	45.44		3.25	147.68	
	X5.25			-37.93	2.00	-75.86	
	X6.5	9.51-4.84	4.67		0.75	3.50	102.80

表7-4-7 3階床の曲げモーメント②

衣 /-4-/	3階床の曲	げモーメント②					
位置	荷重位置	P下-P上(kN)	P _{Xi} (kN)	Pki-j (kN)	l m	P _{Xi} ×ℓ 又は P _{Ki-j} ×ℓ kNm	$Mi = \sum_{k} P_{x_i} \times \ell$ $\ell + P_{K_{i-j}} \times \ell$ (kNm)
M _{×8}	X0	85.84-43.68	42.16		8.00	337.28	
	X0.75			-20.67	7.25	-149.86	
	X1.5	9.51-4.84	4.67		6.50	30.36	
	X2.75			-37.93	5.25	-199.13	
	X4	92.52-47.08	45.44		4.00	181.76	
	X5.25			-37.93	2.75	-104.31	
	X6.5	9.51-4.84	4.67		1.50	7.01	
	X7.25			-22.76	0.75	-17.07	86.03
M _{x8.75}	X0	85.84-43.68	42.16		8.75	368.90	
	X0.75			-20.67	8.00	-165.36	
	X1.5	9.51-4.84	4.67		7.25	33.86	
	X2.75			-37.93	6.00	-227.58	
	X4	92.52-47.08	45.44		4.75	215.84	
	X5.25			-37.93	3.50	-132.76	
	X6.5	9.51-4.84	4.67		2.25	10.51	
	X7.25			-22.76	1.50	-34.14	
	X8	90.98-46.30	44.68		0.75	33.51	102.78
M _{×9.5}	X0	85.84-43.68	42.16		9.50	400.52	
	X0.75			-20.67	8.75	-180.86	
	X1.5	9.51-4.84	4.67		8.00	37.36	
	X2.75			-37.93	6.75	-256.03	
	X4	92.52-47.08	45.44		5.50	249.92	
	X5.25			-37.93	4.25	-161.20	
	X6.5	9.51-4.84	4.67		3.00	14.01	
	X7.25			-22.76	2.25	-51.21	
	X8	90.98-46.30	44.68		1.50	67.02	
	X8.75			-22.76	0.75	-17.07	102.46
$M_{x10.75}$	X0	85.84-43.68	42.16		10.75	453.22	
	X0.75			-20.67	10.00	-206.70	
	X1.5	9.51-4.84	4.67		9.25	43.20	
	X2.75			-37.93	8.00	-303.44	
	X4	92.52-47.08	45.44		6.75	306.72	
	X5.25			-37.93	5.50	-208.62	
	X6.5	9.51-4.84	4.67		4.25	19.85	
	X7.25			-22.76	3.50	-79.66	
	X8	90.98-46.30	44.68		2.75	122.87	
	X8.75			-22.76	2.00	-45.52	
	X9.5	9.51-4.84	4.67		1.25	5.84	107.76

表7-4-8 3階床の曲げモーメント③

		ナモーメント(3)					
位置	荷重位置	P下-P上(kN)	P _{Xi} (kN)	Pki-j (kN)	l m	P _{Xi} ×l 又は P _{Ki-j} ×l kNm	$Mi = \sum P_{X_i} \times $ $l + P_{K_{i-j}} \times l$ (kNm)
M _{×12}	Х0	85.84-43.68	42.16		12.00	505.92	
	X0.75			-20.67	11.25	-232.54	
	X1.5	9.51-4.84	4.67		10.50	49.04	
	X2.75			-37.93	9.25	-350.85	
	X4	92.52-47.08	45.44		8.00	363.52	
	X5.25			-37.93	6.75	-256.03	
	X6.5	9.51-4.84	4.67		5.50	25.69	
	X7.25			-22.76	4.75	-108.11	
	X8	90.98-46.30	44.68		4.00	178.72	
	X8.75			-22.76	3.25	-73.97	
	X9.5	9.51-4.84	4.67		2.50	11.68	
	X10.75			-37.93	1.25	-47.41	65.65
M _{×13.25}	Х0	85.84-43.68	42.16		13.25	558.62	
	X0.75			-20.67	12.50	-258.38	
	X1.5	9.51-4.84	4.67		11.75	54.87	
	X2.75			-37.93	11.00	-417.23	
	X4	92.52-47.08	45.44		9.75	443.04	
	X5.25			-37.93	8.50	-322.41	
	X6.5	9.51-4.84	4.67		7.25	33.86	
	X7.25			-22.76	6.50	-147.94	
	X8	90.98-46.30	44.68		5.75	256.91	
	X8.75			-22.76	5.00	-113.80	
	X9.5	9.51-4.84	4.67		4.25	19.85	
	X10.75			-37.93	3.00	-113.79	
	X12	92.52-47.08	45.44		1.75	79.52	73.13
M _{×14.5}	X0	85.84-43.68	42.16		14.50	611.32	
	X0.75			-20.67	13.75	-284.21	
	X1.5	9.51-4.84	4.67		13.00	60.71	
	X2.75			-37.93	11.75	-445.68	
	X4	92.52-47.08	45.44		10.50	477.12	
	X5.25			-37.93	9.25	-350.85	
	X6.5	9.51-4.84	4.67		8.00	37.36	
	X7.25			-22.76	7.25	-165.01	
	X8	90.98-46.30	44.68		6.50	290.42	
	X8.75			-22.76	5.75	-130.87	
	X9.5	9.51-4.84	4.67		5.00	23.35	
	X10.75			-37.93	3.75	-142.24	
	X12	92.52-47.08	45.44		2.50	113.60	
	X13.25			-37.93	1.25	-47.41	47.61

表7-4-9 3階床の曲げモーメント④

位置	荷重位置	P下-P上 (kN)	P _{Xi} (kN)	Pki−j (kN)	l m	P _{Xi} ×l 又は P _{Ki-j} ×l kNm	$Mi = \sum P_{Xi} \times \ell + P_{Ki-j} \times \ell $ (kNm)
$M_{x15.25}$	X0	85.84-43.68	42.16		15.25	642.94	
	X0.75			-20.67	14.50	-299.72	
	X1.5	9.51-4.84	4.67		13.75	64.21	
	X2.75			-37.93	12.50	-474.13	
	X4	92.52-47.08	45.44		11.25	511.20	
	X5.25			-37.93	10.00	-379.30	
	X6.5	9.51-4.84	4.67		8.75	40.86	
	X7.25			-22.76	8.00	-182.08	
	X8	90.98-46.30	44.68		7.25	323.93	
	X8.75			-22.76	6.50	-147.94	
	X9.5	9.51-4.84	4.67		5.75	26.85	
	X10.75			-37.93	4.50	-170.69	
	X12	92.52-47.08	45.44		3.25	147.68	
	X13.25			-37.93	2.00	-75.86	
	X14.5	9.51-4.84	4.67		0.75	3.50	31.48

表7-4-10 X0をM=0とした力の補正モーメント Σ Miの算定

位置	荷重位置	P _{Xi} (kN)	Pki−j (kN)	l m	P _{Xi} ×l 又は P _{Ki−j} ×l kNm	$\sum_{k} Mi = \sum_{k} P_{x_i} \times \ell + P_{K_{i-j}} \times \ell \times$
$M_{\times 0}$	X0.75		-20.67	0.75	-15.50	
	X1.5	4.67		1.50	7.01	
	X2.75		-37.93	2.75	-104.31	
	X4	45.44		4.00	181.76	
	X5.25		-37.93	5.25	-199.13	
	X6.5	4.67		6.50	30.36	
	X7.25		-22.76	7.25	-165.01	
	X8	44.68		8.00	357.44	
	X8.75		-22.76	8.75	-199.15	
	X9.5	4.67		9.50	44.37	
	X10.75		-37.93	10.75	-407.75	
	X12	45.44		12.00	545.28	
	X13.25		-37.93	13.25	-502.57	
	X14.5	4.67		14.5	67.72	
	X15.25		-20.67	15.25	-315.22	
	X16	42.16		16.00	674.56	-0.16

補正モーメントが小さいことから補正しない応力状態を採用して引張力の検定を行う。

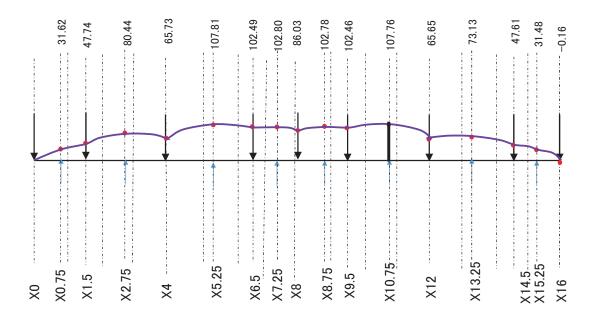


図7-4-5 3階床M図

Mmax= 107.76 kNm 水平構面の奥行D= 10.75 m

突合せ部最大引張力:X10.75通り T_{3F}=Mmax/D= 10.02 kN

3) 2階床水平構面の曲げモーメント

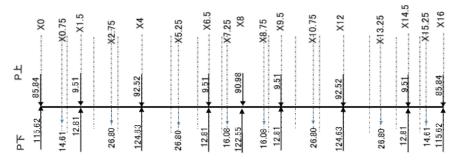


図7-4-6 2階床作用荷重

表7-4-11 2階床の曲げモーメント①

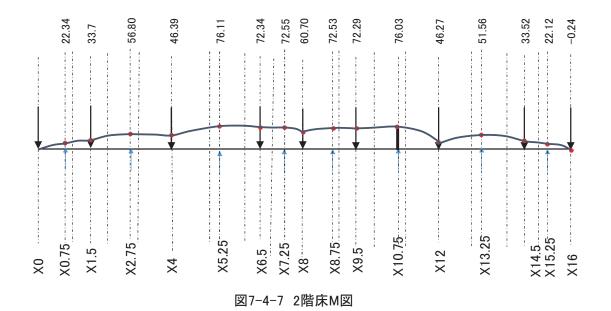
位置	荷重位置	P下-P上(kN)	P _{Xi} (kN)	Pki−j (kN)	l m	P _{Xi} ×l 又は P _{Ki−j} ×l kNm	$Mi = \sum P_{Xi} \times \ell + P_{Ki-j} \times \ell $ (kNm)
$M_{x0.75}$	X0.75	115.62-85.84	29.78		0.75	22.34	22.34
M _{x1.5}	X0	115.62-85.84	29.78		1.50	44.67	
	X0.75			-14.61	0.75	-10.96	33.71
M _{×2.75}	X0	115.62-85.84	29.78		2.75	81.895	
	X0.75			-14.61	2.00	-29.22	
	X1.5	12.81-9.51	3.30		1.25	4.125	56.80
M _{×4}	X0	115.62-85.84	29.78		4.00	119.12	
	X0.75			-14.61	3.25	-47.48	
	X1.5	12.81-9.51	3.30		2.50	8.25	
	X2.75			-26.80	1.25	-33.50	46.39
M _{x5.25}	X0	115.62-85.84	29.78		5.25	156.345	
	X0.75			-14.61	4.50	-65.75	
	X1.5	12.81-9.51	3.30		3.75	12.375	
	X2.75			-26.80	2.50	-67.00	
	X4	124.63-92.52	32.11		1.25	40.1375	76.11
$M_{\times 6.5}$	X0	115.62-85.84	29.78		6.50	193.57	
	X0.75			-14.61	5.75	-84.01	
	X1.5	12.81-9.51	3.30		5.00	16.50	
	X2.75			-26.80	3.75	-100.50	
	X4	124.63-92.52	32.11		2.50	80.28	
	X5.25			-26.80	1.25	-33.50	72.34
M _{×7.25}	X0	115.62-85.84	29.78		7.25	215.91	
	X0.75			-14.61	6.50	-94.97	
	X1.5	12.81-9.51	3.30		5.75	18.98	
	X2.75			-26.80	4.50	-120.60	
	X4	124.63-92.52	32.11		3.25	104.36	
	X5.25			-26.80	2.00	-53.60	
	X6.5	12.81-9.51	3.30		0.75	2.48	72.55

表7-4-12 2階床の曲げモーメント②

27 7 12		コナモーメント(2)					I
位置	荷重位置	P下-P上(kN)	P _{Xi} (kN)	Pki-j (kN)	l m	P _{Xi} ×ℓ 又は P _{Ki-j} ×ℓ kNm	$Mi = \sum P_{Xi} \times \ell + P_{Ki-j} \times \ell $ (kNm)
M _{x8}	X0	115.62-85.84	29.78		8.00	238.24	
	X0.75			-14.61	7.25	-105.92	
	X1.5	12.81-9.51	3.30		6.50	21.45	
	X2.75			-26.80	5.25	-140.70	
	X4	124.63-92.52	32.11		4.00	128.44	
	X5.25			-26.80	2.75	-73.70	
	X6.5	12.81-9.51	3.30		1.50	4.95	
	X7.25			-16.08	0.75	-12.06	60.70
M _{×8.75}	X0	115.62-85.84	29.78		8.75	260.58	
	X0.75			-14.61	8.00	-116.88	
	X1.5	12.81-9.51	3.30		7.25	23.93	
	X2.75			-26.80	6.00	-160.80	
	X4	124.63-92.52	32.11		4.75	152.52	
	X5.25			-26.80	3.50	-93.80	
	X6.5	12.81-9.51	3.30		2.25	7.43	
	X7.25			-16.08	1.50	-24.12	
	X8	122.55-90.98	31.57		0.75	23.68	72.53
$M_{\times 9.5}$	X0	115.62-85.84	29.78		9.50	282.91	
	X0.75			-14.61	8.75	-127.84	
	X1.5	12.81-9.51	3.30		8.00	26.40	
	X2.75			-26.80	6.75	-180.90	
	X4	124.63-92.52	32.11		5.50	176.61	
	X5.25			-26.80	4.25	-113.90	
	X6.5	12.81-9.51	3.30		3.00	9.90	
	X7.25			-16.08	2.25	-36.18	
	X8	122.55-90.98	31.57		1.50	47.36	
	X8.75			-16.08	0.75	-12.06	72.29
$M_{x10.75}$	X0	115.62-85.84	29.78		10.75	320.14	
	X0.75			-14.61	10.00	-146.10	
	X1.5	12.81-9.51	3.30		9.25	30.53	
	X2.75			-26.80	8.00	-214.40	
	X4	124.63-92.52	32.11		6.75	216.74	
	X5.25			-26.80	5.50	-147.40	
	X6.5	12.81-9.51	3.30		4.25	14.03	
	X7.25			-16.08	3.50	-56.28	
	X8	122.55-90.98	31.57		2.75	86.82	
	X8.75			-16.08	2.00	-32.16	
	X9.5	12.81-9.51	3.30		1.25	4.13	76.03

表7-4-13 2階床の曲げモーメント③

位置	荷重位置	P下-P上(kN)	P _{Xi} (kN)	Pki-j (kN)	l m	P _{Xi} ×l XIt P _{Ki-j} ×l kNm	$Mi = \sum P_{Xi} \times \ell + P_{Ki-j} \times \ell $ (kNm)
M _{×12}	X0	115.62-85.84	29.78		12.00	357.36	
	X0.75			-14.61	11.25	-164.36	
	X1.5	12.81-9.51	3.30		10.50	34.65	
	X2.75			-26.80	9.25	-247.90	
	X4	124.63-92.52	32.11		8.00	256.88	
	X5.25			-26.80	6.75	-180.90	
	X6.5	12.81-9.51	3.30		5.50	18.15	
	X7.25			-16.08	4.75	-76.38	
	X8	122.55-90.98	31.57		4.00	126.28	
	X8.75			-16.08	3.25	-52.26	
	X9.5	12.81-9.51	3.30		2.50	8.25	
	X10.75			-26.80	1.25	-33.50	46.27
M _{×13.25}	X0	115.62-85.84	29.78		13.25	394.59	
	X0.75			-14.61	12.50	-182.63	
	X1.5	12.81-9.51	3.30		11.75	38.78	
	X2.75			-26.80	11.00	-294.80	
	X4	124.63-92.52	32.11		9.75	313.07	
	X5.25			-26.80	8.50	-227.80	
	X6.5	12.81-9.51	3.30		7.25	23.93	
	X7.25			-16.08	6.50	-104.52	
	X8	122.55-90.98	31.57		5.75	181.53	
	X8.75			-16.08	5.00	-80.40	
	X9.5	12.81-9.51	3.30		4.25	14.03	
	X10.75			-26.80	3.00	-80.40	
	X12	124.63-92.52	32.11		1.75	56.19	51.56
M _{×14.5}	X0	115.62-85.84	29.78		14.50	431.81	
X14.0	X0.75			-14.61	13.75	-200.89	
	X1.5	12.81-9.51	3.30		13.00	42.90	
	X2.75			-26.80	11.75	-314.90	
	X4	124.63-92.52	32.11		10.50	337.16	
	X5.25			-26.80	9.25	-247.90	
	X6.5	12.81-9.51	3.30		8.00	26.40	
	X7.25			-16.08	7.25	-116.58	
	X8	122.55-90.98	31.57		6.50	205.21	
	X8.75		1	-16.08	5.75	-92.46	
	X9.5	12.81-9.51	3.30	. 5.56	5.00	16.50	
	X10.75		1 3.50	-26.80	3.75	-100.50	
	X10:70	124.63-92.52	32.11		2.50	80.28	
	X13.25		52.11	-26.80	1.25	-33.50	33.52


表7-4-14 2階床の曲げモーメント④

位置	荷重位置	P下-P上(kN)	P _{Xi} (kN)	Pki−j (kN)	l m	P _{Xi} ×l XII P _{Ki-j} ×l kNm	$Mi = \sum_{k} P_{Xi} \times $ $\ell + P_{Ki-j} \times \ell $ (kNm)
M _{×15.25}	X0	115.62-85.84	29.78		15.25	454.15	
	X0.75			-14.61	14.50	-211.85	
	X1.5	12.81-9.51	3.30		13.75	45.38	
	X2.75			-26.80	12.50	-335.00	
	X4	124.63-92.52	32.11		11.25	361.24	
	X5.25			-26.80	10.00	-268.00	
	X6.5	12.81-9.51	3.30		8.75	28.88	
	X7.25			-16.08	8.00	-128.64	
	X8	122.55-90.98	31.57		7.25	228.88	
	X8.75			-16.08	6.50	-104.52	
	X9.5	12.81-9.51	3.30		5.75	18.98	
	X10.75			-26.80	4.50	-120.60	
	X12	124.63-92.52	32.11		3.25	104.36	
	X13.25			-26.80	2.00	-53.60	
	X14.5	12.81-9.51	3.30	_	0.75	2.48	22.12

表7-4-15 X0をM=0とした力の補正モーメント ΣMiの算定

位置	荷重位置	P _{Xi} (kN)	Pki−j (kN)	l m	P _{Xi} ×l 又は P _{Ki-j} ×l kNm	$\sum_{k} Mi = \sum_{k} P_{x_i} \times \ell + P_{K_{i-j}} \times \ell$
M _{x0}	X0.75		-14.61	0.75	-10.96	
	X1.5	3.30		1.50	4.95	
	X2.75		-26.80	2.75	-73.70	
	X4	32.11		4.00	128.44	
	X5.25		-26.80	5.25	-140.70	
	X6.5	3.30		6.50	21.45	
	X7.25		-16.08	7.25	-116.58	
	X8	31.57		8.00	252.56	
	X8.75		-16.08	8.75	-140.70	
	X9.5	3.30		9.50	31.35	
	X10.75		-26.80	10.75	-288.10	
	X12	32.11		12.00	385.32	
	X13.25		-26.80	13.25	-355.10	
	X14.5	3.30		14.5	47.85	
	X15.25		-14.61	15.25	-222.80	
<u> </u>	X16	29.78		16.00	476.48	-0.24

補正モーメントが小さいことから補正しない応力状態を採用して引張力の検定を行う。

Mmax= 76.03 kNm 水平構面の奥行D= 10.75 m

突合せ部最大引張力:X10.75通り T_{2F}=Mmax/D= 7.07 kN

7-5 水平構面の接合部の検定

(1) 各階床パネルの面内せん断応力度の検定

最大せん断力は、R階床パネルの水平構面X0通り Qx0=43.68kN

構成等級 S60-5-7

厚さt= 210 mm

パネル面積A=210×5000= 1,050,000 mm²

短期せん断応力度 τ = (43.68×1,000)/1,050,000= 0.042 N/mm²

 $< sfs = 2/3 \times 1.65 = 1.10 \text{ N/mm}^2 \text{ OK}$

(2)水平構面の接合部の検定

- ① R階水平構面
- ①-1 3階耐力壁とR階水平構面のせん断接合部の検定

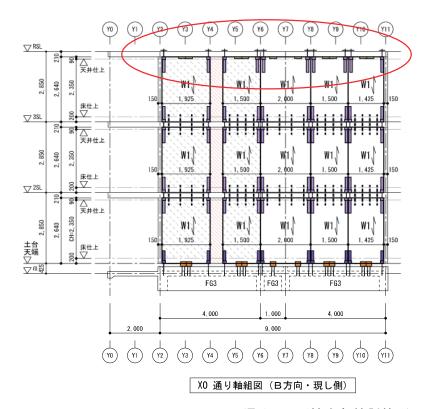


図7-4-8 X0通りせん断接合部検討箇所

最大せん断力は、XO通り Q_{x0}=43.68kN

配置壁パネル枚数 5枚 壁長さ2.0mm~1.425mm

せん断接合部用の金物は、1m以内ごとにクロスマーク金物(LST+SP)を1組配置することになるので 壁パネル1枚に2組の(LST+SP)が配置される。 (1組の(LST+SP) 短期許容せん断耐力 54.0kN) 通りの短期許容せん断耐力 5枚×2組×54.0=540kN > Q_{x0}=43.68kN OK

耐力壁1枚に2組で5枚に配置されいる。

①-2 床パネル突合せ部分のせん断接合部の検定(スプライン接合部)

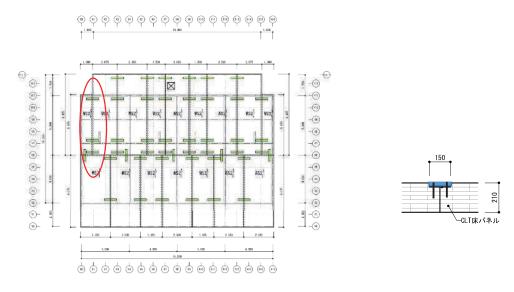


図7-4-9 突合せ部分検討箇所

最大せん断力は、水平構面のせん断力図より、

R階 X1~X15通り間 Q_{X1}= 6.11 kN/m

接合ビスSTS6.5F-85 (Pa=2.2kN/対) (左右のパネルに各1本を接合した1対の場合の耐力)

m当り接合耐力 P=2.2×1000/200= 11.00 kN/m > 6.11kN/m OK

①-3 床パネル突合せ部の引張接合部の検定

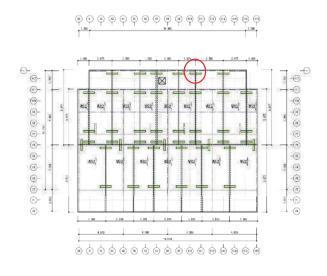


図7-4-10 引張接合部検討箇所

クロスマーク金物STF (許容引張耐力 52.0kN)

曲げモーメントは、10.5通りの近傍の10.75通りのMmax=111.76kNmを用いる。

水平構面の奥行D=10.75m

R階 X10.5突合せ部最大引張力T_{RF}=Mmax/D= 10.40 kN < 52.0kN OK

② 3階水平構面

②-1 3階耐力壁と3階水平構面のせん断接合部の検定

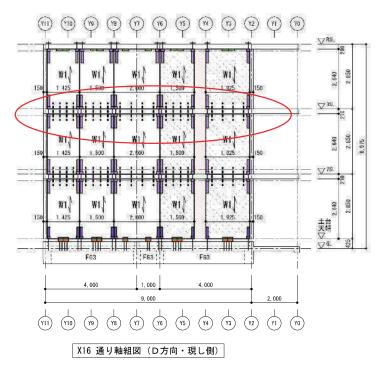


図7-4-11 X16通りせん断接合部検討箇所

最大せん断力は、X16通り Q_{X16}=23.38kN

配置壁パネル枚数 5枚 壁長さ2.0mm~1.425mm

せん断接合部用の金物は、1m以内ごとにクロスマーク金物(2-D32)を1組配置することになるので壁パネル1枚に2組の(2-D32)が配置される。(1組の(2-D32)短期許容せん断耐力 54.0kN)壁パネル1枚に配置されるクロスマーク金物 D32 (許容せん断耐力2-D32 54.0kN)接合部耐力 5枚×2組×54.0=540kN > $Q_{X16}=23.38$ kN OK

耐力壁1枚に2組で5枚に配置されいる。

②-2 床パネル突合せ部分のせん断接合部の検定

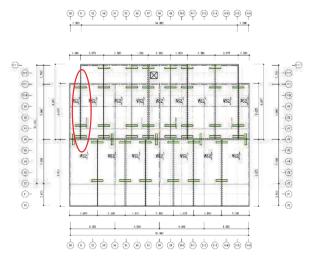


図7-4-12 突合せ部分検討箇所

最大せん断力は、水平構面のせん断力図より、

3階 X1~X15通り間 Q_{X1}= 5.88 kN/m

接合ビスSTS6.5F-85 (Pa=2.2kN/対) (左右のパネルに各1本を接合した1対の場合の耐力)

m当り接合耐力 P=2.2×1000/200=

11.00 kN/m

> 5.88kN/m OK

②-3 床パネル突合せ部の引張接合部の検定

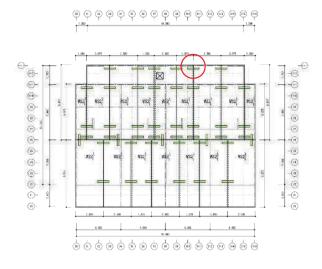


図7-4-12 引張接合部検討箇所

クロスマーク金物STF (許容引張耐力 52.0kN)

曲げモーメントは、10.5通りの近傍の10.75通りのMmax=107.76kNmを用いる。

水平構面の奥行D=10.75m

3階 X10.5突合せ部最大引張力T_{3F}=Mmax/D= 10.02 kN

10.02 kN < 52.0kN OK

③ 2階水平構面

③-1 1階耐力壁と2階水構面のせん断接合部の検定

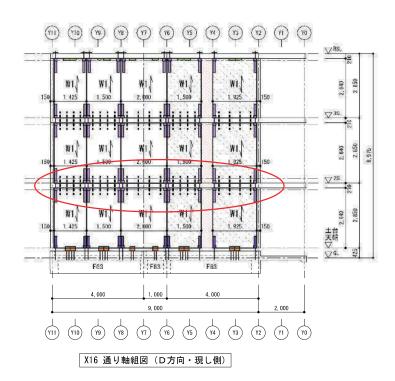


図7-4-13 X16通りせん断接合部検討箇所

最大せん断力は、X16通り Q_{X16}=29.81kN

配置壁パネル枚数 5枚 壁長さ2.0mm~1.425mm

せん断接合部用の金物は、1m以内ごとにクロスマーク金物(2-D32)を1組配置することになるので 壁パネル1枚に2組の(2-D32)が配置される。(1組の(2-D32)短期許容せん断耐力 54.0kN)

接合部耐力 5枚×2組×54.0=540kN > Q_{X16}=29.81kN OK

耐力壁1枚に2組で5枚に配置されいる。

③-2 床パネル突合せ部分のせん断接合部の検定

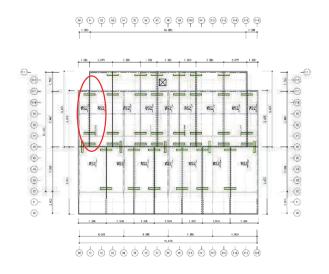


図7-4-14 突合せ部分検討箇所

最大せん断力は、水平構面のせん断力図より、

2階 X1~X15通り間 Q_{X1}= 4.15 kN/m

接合ビスSTS6.5F-85 (Pa=2.2kN/対) (左右のパネルに各1本を接合した1対の場合の耐力)

m当り接合耐力 P=2.2×1000/200= 11.00 kN/m >4.15kN/m OK

③-3 床パネル突合せ部の引張接合部の検定

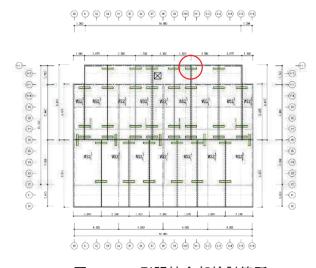


図7-4-15 引張接合部検討箇所

クロスマーク金物STF

曲げモーメントは、10.5通りの近傍の10.75通りのMmax=76.03kNmを用いる。

水平構面の奥行D=10.75m

2階 X10.5突合せ部最大引張力T_{3F}=Mmax/D= 7.07 kN < 52.0kN OK

④ 1階耐力壁と基礎のせん断接合部の検討

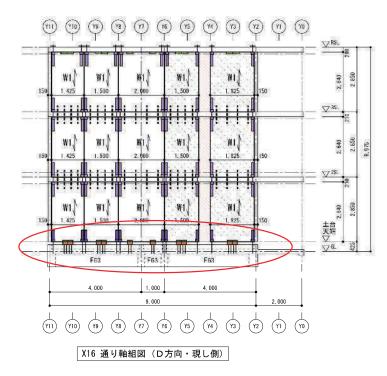


図7-4-16 X16通りせん断接合部検討箇所

最大せん断力は、X16通り Q_{X16}=115.62kN

配置壁パネル枚数 5枚 壁長さ2.0mm~1.425mm

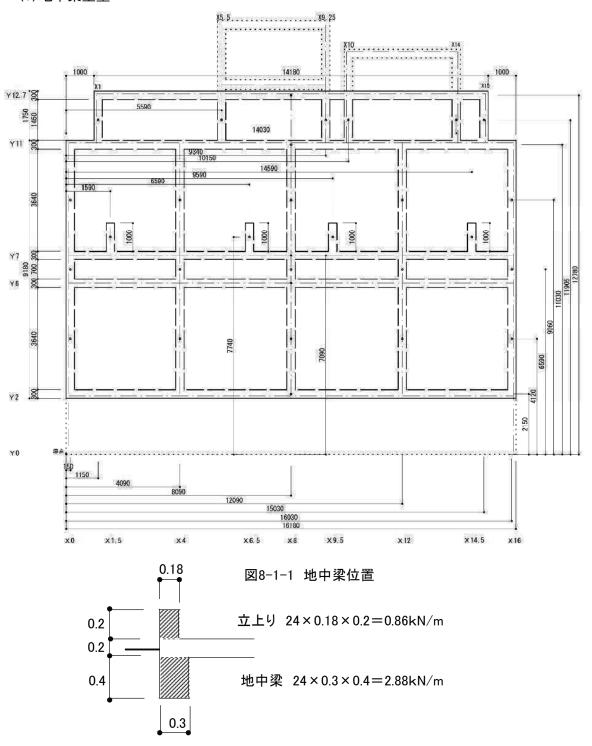
せん断接合部用の金物は、1m以内ごとにクロスマーク金物(SBM-150P)を1組配置することになるので 壁パネル1枚に2箇所の(SBM-150P)が配置される。

(1箇所の(SBM-150P)短期許容せん断耐力 47.0kN)

接合部耐力 5枚×2箇所×47.0=470kN > Q_{X16}=115.62kN OK

8. 基礎の設計

基礎は、平成12年建設省告示第1347号第一第3項の規定により設計を行う。


本建物は、べた基礎を採用している。地盤の長期地耐力は50kN/m²としている。

基礎の検討は、接地圧の検定、基礎梁の検定、アンカーボルトの検定を行う。

本計算では、独立タイプ外階段基礎、エントランス平屋部分基礎は付属構造部分として扱い 計算を省略している。構造図は仮定断面で作成している。

8-1基礎接地圧の算定

(1)地中梁重量

計算書 140

表8-1-1 地中梁重量と重心算定用モーメントの算定

通り	w [kN/m]	L [m]	W=w•L [kN]	X [m]	W•X [kNm]	Y [m]	W•Y [kNm]
Y12.7	2.88	14.18	40.84	8.09	330.38	12.78	521.91
Y11	2.88	16.18	46.60	8.09	376.98	11.03	513.98
Y7	2.88	16.18	46.60	8.09	376.98	7.09	330.38
Y6	2.88	16.18	46.60	8.09	376.98	6.09	283.78
Y2	2.88	16.18	46.60	8.09	376.98	2.15	100.19
X0	2.88	3.64	10.48	0.15	1.57	4.12	43.19
	2.88	0.7	2.02	0.15	0.30	6.59	13.29
	2.88	3.64	10.48	0.15	1.57	9.06	94.98
X4	2.88	3.64	10.48	4.09	42.88	4.12	43.19
	2.88	0.7	2.02	4.09	8.25	6.59	13.29
	2.88	3.64	10.48	4.09	42.88	9.06	94.98
X8	2.88	3.64	10.48	8.09	84.81	4.12	43.19
	2.88	0.7	2.02	8.09	16.31	6.59	13.29
	2.88	3.64	10.48	8.09	84.81	9.06	94.98
X12	2.88	3.64	10.48	12.09	126.74	4.12	43.19
	2.88	0.7	2.02	12.09	24.37	6.59	13.29
	2.88	3.64	10.48	12.09	126.74	9.06	94.98
X16	2.88	3.64	10.48	16.03	168.05	4.12	43.19
	2.88	0.7	2.02	16.03	32.32	6.59	13.29
	2.88	3.64	10.48	16.03	168.05	9.06	94.98
X1.5	2.88	1.00	2.88	1.59	4.58	7.74	22.29
X6.5	2.88	1.00	2.88	6.59	18.98	7.74	22.29
X9.5	2.88	1.00	2.88	9.59	27.62	7.74	22.29
X14.5	2.88	1.00	2.88	14.59	42.02	7.74	22.29
X1	2.88	1.45	4.18	1.15	4.80	11.905	49.72
X5.5	2.88	1.45	4.18	5.59	23.34	11.905	49.72
X9.25	2.88	1.45	4.18	9.34	39.00	11.905	49.72
X10	2.88	1.45	4.18	10.15	42.39	11.905	49.72
X14	2.88	1.45	4.18	14.03	58.59	11.905	49.72
X15	2.88	1.45	4.18	15.03	62.77	11.905	49.72
		Σ	378.72		3,092.03		2,894.98

(2)基礎立上り重量 下図の位置に立上りが配置されるとして算定を行う。

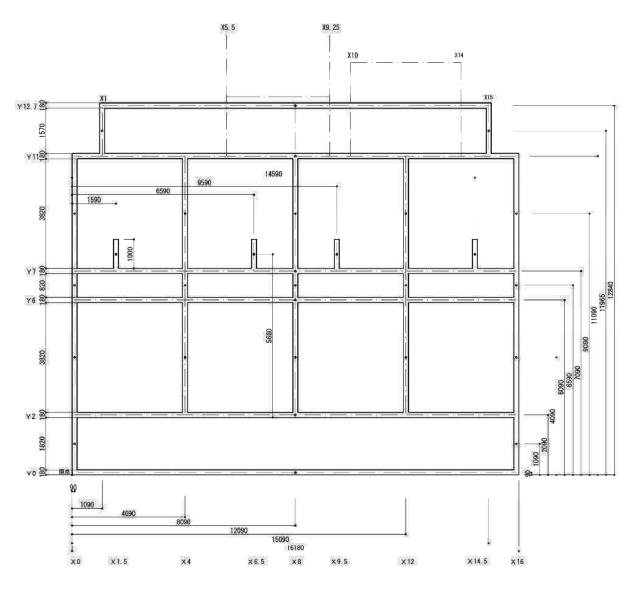


図8-1-2 基礎立上り位置

表8-1-2 基礎立上り重量と重心算定用モーメントの算定

通り	立上り	w [kN/m]	L [m]	W=w•L [kN]	X [m]	W•X [kNm]	Y [m]	W•Y [kNm]
Y12.7	0.2 × 0.18	0.86	14.18	12.25	8.09	99.11	12.84	157.31
Y11	0.2 × 0.18	0.86	16.18	13.98	8.09	113.09	11.09	155.03
Y7	0.2 × 0.18	0.86	16.18	13.98	8.09	113.09	7.09	99.11
Y6	0.2×0.18	0.86	16.18	13.98	8.09	113.09	6.09	85.14
Y2	0.2 × 0.18	0.86	16.18	13.98	8.09	113.09	2.09	29.22
Y0	0.2 × 0.18	0.86	16.18	13.98	8.09	113.09	0.09	1.26
X0	0.2 × 0.18	0.86	1.82	1.57	0.09	0.14	1.09	1.71
	0.2 × 0.18	0.86	3.82	3.30	0.09	0.30	4.09	13.50
	0.2 × 0.18	0.86	0.82	0.71	0.09	0.06	6.59	4.67
	0.2 × 0.18	0.86	3.82	3.30	0.09	0.30	9.09	30.00
X1	0.2 × 0.18	0.86	1.57	1.36	1.09	1.48	11.965	16.23
X1.5	0.2 × 0.18	0.86	1.00	0.86	1.59	1.37	5.68	4.91
X4	0.2 × 0.18	0.86	3.82	3.30	4.09	13.50	4.09	13.50
	0.2 × 0.18	0.86	0.82	0.71	4.09	2.90	6.59	4.67
	0.2 × 0.18	0.86	3.82	3.30	4.09	13.50	9.09	30.00
X6.5	0.2 × 0.18	0.86	1.00	0.86	6.59	5.69	5.68	4.91
X8	0.2 × 0.18	0.86	3.82	3.30	8.09	26.70	4.09	13.50
	0.2 × 0.18	0.86	0.82	0.71	8.09	5.73	6.59	4.67
	0.2 × 0.18	0.86	3.82	3.30	8.09	26.70	9.09	30.00
X9.5	0.2 × 0.18	0.86	1.00	0.86	9.59	8.29	5.68	4.91
X12	0.2 × 0.18	0.86	3.82	3.30	12.09	39.90	4.09	13.50
	0.2 × 0.18	0.86	0.82	0.71	12.09	8.57	6.59	4.67
	0.2 × 0.18	0.86	3.82	3.30	12.09	39.90	9.09	30.00
X14.5	0.2 × 0.18	0.86	1.00	0.86	14.59	12.61	5.68	4.91
X15	0.2 × 0.18	0.86	1.57	1.36	15.09	20.47	11.965	16.23
X16	0.2 × 0.18	0.86	1.82	1.57	16.09	25.30	1.09	1.71
	0.2 × 0.18	0.86	3.82	3.30	16.09	53.10	4.09	13.50
	0.2 × 0.18	0.86	0.82	0.71	16.09	11.40	6.59	4.67
	0.2 × 0.18	0.86	3.82	3.30	16.09	53.10	9.09	30.00
	Σ	<u> </u>		128.01		1,035.60		823.43

(3)底版重量

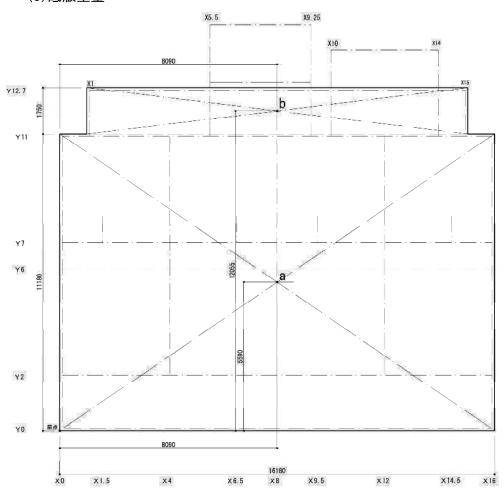


図8-1-3 底版位置

表8-1-3 底版重量と重心算定用モーメントの算定

部位	底版厚m	w [kN/m²]	D [m]	B [m]	W [kN]	X [m]	W•X [kNm]	Y [m]	W•Y [kNm]
а	0.2	4.80	11.18	16.18	868.28	8.09	7,024.41	5.59	4,853.70
b	0.2	4.80	1.75	14.18	119.11	8.09	963.62	12.06	1,435.90
	-	Σ			987.40		7,988.03		6,289.60

(4)1階床重量 (DL+LL)

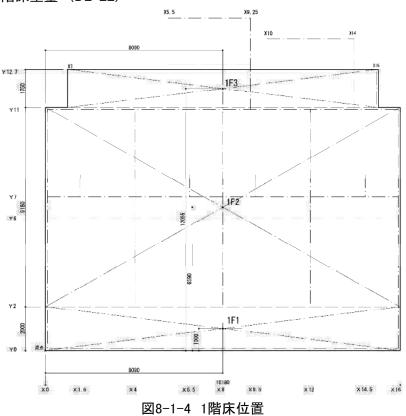


表8-1-4 1階床重量と重心算定用モーメントの算定

部位	DL [kN/m²]	LL [kN/m²]	w [kN/m²]	D [m]	B [m]	W [kN]	X [m]	W•X [kNm]	Y [m]	W·Y [kNm]
1F1	0.6	1.30	1.90	2.00	16.18	61.48	8.09	497.41	1.00	61.48
1F2	0.36	1.30	1.66	9.18	16.18	246.56	8.09	1,994.70	6.59	1,624.86
1F3	0.6	1.30	1.90	1.75	14.18	47.15	8.09	381.43	12.06	568.38
			Σ			355.20		2,873.54		2,254.71

DLは、底版を除いている。 通路、バルコニーは、仕上荷重を600N/m²見込む。

(5)基礎図芯位置

表8-1-5 基礎図心位置の算定

部位	D [m]	B [m]	面積A [m²]	X [m]	A·X [kNm]	Y [m]	A•Y [kNm]
а	11.18	16.18	180.89	8.09	1,463	5.59	1,011
b	1.75	14.18	24.82	8.09	201	12.06	299
	Σ		205.71		1,664.17		1,310.33

基礎図芯位置 X₀=(A•X)/A=

8.09 m

 $Y_0 = (A \cdot Y)/A =$

6.37 m

(6)基礎重心位置

表8-1-6 基礎重心位置の算定

位置	W [kN]	W·X [kNm]	W·Y [kNm]
建物重量	2,627.77	21,057.79	12,521.90
地中梁	378.72	3,092.03	2,894.98
基礎立上り	128.01	1,035.60	823.43
1階床	355.20	2,873.54	2,254.71
底版	987.40	7,988.03	6,289.60
Σ	4,477.09	36,046.99	24,784.62

「5-1 重心の算定」 1階重心算定より

基礎重心位置 $X_g = (w \cdot X)/w = 8.05 \text{ m}$ $Y_g = (w \cdot Y)/w = 5.54 \text{ m}$

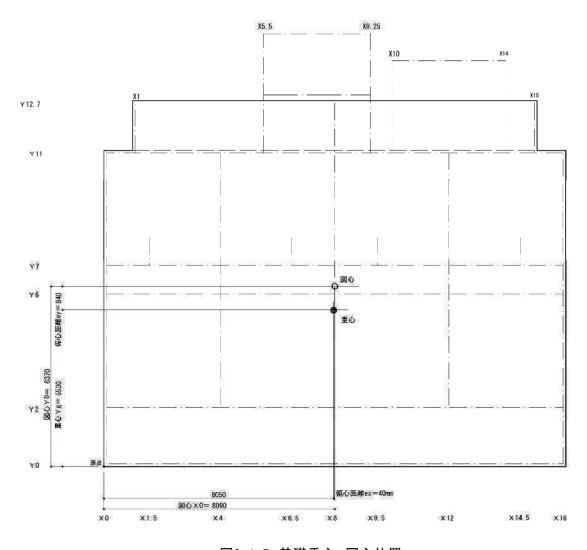


図8-1-5 基礎重心、図心位置

(7)底版断面係数Zの算定

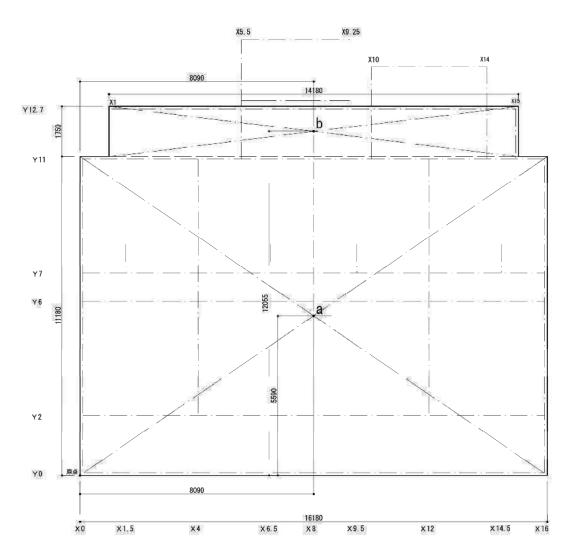


図8-1-6 底版位置

a部分断面2次モーメント

 $Ia = (16.18 \times 11.18^3)/12 + (11.18 \times 16.18) \times (6.37 - 5.59)^2 = 1,994.24 \text{ m}^4$

b部分断面2次モーメント

Ib= $(14.18 \times 1.75^3)/12+(14.18 \times 1.75) \times (12.055-6.37)^2$ = 808.33 m⁴

底版の断面係数Z=(Ia+Ib)/Y₀=(1,994.24+808.33)/6.37= 439.97 m³

(8)接地圧の算定

X方向の偏心距離は、ex=0.04mと小さなことから、接地圧への影響はほぼないので X方向については偏心による検討を行わない。

以下は、Y方向の偏心について考慮した接地圧の算定を示す。

重量 ΣN= 4,477.09 kN

偏心距離 ey m= 0.83 m

偏心モーメントMe=ΣW×ey= 3,733.96 kN/m

底版の断面係数Z= 439.97 m³

底版面積A=11.18×16.18+1.75×14.18= 205.707 → 205.7 m²

接地圧 $\sigma = \sum N/A \pm Me/Z = 4,492.63/205.7 \pm 3,794.85/439.97$

= 30.25 kN/m² \sim 13.28 kN/m²

 σ max = 30.25 kN/m² < 許容地耐力 50kN/m² OK

(9)地反力の算定

30.47-24×0.2= 25.45 kN/m² 左記値を底版応力算定、地中梁応力算定に用いる。

コンクリートの重量24kN/m3に底版の厚み0.2mを乗じて底版重量とします。

「建築基礎構造設計指針」社団法人日本建築学会 第5章5.6節に従い、接地圧から底版自重を差し引いた 地反力により地中梁、底版の応力を算定します。

(10)短期接地圧の検定

短期接地圧の検討は、「木造軸組工法住宅の許容応力度設計①(2017年版) 2.6.3接地圧と地盤の検定(3)転倒モーメントによる短期接地圧の検定」に従い、算定を行うものとする。

- 1) 塔状比と地盤の長期許容応力度₁q₂の確認
 - ① 塔状比の確認(塔状比<2.5)

建築物の最高高さH_{max}= 9.425 m

架構の短辺寸法L_x= 12.750 m (検討方向 短辺Y0-Y12.7間距離)

塔状比=H_{max}/L_x= 0.739 < 2.5

② 地盤の長期許容応力度_Lq_aの確認(_Lq_a>30kN/m²)

地盤の長期許容応力度_Lq_a= 50 kN/m² > 30 kN/m²

- ③ 塔状比と地盤の長期許容応力度の確認
 - ①及び②を満足していることから、短期接地圧の検定を省略できるが、 以下に計算により、短期接地圧の検定を確認する。

2) 短期接地圧の検定

ここでは、「2-4 地震力と風圧力の比較」より、地震力についてのみ検討を行うものとする。 算定した接地圧をもとに、べた基礎底版の検討を行うため、C₀=0.30の地震時層せん断力を用いる。

① 各階の地震時層せん断力Q_{ei}(C₀=0.30) (2-3 地震力の算定をもとに計算)

 Q_{e3} = 248.30 kN Q_{e2} = 486.78 kN Q_{e1} = 654.29 kN

② 建物高さH_i

 H_3 = 2.650 m (3階階高) H_2 = 2.850 m (2階階高) H_1 = 2.850 m (1階階高) H_0 = 0.625 m (地盤面から1階床までの高さ) D_f = 0.700 m (地盤面から基礎底版までの深さ)

③ 地震力算定用建物重量

Σ W_i= 2181 kN (1階上半分より上部の重量)(2-3 地震力の算定より)
 W_{0壁}= 145 kN (1階下半分の壁重量)(2-3 地震力の算定より)
 W_{0床}= 211 kN (1階床)(8-1 基礎接地圧の算定の面積を元に計算)
 W_B= 1494 kN (基礎の重量)(8-1 基礎接地圧の算定より)

④ 基礎底版面の面積A_B及び断面係数Z_B

A_B= 200.5 m² (基礎底版面範囲 X0-X16/Y0-Y12.7) L_x= 12.750 m (検討方向 短辺Y0-Y12.7間距離)

 $L_v = A_B/L_x$ (基礎底版面積が等しくなるように長方形に変換を行う)

= 15.725 m

 $Z_{B}=(L_{X}^{2}\cdot L_{y})/6$ (基礎底版面を長方形に置換し計算)

= 426.1 m³

⑤ 転倒モーメント ΣΜ及び建物総重量 Σ W

$$\Sigma M = Q_{e3} \cdot H_3 + Q_{e2} \cdot H_2 + Q_{e1} (H_1 + H_0 + D_f)$$

= 4777 kNm

 $\Sigma W = \sum W_i + W_{0} + W_{0} + W_{0}$

= 4032 kN

⑥ 基礎底版面の図心と重心との偏心距離L₀と偏心距離e(e < L_x/2)

 $e= (\sum M/\sum W)+L_0$

= 2.019 m < L_x/2= 6.375 m ··· OK

⑦ 核半径rと最大接地圧と平均接地圧の比を表す接地圧係数 α_e

$$r=Z_B/A_B$$

= 2.125 m ≧ e= 2.019 m

α e= 1+(6e/L_x) (e≦rの場合)

= 1.95

⑧ 短期接支圧_sσ_e

$$_{\text{S}}\sigma_{\text{e}}$$
= α_{e} × Σ W/A $_{\text{B}}$

 $= 39.2 \text{ kN/m}^2$

⑨ 短期接地圧の検定(検定比<1.0)

 $= 100 \text{ kN/m}^2$

検定比= sσe/sqa

= 0.392 < 1.000 ··· OK

8-2 地中梁の検定

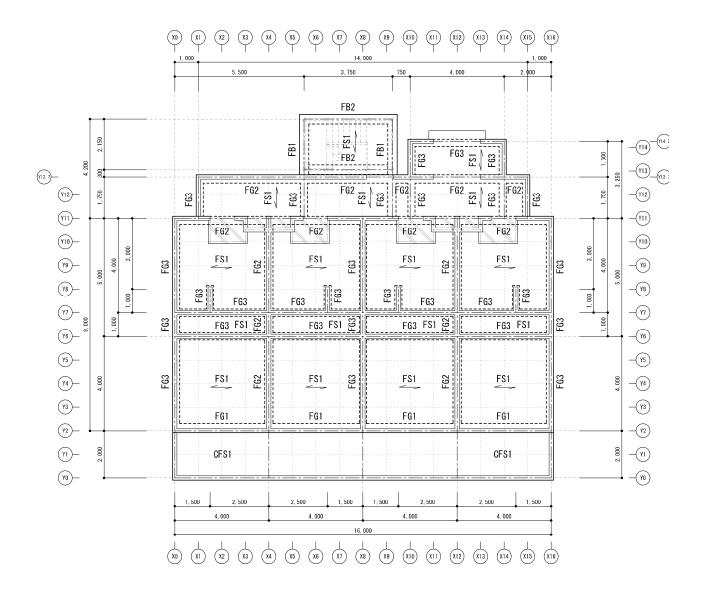


図8-2-1基礎図

(1)地中梁に作用する荷重の算定

設計施工マニュアル第皿部第7章7.2 7.2.3の規定から地中梁に作用する引張力、圧縮力を算定する。 直交する地中梁の位置をピン支点として連続梁としてモデル化し、引張金物のボルト位置に算定した 引張力を配置し、算定した圧縮力は、耐力壁パネル端部に配置する。

地中梁に作用する引張力、圧縮力は、設計施工マニュアル第Ⅲ部 第7章 7.2.3に基づき算定します。

設計施工マニュアルでは、引張力Ti、圧縮力CiをM/Diで求めていることから荷重の作用位置をそれぞれ壁端部としていますが、本計算例では、設計内容を反映して作用位置は、引張力はボルト位置、圧縮力は壁端部としています。安全側の算定結果になります。

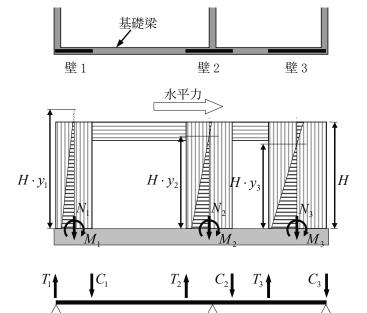


図8-2-2 水平力作用時に1階壁パネルから

基礎梁に作用する鉛直力

作用荷重の算定方法は、設計施エマ ニュアル第Ⅲ部第7章7.2 7.2.3による。

表8-2-1 反曲点高さ比y (各階に垂れ壁がある場合)

開口幅	層	数
L _{0a} (cm)	2以下	3
100以下	0.8	0.9
200以下	1.0	1.2
300以下	1.1	1.3
400以下	1.2	1.3

 H_s H_s 1 2 3

Q:壁の負担せん断力

H:耐力壁の高さ

yi:壁の反曲点高さ比

Di:壁の幅

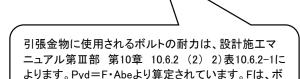
Mi=壁脚部の曲げ応力

 $=1.5Q_{1i} \times H \times yi$

Ti=脚部に加わる短期引張力

=Mi/Di-Ni/2

Ci=脚部に加わる短期圧縮力


=Mi/Di+Ni/2

脚部に加わる短期引張力Tが短期許容 引張耐力Taより大きい場合は次式による。

Ti=Ta

Ci=2Mi/Di-Ta=Ca

短期許容引張耐力Taは、引張金物のボルトによる。 ABR490 M16 Ta=325×157/1,000=51.0kNを用いる。

ルトのF値、Abeは、ボルトのねじ部有効断面積です。

①床パネルのみで接続する耐力壁

反曲点高さ比 y=Hs/H Hs= 8.34 m

H = 2.64 m

②連続耐力壁(Y方向に該当)

反曲点高さ比 y=1.0

③各床レベルで垂れ壁に接する耐力壁 反曲点高さ比 y=表8-2-1による。

表8-2-2、表8-2-3の負担水平力Qiは、 表3-3-1のQe1/Σ(Qa1·Li))を乗じて算定している。 X方向は、 0.930 をQax·Liに乗じている。 Y方向は、 0.923 をQay·Liに乗じている。

図8-2-3 反曲点高さ比y設定方法による耐力壁配置パターンの分類 計算書 152

応力は、任意形状応力解析プログラムにて算定する。

応力算定用荷重は、標準層せん断力係数 C_0 =0.2の地震力を1.5倍し C_0 =0.3とし、地震力 Q_j = Q_i ×1.5に

より算定する。

平成28年国土交通省告示第611号第十第 1項第一号口に規定されている標準層せん 断力係数

表5-1-7、表5-1-8の1階重心算定表の負担軸 カNを表に記載しています。

(1)-① 設計施エマニュアルの式による算定

表8-2-2 Y方向 CLT耐力壁の脚部曲げ応力Mi及びパネル端部短期軸力Ti、Ciの算定

		壁長さ	負担 水平力	1.5倍	耐力壁 の高さ	反曲点 高さ比	壁負担 軸力	等分布 荷重	曲げ応 力Mi	引張Ti	圧縮Ci	短期 引張力 Ti	短期 圧縮力 Ci
通り	壁番号	Di	Qi	Qj= Qix1.5	н	yi	Ni	Ni/Di	Mi=Qj xh•yi	Ti=Mi/Di -Ni/2	Ci=Mi/D i+Ni/2	Та	Ci=2x Mi/Di -Ta
		[m]	[kN]	[kN]	[m]		[kN]	[kN/m]	[kN·m]	[kN]	[kN]	[kN]	[kN]
	wx0-1	1.925	17.77	26.66	2.64	3.16	32.00	16.62	222.31	99.49	131.48	51.00	179.97
	wx0-2	0.500	0.00	0.00	2.64	1.0	8.02	16.04	0.00	0.00	0.00	-	-
X0	wx0-3	1.500	13.85	20.77	2.64	1.0	26.66	17.78	54.84	23.23	49.89	_	-
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	wx0-4	2.000	18.46	27.69	2.64	1.0	25.25	12.62	73.11	23.93	49.18	-	_
	wx0-5	1.500	13.85	20.77	2.64	1.0	21.46	14.30	54.84	25.83	47.29	-	-
	wx0-6	1.425	13.15	19.73	2.64	1.0	19.89	13.96	52.09	26.61	46.50	-	-
X1.5	wx1.5-1	0.925	8.54	12.81	2.64	3.16	20.22	21.86	106.83	105.38	125.60	51.00	179.97
	wx4-1	1.925	17.77	26.66	2.64	1.0	32.96	17.12	70.37	20.08	53.04	_	_
	wx4-2	2.000	18.46	27.69	2.64	1.0	32.96	16.48	73.11	20.08	53.04	-	-
X4	wx4-3	2.000	18.46	27.69	2.64	1.0	29.87	14.93	73.11	21.62	51.49	-	-
	wx4-4	1.500	13.85	20.77	2.64	1.0	32.18	21.45	54.84	20.47	52.65	-	-
	wx4-5	1.575	14.54	21.81	2.64	1.00	110.43	73.62	57.58	-18.66	91.77	-	-
X6.5	wx6.5-1	0.925	8.54	12.81	2.64	3.16	19.12	20.67	106.83	105.93	125.05	51.00	179.97
	wx8-1	1.925	17.77	26.66	2.64	1.0	36.43	18.92	70.37	18.34	54.77	-	-
	wx8-2	2.000	18.46	27.69	2.64	1.0	70.88	35.44	73.11	1.12	72.00	-	-
X8	wx8-3	2.000	18.46	27.69	2.64	1.0	29.11	14.55	73.11	22.00	51.11	-	-
	wx8-4	1.500	13.85	20.77	2.64	1.0	28.49	18.99	54.84	22.31	50.80	-	-
	wx8-5	1.425	13.15	19.73	2.64	1.0	30.82	21.63	52.09	21.15	51.97	-	-
X9.5	wx9.5-1	0.925	8.54	12.81	2.64	3.16	19.12	20.67	106.83	105.93	125.05	51.00	179.97
	wx12-1	1.925	17.77	26.66	2.64	1.0	32.96	17.12	70.37	20.08	53.04	-	-
	wx12-2	2.000	18.46	27.69	2.64	1.0	32.96	16.48	73.11	20.08	53.04	-	-
X12	wx12-3	2.000	18.46	27.69	2.64	1.0	29.87	14.93	73.11	21.62	51.49	-	-
	wx12-4	1.500	13.85	20.77	2.64	1.0	32.18	21.45	54.84	20.47	52.65	-	-
	wx12-5	1.575	14.54	21.81	2.64	1.0	110.43	73.62	57.58	-18.66	91.77	-	-
X14.5	wx14.5-1	0.925	8.54	12.81	2.64	3.16	20.22	21.86	106.83	105.38	125.60	51.00	179.97
	wx16-1	1.925	17.77	26.66	2.64	3.16	32.00	16.62	222.31	99.49	131.48	51.00	179.97
	wx16-2	0.500	0.00	0.00	2.64	1.0	8.02	16.04	0.00	0.00	0.00	-	_
V16	wx16-3	1.500	13.85	20.77	2.64	1.0	26.66	17.78	54.84	23.23	49.89	-	_
X16	wx16-4	2.000	18.46	27.69	2.64	1.0	25.25	12.62	73.11	23.93	49.18	-	_
	wx16-5	1.500	13.85	20.77	2.64	1.0	21.46	14.30	54.84	25.83	47.29	-	_
	wx16-6	1.425	13.15	19.73	2.64	1.0	19.89	13.96	52.09	26.61	46.50	-	_

表8-2-3 X方向 CLT耐力壁の脚部曲げ応力Mi及びパネル端部短期軸力Ti、Ciの算定

整長さ 大字 1.5倍 耐力壁 内部 下高さ比 野田 野田 野田 下面 日本 日本 日本 日本 日本 日本 日本 日	D 圧縮力 Ci Ci=2x Mi/Di -Ta [kN]
選挙 整番号 Di	Ci=2x Mi/Di -Ta [kN]
No. No.	-Ta [kN] -
wy2-1 1.000 13.49 20.23 2.64 1.3 61.09 66.04 69.44 38.89 99.98 - wy2-2 1.500 26.51 39.77 2.64 1.3 148.60 99.07 136.48 16.68 165.29 - wy2-3 1.500 26.51 39.77 2.64 1.3 151.59 101.06 136.48 15.19 166.78 - wy2-4 1.500 26.51 39.77 2.64 1.3 148.60 99.07 136.48 16.68 165.29 - wy2-5 1.000 13.49 20.23 2.64 1.3 61.09 66.04 69.44 38.89 99.98 - wy6-1 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 6.72 66.95 - wy6-2 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - <td< td=""><td> - -</td></td<>	- -
Y2 wy2-2 1.500 26.51 39.77 2.64 1.3 148.60 99.07 136.48 16.68 165.29 - wy2-3 1.500 26.51 39.77 2.64 1.3 151.59 101.06 136.48 15.19 166.78 - wy2-4 1.500 26.51 39.77 2.64 1.3 148.60 99.07 136.48 16.68 165.29 - wy2-5 1.000 13.49 20.23 2.64 1.3 61.09 66.04 69.44 38.89 99.98 - y6-1 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 6.72 66.95 - wy6-2 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-4 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 6.72 66.95 -	_
Y2 wy2-3 1.500 26.51 39.77 2.64 1.3 151.59 101.06 136.48 15.19 166.78 - wy2-4 1.500 26.51 39.77 2.64 1.3 148.60 99.07 136.48 16.68 165.29 - wy2-5 1.000 13.49 20.23 2.64 1.3 61.09 66.04 69.44 38.89 99.98 - w6-1 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 66.95 - wy6-2 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-3 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-4 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 67.2 66.95 - wy7-1 </td <td>+</td>	+
wy2-4 1.500 26.51 39.77 2.64 1.3 148.60 99.07 136.48 16.68 165.29 - wy2-5 1.000 13.49 20.23 2.64 1.3 61.09 66.04 69.44 38.89 99.98 - wy6-1 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 6.72 66.95 - wy6-2 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-3 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-4 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 5.69 67.98 - wy7-1 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 - wy7-3 <td>_</td>	_
wy2-5 1.000 13.49 20.23 2.64 1.3 61.09 66.04 69.44 38.89 99.98 - y6-1 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 6.72 66.95 - wy6-2 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-3 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-4 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 5.69 67.98 - wy7-1 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 - wy7-2 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-4	
Y6 wy6-1 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 6.72 66.95 - wy6-2 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-3 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-4 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 5.69 67.98 - wy7-1 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 - wy7-2 1.000 13.49 20.23 2.64 1.2 34.90 34.90 64.09 46.65 81.54 - wy7-3 1.000 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 -	_
Y6 wy6-2 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-3 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-4 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 6.72 66.95 - wy7-1 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 - wy7-2 1.000 13.49 20.23 2.64 1.2 34.90 34.90 64.09 46.65 81.54 - wy7-3 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-4 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 -	_
Y6 wy6-3 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-4 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 6.72 66.95 - wy7-1 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 - wy7-2 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 46.65 81.54 - wy7-3 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-4 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-5 1.500 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-6	_
wy6-3 1.425 13.26 19.88 2.64 1.0 62.29 43.71 52.49 5.69 67.98 - wy6-4 1.425 13.26 19.88 2.64 1.0 60.23 42.27 52.49 6.72 66.95 - wy7-1 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 - wy7-2 1.000 13.49 20.23 2.64 1.2 34.90 34.90 64.09 46.65 81.54 - wy7-3 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-4 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-6 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-7 <td>_</td>	_
Y7 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 - wy7-2 1.000 13.49 20.23 2.64 1.2 34.90 34.90 64.09 46.65 81.54 - wy7-3 1.000 13.49 20.23 2.64 1.2 31.93 64.09 48.13 80.06 - wy7-4 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-5 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-6 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-7 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 46.65 81.54 - wy7-8 1.500	_
Y7 wy7-2 1.000 13.49 20.23 2.64 1.2 34.90 34.90 64.09 46.65 81.54 - wy7-3 1.000 13.49 20.23 2.64 1.2 31.93 64.09 48.13 80.06 - wy7-4 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-5 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-6 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-7 1.000 13.49 20.23 2.64 1.2 31.93 34.90 64.09 46.65 81.54 - wy7-8 1.500 20.23 30.35 2.64 1.2 34.90 34.90 64.09 46.65 81.54 -	_
Y7 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-4 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-5 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-6 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-7 1.000 13.49 20.23 2.64 1.2 34.90 34.90 64.09 46.65 81.54 - wy7-8 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 -	_
Y7 wy7-4 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-5 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-6 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-7 1.000 13.49 20.23 2.64 1.2 34.90 34.90 64.09 46.65 81.54 - wy7-8 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 -	_
Y7 wy7-5 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-6 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-7 1.000 13.49 20.23 2.64 1.2 34.90 34.90 64.09 46.65 81.54 - wy7-8 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 -	_
wy7-5 1.500 20.23 30.35 2.64 1.2 41.40 27.60 96.14 43.39 84.79 - wy7-6 1.000 13.49 20.23 2.64 1.2 31.93 31.93 64.09 48.13 80.06 - wy7-7 1.000 13.49 20.23 2.64 1.2 34.90 34.90 64.09 46.65 81.54 - wy7-8 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 -	_
wy7-7 1.000 13.49 20.23 2.64 1.2 34.90 34.90 64.09 46.65 81.54 - wy7-8 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 -	_
wy7-8 1.500 20.23 30.35 2.64 1.2 41.23 27.49 96.14 43.48 84.71 -	_
	_
wy11-1 1.325 12.33 18.49 2.64 3.16 72.64 58.11 154.19 80.05 152.69 51.0	_
	181.73
	_
Y11 wy11-3 1.250 11.63 17.44 2.64 1.0 77.11 61.69 46.04 -1.72 75.39 -	_
wy11-4 1.325 12.33 18.49 2.64 3.16 72.64 58.11 154.19 80.05 152.69 51.0	181.73
wy12.7-1 1.575 21.24 31.86 2.64 1.3 41.88 27.92 109.36 48.49 90.38 -	_
wy12.7-2 1.500 20.23 30.35 2.64 1.3 41.59 27.73 104.15 48.64 90.23 -	_
Y12.7 wy12.7-3 1.000 13.49 20.23 2.64 1.2 25.19 25.19 64.09 51.50 76.69 51.0	77.19
wy12.7-4 1.000 17.67 26.51 2.64 1.3 42.57 42.57 90.98 69.70 112.27 51.0	130.97
wy12.7-5 1.575 21.24 31.86 2.64 1.3 44.35 29.57 109.36 47.26 91.61 -	

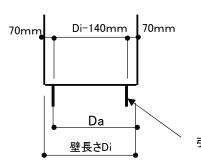
耐力壁パネルの引張力Tiは、壁ー基礎接合部耐力の短期許容引張耐力Ta=51.0kNより大きい場合に該当している場合は、設計施工マニュアルの算定方法に従い短期引張力Ti=Ta、短期圧縮力Ci=(2×Mi)/Di-Taによる。

表8-2-2、表8-2-3の算定は、設計施工マニュアル第皿部第7章7.2.3の算定式により Ti、Ciを算定しているが、地震時作用荷重は表8-2-4、表8-2-5のTi、Ciを用いる。

(1)-② 地中梁算定のための地震時引張力Tj、圧縮力Cjの算定

地中梁の応力算定に用いる入力データとして、長期軸力を考慮しない地震時引張力Tj、圧縮力Cjを算定す

Tj>Tjaの場合の長期軸力を負担していない場合のCjは下記による。


地震時引張力Tj=Tja=Ta+Ni/2=51.00kN+Ni/2

よって、地震時圧縮力Cjは下記による。

上記より Mi=Da/2(Cj+Tj) よって、Cj=2×Mi/Da-Tj

ここで、Tj=Ta+Ni/2より、Cj=2×Mi/Da-Tj=2×Mi/Da-(51.0+Ni/2)左式でCjを算定する。

Tj、Cj算定用の支店間距離は、下記による。

Tj、Cj算定の支点間距離Daは、 左図の引張ボルト位置を考慮して設定する。 Da=Di-70

引張ボルト位置

表8-2-4-① Y方向 CLT耐力壁のパネル端部地震時作用荷重Tj、Cjの算定

	- ' •	.,,,,,	1 11173						C) 07 3+ 7				
		壁長さ	支点間 距離	負担 水平力	1.5倍	耐力壁の高さ	反曲点 高さ比	壁負担 軸力	曲げ応 力Mi	引張Tj	圧縮Cj	地震時 引張力 Tja	地震時 圧縮力 Cj
通り	壁番号	Di	Da	Qi	Qj= Qix1.5	Н	у	N	Mi= Qj•h•y	Tj= Mi/Da	Cj= Mi∕Da	Tja	Cj=2x Mi∕Da −Tja
		[m]	[m]	[kN]	[kN]	[m]		[kN]	[kN•m]	[kN]	[kN]	[kN]	[kN]
	wx0-1	1.925	1.855	17.77	26.66	2.64	3.16	32.00	222.31	119.84	119.84	67.00	172.69
	wx0-2	0.500	0.500	0.00	0.00	2.64	1.00	8.02	0.00	0.00	0.00	_	-
X0	wx0-3	1.500	1.430	13.85	20.77	2.64	1.00	26.66	54.84	38.35	38.35	_	_
^0	wx0-4	2.000	1.930	18.46	27.69	2.64	1.00	25.25	73.11	37.88	37.88	_	_
	wx0-5	1.500	1.430	13.85	20.77	2.64	1.00	21.46	54.84	38.35	38.35	_	_
	wx0-6	1.425	1.355	13.15	19.73	2.64	1.00	19.89	52.09	38.45	38.45	_	_
X1.5	wx1.5-1	0.925	0.855	8.54	12.81	2.64	3.16	20.22	106.83	124.94	124.94	61.11	188.77
	wx4-1	1.925	1.855	17.77	26.66	2.64	1.00	32.96	70.37	37.94	37.94	_	_
	wx4-2	2.000	1.930	18.46	27.69	2.64	1.00	32.96	73.11	37.88	37.88	_	_
X4	wx4-3	2.000	1.930	18.46	27.69	2.64	1.00	29.87	73.11	37.88	37.88	_	_
	wx4-4	1.500	1.430	13.85	20.77	2.64	1.00	32.18	54.84	38.35	38.35	_	_
	wx4-5	1.575	1.505	14.54	21.81	2.64	1.00	110.43	57.58	38.26	38.26	_	_
X6.5	wx6.5-1	0.925	0.855	8.54	12.81	2.64	3.16	19.12	106.83	124.94	124.94	60.56	189.32
	wx8-1	1.925	1.855	17.77	26.66	2.64	1.00	36.43	70.37	37.94	37.94	_	_
	wx8-2	2.000	1.930	18.46	27.69	2.64	1.00	70.88	73.11	37.88	37.88	_	_
X8	wx8-3	2.000	1.930	18.46	27.69	2.64	1.00	29.11	73.11	37.88	37.88	_	_
	wx8-4	1.500	1.430	13.85	20.77	2.64	1.00	28.49	54.84	38.35	38.35	_	_
	wx8-5	1.425	1.355	13.15	19.73	2.64	1.00	30.82	52.09	38.45	38.45	_	_
X9.5	wx9.5-1	0.925	0.855	8.54	12.81	2.64	3.16	19.12	106.83	124.94	124.94	60.56	189.32

表8-2-4-② Y方向 CLT耐力壁のパネル端部地震時作用荷重Tj、Cjの算定

		壁長さ	支点間 距離	負担 水平力	1.5倍	耐力壁 の高さ	反曲点 高さ比	壁負担 軸力	曲げ応 力Mi	引張Tj	圧縮Cj	地震時 引張力 Tja	地震時 圧縮力 Cj
通り	壁番号	Di	Da	Qi	Qj= Qix1.5	Н	У	N	Mi= Qj•h•y	Tj= Mi∕Da	Cj= Mi∕Da	Tja	Cj=2x Mi∕Da −Tja
		[m]	[m]	[kN]	[kN]	[m]		[kN]	[kN·m]	[kN]	[kN]	[kN]	[kN]
	wx12-1	1.925	1.855	17.77	26.66	2.64	1.00	32.96	70.37	37.94	37.94	-	-
	wx12-2	2.000	1.930	18.46	27.69	2.64	1.00	32.96	73.11	37.88	37.88	_	_
X12	wx12-3	2.000	1.930	18.46	27.69	2.64	1.00	29.87	73.11	37.88	37.88	_	_
	wx12-4	1.500	1.430	13.85	20.77	2.64	1.00	32.18	54.84	38.35	38.35	-	_
	wx12-5	1.575	1.505	14.54	21.81	2.64	1.00	110.43	57.58	38.26	38.26	_	_
X14.5	wx14.5-1	0.925	0.855	8.54	12.81	2.64	3.16	20.22	106.83	124.94	124.94	61.11	188.77
	wx16-1	1.925	1.855	17.77	26.66	2.64	3.16	32.00	222.31	119.84	119.84	67.00	172.69
	wx16-2	0.500	0.500	0.00	0.00	2.64	1.00	8.02	0.00	0.00	0.00	_	_
X16	wx16-3	1.500	1.430	13.85	20.77	2.64	1.00	26.66	54.84	38.35	38.35	-	_
1,10	wx16-4	2.000	1.930	18.46	27.69	2.64	1.00	25.25	73.11	37.88	37.88	_	_
	wx16-5	1.500	1.430	13.85	20.77	2.64	1.00	21.46	54.84	38.35	38.35	_	_
	wx16-6	1.425	1.355	13.15	19.73	2.64	1.00	19.89	52.09	38.45	38.45	_	_

表8-2-5-① X方向 CLT耐力壁のパネル端部地震時作用荷重Tj、Cjの算定

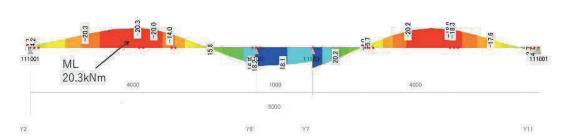

		壁長さ	支点間 距離	負担 水平力	1.5倍	耐力壁 の高さ	反曲点 高さ比	壁負担 軸力	曲げ応 力Mi	引張Tj	圧縮Cj	地震時 引張力 Tja	地震時 圧縮力 Cj
通り	壁番号	Di	Da	Qi	Qj= Qix1.5	Н	У	N	Mi= Qj•h•y	Tj= Mi∕Da	Cj= Mi∕Da	Tja	Cj=2x Mi/Da -Tja
		[m]	[m]	[kN]	[kN]	[m]		[kN]	[kN·m]	[kN]	[kN]	[kN]	[kN]
	wy2-1	1.000	0.930	13.49	20.23	2.64	1.3	61.09	69.44	74.66	74.66	-	-
	wy2-2	1.500	1.430	26.51	39.77	2.64	1.3	148.60	136.48	95.44	95.44	-	-
Y2	wy2-3	1.500	1.430	26.51	39.77	2.64	1.3	151.59	136.48	95.44	95.44	_	-
	wy2-4	1.500	1.430	26.51	39.77	2.64	1.3	148.60	136.48	95.44	95.44	_	
	wy2-5	1.000	0.930	13.49	20.23	2.64	1.3	61.09	69.44	74.66	74.66	_	_
	wy6-1	1.425	1.355	13.26	19.88	2.64	1.0	60.23	52.49	38.74	38.74	_	-
Y6	wy6-2	1.425	1.355	13.26	19.88	2.64	1.0	62.29	52.49	38.74	38.74	_	-
'	wy6-3	1.425	1.355	13.26	19.88	2.64	1.0	62.29	52.49	38.74	38.74	_	-
	wy6-4	1.425	1.355	13.26	19.88	2.64	1.0	60.23	52.49	38.74	38.74	_	-
	wy7-1	1.500	1.430	20.23	30.35	2.64	1.2	41.23	96.14	67.23	67.23	_	_
	wy7-2	1.000	0.930	13.49	20.23	2.64	1.2	34.90	64.09	68.92	68.92	68.45	69.39
	wy7-3	1.000	0.930	13.49	20.23	2.64	1.2	31.93	64.09	68.92	68.92	66.97	70.87
Y7	wy7-4	1.500	1.430	20.23	30.35	2.64	1.2	41.40	96.14	67.23	67.23	-	_
' '	wy7-5	1.500	1.430	20.23	30.35	2.64	1.2	41.40	96.14	67.23	67.23	_	_
	wy7-6	1.000	0.930	13.49	20.23	2.64	1.2	31.93	64.09	68.92	68.92	66.97	70.87
	wy7-7	1.000	0.930	13.49	20.23	2.64	1.2	34.90	64.09	68.92	68.92	68.45	69.39
	wy7-8	1.500	1.430	20.23	30.35	2.64	1.2	41.23	96.14	67.23	67.23	_	_

表8-2-5-② X方向 CLT耐力壁のパネル端部地震時作用荷重Tj、Cjの算定

通り	壁番号	壁長さ	支点間 距離	負担 水平力	1.5倍	耐力壁の高さ	反曲点 高さ比	壁負担 軸力	曲げ応 力Mi	引張订	圧縮Cj	地震時 引張力 Tja	
		Di	Da	Qi	Qj= Qix1.5	н	У	N	Mi= Qj•h•y	Tj= Mi∕Da	Cj= Mi∕Da	Tja	Cj=2x Mi∕Da −Tja
		[m]	[m]	[kN]	[kN]	[m]		[kN]	[kN·m]	[kN]	[kN]	[kN]	[kN]
Y11	wy11-1	1.325	1.255	12.33	18.49	2.64	3.16	72.64	154.19	122.86	122.86	87.32	158.40
	wy11-2	1.250	1.180	11.63	17.44	2.64	1.0	77.11	46.04	39.02	39.02	-	-
	wy11-3	1.250	1.180	11.63	17.44	2.64	1.0	77.11	46.04	39.02	39.02	-	-
	wy11-4	1.325	1.255	12.33	18.49	2.64	3.16	72.64	154.19	122.86	122.86	87.32	158.40
Y12.7	wy12.7-1	1.575	1.505	21.24	31.86	2.64	1.3	41.88	109.36	72.66	72.66	71.94	73.39
	wy12.7-2	1.500	1.430	20.23	30.35	2.64	1.3	41.59	104.15	72.83	72.83	71.80	73.87
	wy12.7-3	1.000	0.930	13.49	20.23	2.64	1.2	25.19	64.09	68.92	68.92	63.59	74.24
	wy12.7-4	1.000	0.930	17.67	26.51	2.64	1.3	42.57	90.98	97.83	97.83	72.28	123.38
	wy12.7-5	1.575	1.505	21.24	31.86	2.64	1.3	44.35	109.36	72.66	72.66	_	_

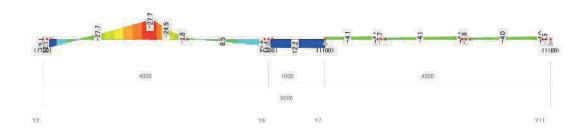
(2)-② 地中梁応力図

X0長期荷重時M図(kN·m)

【凡例】

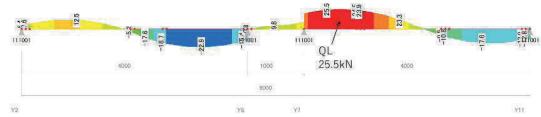
応力採用値 M*,Q* 0.00kNm,kN

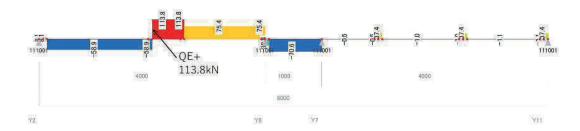
> 、 - 00.0 モデル 出力値


X0地震作用荷重時Y+M図(kN·m)

X0短期荷重時Y+M図(kN·m)

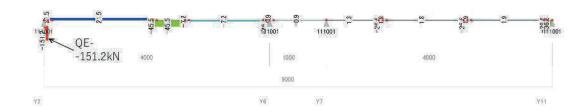
X0地震作用荷重時Y-M図(kN·m)


X0短期荷重時Y-M図(kN·m)


図8-2-10 X0通り応力図(M図)

【凡例】 応力採用値 M*,Q* 0.00kNm,kN モデル 出力値

X0長期荷重時Q図(kN)


X0地震作用荷重時Y+Q図(kN)

X0短期荷重時Y+Q図(kN)

X0地震作用荷重時Y-Q図(kN)

X0短期荷重時Y-Q図(kN)

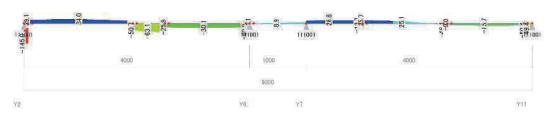
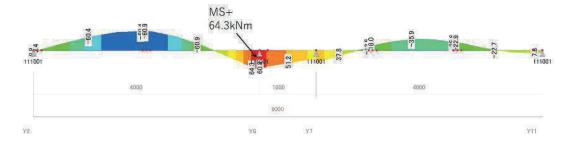
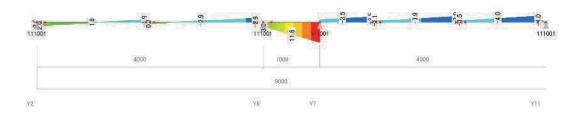


図8-2-11 X0通り応力図(Q図)

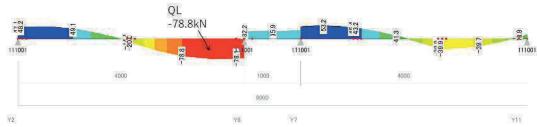
【凡例】 応力採用値 M*,Q* 0.00kNm,kN モデル 出力値

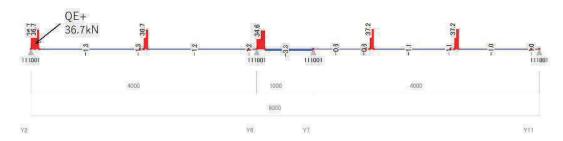

X4長期荷重時M図(kN·m)


X4地震作用荷重時Y+M図(kN·m)

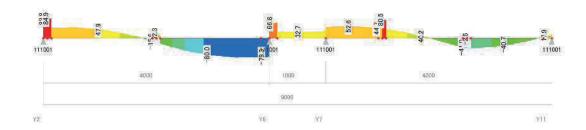
X4短期荷重時Y+M図(kN·m)

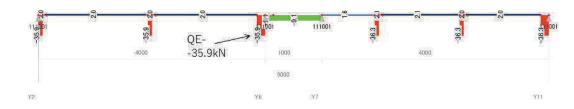
X4地震作用荷重時Y-M図(kN·m)


X4短期荷重時Y-M図(kN·m)


図8-2-12 X4通り応力図(M図)

【凡例】 応力採用値 M*,Q* 0.00kNm,kN モデル 出力値


X4長期荷重時Q図(kN)


X4地震作用荷重時Y+Q図(kN)

X4短期荷重時Y+Q図(kN)

X4地震作用荷重時Y-Q図(kN)

X4短期荷重時Y-Q図(kN)

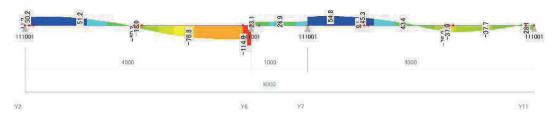
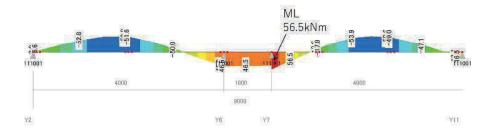
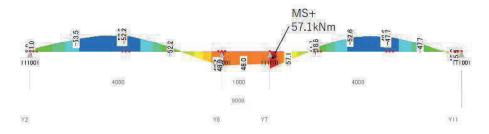



図8-2-13 X4通り応力図(Q図)


X8長期荷重時M図(kN⋅m)

X8地震作用荷重時Y+M図(kN·m)

X8短期荷重時Y+M図(kN·m)

X8地震作用荷重時Y+M図(kN·m)

X8短期荷重時Y-M図(kN·m)

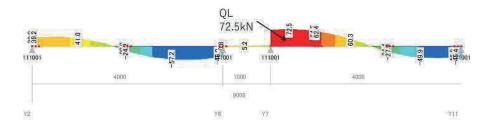
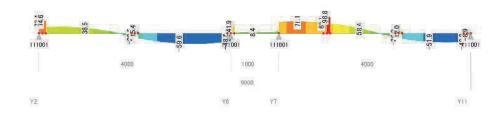



図8-2-14 X8通り応力図(M図)


X8長期荷重時Q図(kN)


X8地震作用荷重時Y+Q図(kN)

X8短期荷重時Y+Q図(kN)

X8地震作用荷重時Y-Q図(kN)

X8短期荷重時Y-Q図(kN)

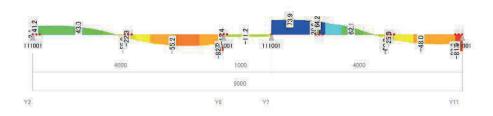
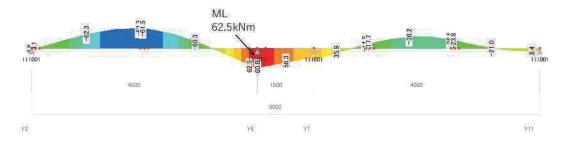
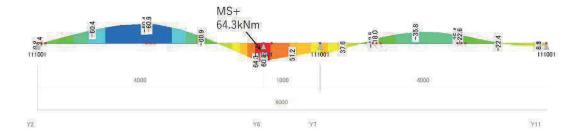
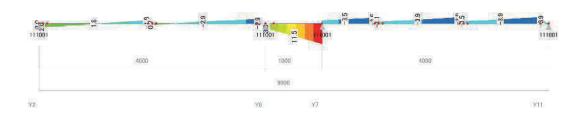



図8-2-15 X8通り応力図(Q図)

【凡例】 応力採用値 M*,Q* 0.00kNm,kN

出力値


X12長期荷重時M図(kN·m)


X12地震作用荷重時Y+M図(kN·m)

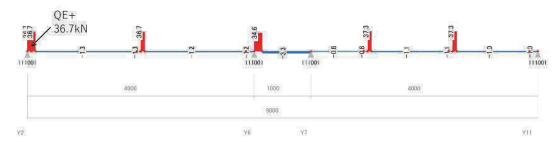
X12短期荷重時Y+M図(kN·m)

X12地震作用荷重時Y-M図(kN·m)

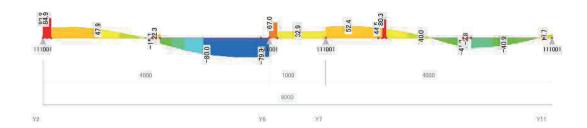
X12短期荷重時Y-M図(kN⋅m)

図8-2-16 X12通り応力図(M図)

【凡例】 応力採用値 M*,Q* 0.00kNm,kN V12長期荷重時Q図(kN)


- 00.0 モデル

出力値


Y11

X12地震作用荷重時Y+Q図(kN)

Y2

X12短期荷重時Y+Q図(kN)

X12地震作用荷重時Y-Q図(kN)

X12短期荷重時Y-Q図(kN)

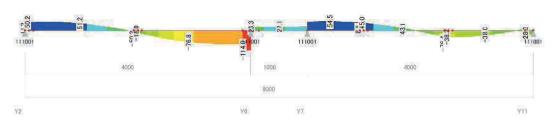
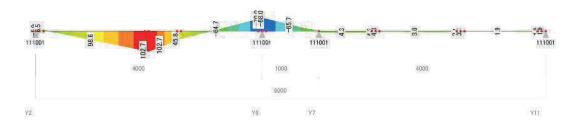


図8-2-17 X12通り応力図(Q図)

Y6

4000

) 00:0 モデル 出力値


Y11

X16地震作用荷重時Y+M図(kN·m)

4000

-20.3kNm

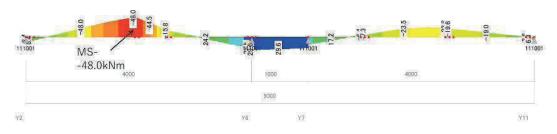
Y2

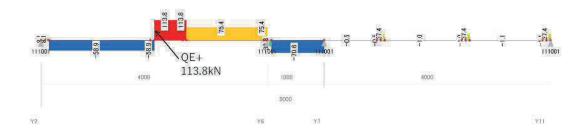
Y7

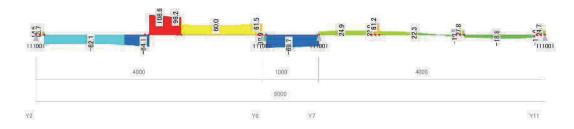
X16短期荷重時Y+M図(kN·m)

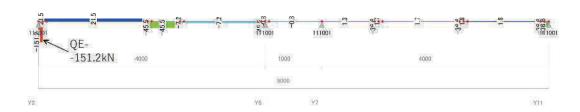
X16地震作用荷重時Y-M図(kN·m)

X16短期荷重時Y-M図(kN·m)




図8-2-19 X16通り応力図(M図)


X16長期荷重時Q図(kN)


X16地震作用荷重時Y+Q図(kN)

X16短期荷重時Y+Q図(kN)

X16地震作用荷重時Y-Q図(kN)

X16短期荷重時Y-Q図(kN)

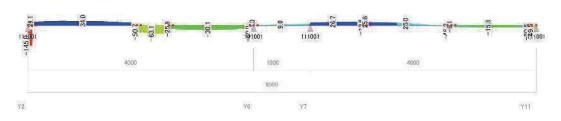
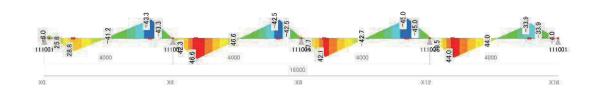
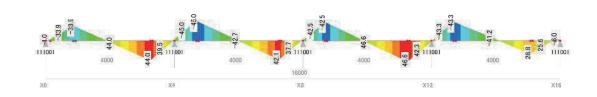



図8-2-19 X16通り応力図(Q図)

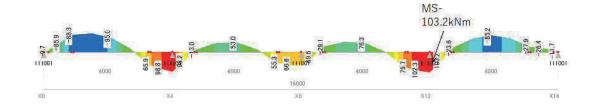
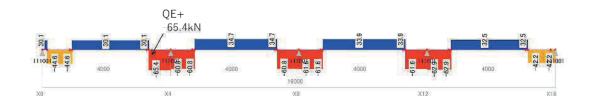
Y2長期荷重時M図(kN·m)

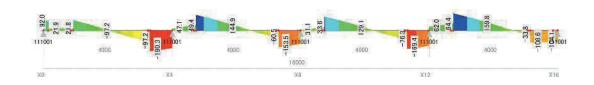

Y2地震作用荷重時X+M図(kN·m)

Y2短期荷重時X+M図(kN·m)

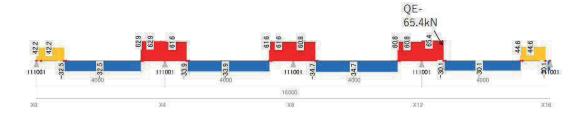
Y2地震作用荷重時X-M図(kN·m)

Y2短期荷重時X-M図(kN·m)


図8-2-20 Y2通り応力図(M図)

Y2長期荷重時Q図(kN) QL 出力値 127.3kN 出力値 X0 X4 X8 X12 X16


Y2地震作用荷重時X+Q図(kN)

Y2短期荷重時X+Q図(kN)

Y2地震作用荷重時X-Q図(kN)

Y2短期荷重時X-Q図(kN)

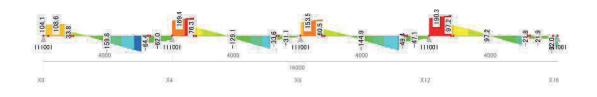
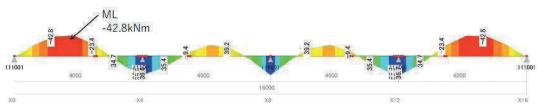
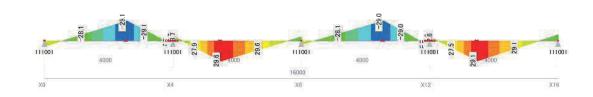
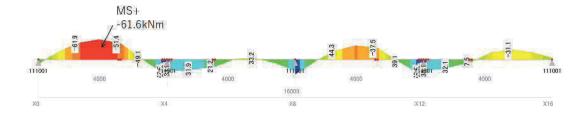




図8-2-21 Y2通り応力図(Q図)


Y6長期荷重時M図(kN·m)

Y6地震作用荷重時X+M図(kN⋅m)

Y6短期荷重時X+M図(kN·m)

Y6地震作用荷重時X-M図(kN·m)

Y6短期荷重時X-M図(kN·m)

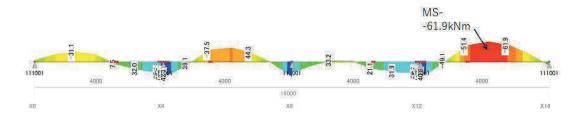
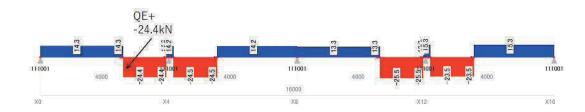
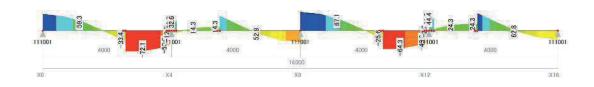




図8-2-22 Y6通り応力図(M図)

Y6地震作用荷重時X+Q図(kN)

Y6短期荷重時X+Q図(kN)

Y6地震作用荷重時X-Q図(kN)

Y6短期荷重時X-Q図(kN)

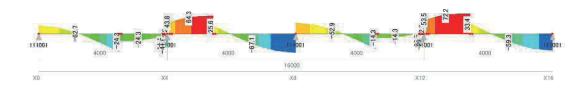
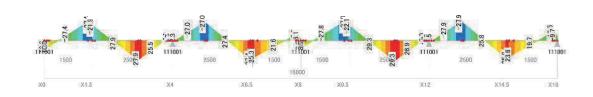


図8-2-23 Y6通り応力図(Q図)

Y7長期荷重時M図(kN·m)


Y7地震作用荷重時X+M図(kN·m)

Y7短期荷重時X+M図(kN·m)

Y7地震作用荷重時X-M図(kN·m)

Y7短期荷重時X-M図(kN·m)

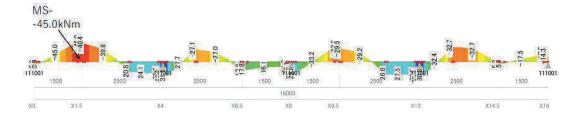
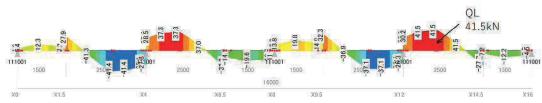
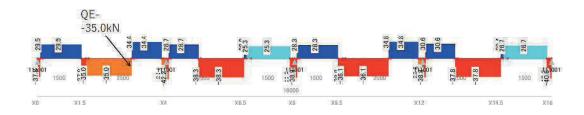



図8-2-24 Y7通り応力図(M図)

【凡例】 応力採用値 M*,Q* 0.00kNm,kN

Y7長期荷重時Q図(kN)


Y7地震作用荷重時X+Q図(kN)

Y7短期荷重時X+Q図(kN)

Y7地震作用荷重時X-Q図(kN)

Y7短期荷重時X-Q図(kN)

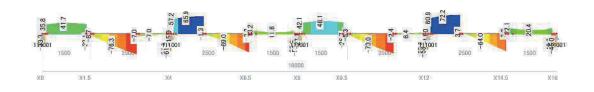
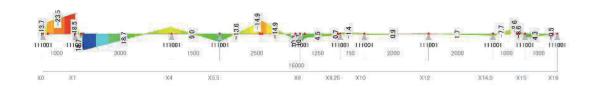
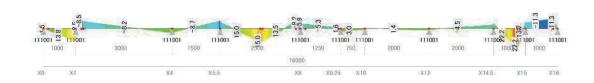



図8-2-25 Y7通り応力図(Q図)

Y11長期荷重時M図(kN·m)


Y11地震作用荷重時X+M図(kN・

Y11短期荷重時X+M図(kN·m)

Y11地震作用荷重時X-M図(kN·I

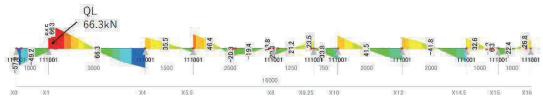

Y11短期荷重時X-M図(kN·m)


図8-2-24 Y11通り応力図(M図)

Y11長期荷重時Q図(kN)

Y11地震作用荷重時X+Q図(kN)

Y11短期荷重時X+Q図(kN)

Y11地震作用荷重時X-Q図(kN)

Y11短期荷重時X-Q図(kN)

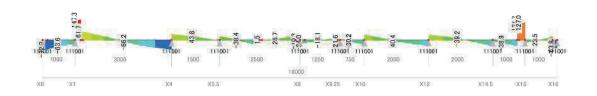
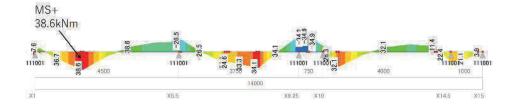
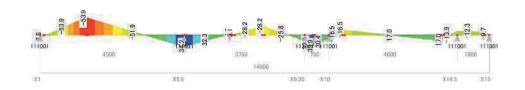


図8-2-27 Y11通り応力図(Q図)


Y12.7長期荷重時M図(kN·m)


Y12.7地震作用荷重時X+M図(kN⋅m)

Y12.7短期荷重時X+M図(kN·m)

Y12.7地震作用荷重時X-M図(kN·m)

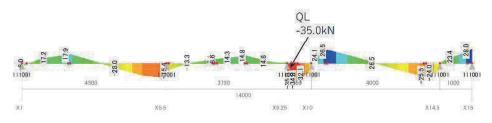

Y12.7短期荷重時X-M図(kN·m)

図8-2-26 Y12.7通り応力図(M図)

Y12.7長期荷重時Q図(kN)

Y12.7地震作用荷重時X+Q図(kN)

Y12.7短期荷重時X+Q図(kN)

Y12.7地震作用荷重時X-Q図(kN)

Y12.7短期荷重時X-Q図(kN)

図8-2-29 Y12.7通り応力図(Q図)

(2)-③ 各通りの応力 (出力結果より)

図8-2-10~29より各通りごとの検討応力を示す。

太文字表示の応力が、各通りの検討応力値を示す。

短期検討応力は、短期+(正加力)と短期-(負加力)の絶対値が大きい値を採用する。

表8-2-5 各通りの応力一覧

			長期	応力	地震作月	月時応力		短期時	寺応力
地中梁 符号	通り	検討 項目	M _L (kNm)	Q _L (kN)	M _E (kNm)	Q _E (kN)	M _S (kNm)	Q _S (kN)	検討用Q _S Q _L +1.5Q _E (kN)
		長期	20.3	25.5	-	_	_	_	-
FG3	Х0	短期+	-20.0	-5.2	102.7	113.8	82.7	108.6	165.5
rus	Λυ	短期-	-20.3	6.2	-27.7	-151.2	-48.0	-145.0	-220.6
		短期	-	ı	ı	-	82.7	145.0	220.6
		長期	62.5	78.8	-	-	ı	-	-
FG2	X4	短期+	62.5	48.2	1.8	36.7	64.3	84.9	103.3
FGZ	~ 4	短期-	62.5	-78.1	2.3	-35.9	64.8	-114.0	-132.0
		短期	-	1	-	-	64.8	114.0	132.0
	X8	長期	56.5	72.5	_	-	1	-	-
FG3		短期+	56.5	62.3	0.6	36.5	57.1	98.8	117.1
1 03		短期-	-53.9	-46.8	-3.1	-36.5	-57.0	-83.3	-101.6
		短期	_	ı	-	_	57.1	98.8	117.1
		長期	62.5	78.8	-	-	1	-	-
FG2	X12	短期+	62.5	48.2	1.8	36.7	64.3	84.9	103.3
FGZ	X12	短期-	62.5	-78.1	2.3	-35.9	64.8	-114.0	-132.0
		短期	-	1	-	-	64.8	114.0	132.0
		長期	20.3	25.4	ı	-	ı	-	-
FG3	X16	短期+	-20.0	-5.2	102.7	113.8	82.7	108.6	165.5
FG3	710	短期-	-20.3	6.2	-27.7	-151.2	-48.0	-145.0	-220.6
		短期	-	_	-	_	82.7	145.0	220.6

表8-2-6 各通りの応力一覧

			長期	応力	地震作月	月時応力		短期問	寺応力
地中梁 符号	通り	検討 項目 	M _L (kNm)	Q _L (kN)	M _E (kNm)	Q _E (kN)	M _S (kNm)	Q _S (kN)	検討用Q _S Q _L +1.5Q _E (kN)
		長期	102.0	127.3	-	_	_	_	_
FG1	Y2	短期+	102.0	-124.9	1.2	-65.4	103.2	-190.3	-223.0
FGI	12	短期-	102.0	124.9	1.2	65.4	103.2	190.3	223.0
		短期	ı	-	-	ı	103.2	190.3	223.0
		長期	42.8	53.8	-	ı	-	-	-
FG3	Y6	短期+	-42.8	-47.7	-18.8	-24.4	-61.6	-72.1	-84.3
FGS		短期-	-42.8	47.8	-19.1	24.4	-61.9	72.2	84.4
		短期	-	_	-	-	61.9	72.2	84.4
	Y7	長期	33.9	41.5	-	-	-	_	-
FG3		短期+	-17.7	41.5	-27.4	35.0	-45.1	76.5	94.0
1 03		短期-	-17.6	-41.3	-27.4	-35.0	-45.0	-76.3	-93.8
		短期	-	_	-	-	45.1	76.5	94.0
		長期	29.1	66.3	-	-	-	-	-
FG2	Y11	短期+	12.4	58.8	18.7	-148.6	31.1	-89.8	-164.1
I GZ	111	短期-	29.1	64.5	13.8	82.8	42.9	147.3	188.7
		短期	ı	_	-	I	42.9	147.3	188.7
		長期	20.6	35.0	-	ı	-	-	-
FG2	Y12.7	短期+	-12.4	6.6	51.0	-109.4	38.6	-102.8	-157.5
FUZ	112./	短期-	-11.2	-35.0	-53.9	-73.1	-65.1	-108.1	-144.7
		短期	-	_	-	_	65.1	108.1	157.5

(2)-④ 地中梁の検討

検討応力は、表8-2-5,6 各通りの応力一覧の値を用いる。

短期せん断力の検定は、「鉄筋コンクリート構造設計規準・同解説2018 15条2-(3)- ii 」に従い、検討用 Q_s = Q_L +1.5 Q_E として検討を行う。

(2)-4-1 X0通り地中梁の検定

長期

○曲げモーメント

$$M_L = 20.3 \text{ kN} \cdot \text{m}$$
 ft = $215 \text{ N/mm}^2 \text{ (SD345)}$ d = $600 \text{-} 70 \text{ = } 530 \text{ mm}$ j = $\frac{7}{8} \times \text{ d} = \frac{7}{8} \times 530 = 463.75 \text{ mm}$ 検定比 at = $\frac{M_L}{\text{ft} \cdot \text{i}} = \frac{20,300,000}{215 \times 463.75} = 203.60 \text{ mm}^2 < 860 \text{mm}^2 \quad 3 \text{-D19} \quad \text{OK}$ 0.237

〇せん断力

•短期

○曲げモーメント

$$M_S$$
= 82.7 kN·m ft= 345 N/mm² (SD345) d=600-70= 530 mm j= $\frac{7}{8}$ × d = $\frac{7}{8}$ × 530 = 463.75 mm 検定比 at= $\frac{M_S}{\text{ft}\cdot j}$ = $\frac{82,700,000}{345$ × 463.75 = 516.90 mm² < 860mm² 3-D19 **OK** 0.601

〇せん断力

検討用
$$Q_S$$
= 220.6 kN Q_S = 145.0 kN
$$\alpha = \frac{4}{\frac{M_S}{Q_S \cdot d} + 1} = \frac{4}{\frac{82.7}{145.0 \times 530} + 1} = 4.00$$
 よって、 $\alpha = 2.0$

検定比

 $\alpha\,f_S$ bj=2.0×(0.7×1.5)×300×463.75/1000= 292.16 kN > 検討用 Q_S = 220.6 kN 0.755 よって、Pw=0.2%とする。

strp 2-D10
$$a_W = 143 \text{ mm}^2$$

strp@ $x = a_W / (b \cdot P_W) = 143 / (300 \times 0.002) = 238.3 \text{ mm} D10-\Box -@200 OK
計算書 180$

(2)-4-2 X4通り地中梁の検定

FG2 b × D = 300 x 600 上下主筋3-D19 strpD10-□-@200

•長期

○曲げモーメント

$$M_L = 62.5 \text{ kN} \cdot \text{m}$$
 ft = $215 \text{ N/mm}^2 \text{ (SD345)}$ d = $600 - 70 = 530 \text{ mm}$ j = $\frac{7}{8} \times \text{d} = \frac{7}{8} \times 530 = 463.75 \text{ mm}$ 検定比 at = $\frac{M_L}{\text{ft} \cdot \text{j}} = \frac{62,500,000}{215 \times 463.75} = 626.84 \text{ mm}^2 < 860 \text{mm}^2 \quad 3 - \text{D19} \quad \text{OK}$ 0.729

〇せん断力

$$Q_L$$
= 78.8 kN $\alpha = \frac{4}{\frac{M_L}{Q_L \cdot d} + 1} = \frac{4}{\frac{62.5}{78.8 \times 530} + 1} = 3.99$ よって、 $\alpha = 2.0$ 検定比 $\alpha = \frac{62.5}{78.8 \times 530} + 1$ はって、 $\alpha = 2.0$ なって、 $\alpha = 2.0$ はって、 $\alpha = 2.0$ なって、 $\alpha = 2.0$ なって、 $\alpha = 2.0$ はって、 $\alpha = 2.0$ は、 $\alpha = 2.0$ は、 $\alpha = 2.0$ は、 $\alpha = 2.$

•短期

○曲げモーメント

$$M_S = 64.8 \text{ kN} \cdot \text{m}$$
 ft = 345 N/mm² (SD345) d=600-70= 530 mm
$$j = \frac{7}{8} \times \text{d} = \frac{7}{8} \times 530 = 463.75 \text{ mm}$$
 検定比 $at = \frac{M_S}{\text{ft} \cdot \text{j}} = \frac{64,800,000}{345 \times 463.75} = 405.02 \text{ mm²} < 860 \text{mm²} \qquad 3-D19$ OK 0.471

〇せん断力

検討用
$$Q_S$$
= 132.0 kN Q_S = 114.0 kN
$$\alpha = \frac{4}{\frac{M_S}{Q_S \cdot d} + 1} = \frac{4}{\frac{64.8}{114.0 \times 530} + 1} = 4.00$$
 よって、 $\alpha = 2.0$

検定比

 $\alpha\,f_{\rm s}$ bj=2.0×(0.7×1.5)×300×463.75/1000= 292.2 kN > 検討用 $Q_{\rm s}$ = 132.0 kN 0.452 よって、 $P_{\rm w}$ =0.2%とする。

strp 2-D10
$$a_W = 143 \text{ mm}^2$$

strp@ $x = a_W / (b \cdot P_W) = 143 / (300 \times 0.002) = 238.3 \text{ mm}$ D10- \Box -@200 **OK**

(2)-4-3 X8通り地中梁の検定

FG3 b × D = 300 x 600 上下主筋3-D19 strpD10-□-@200

長期

○曲げモーメント

$$M_L = 56.5 \text{ kN} \cdot \text{m}$$
 ft = 215 N/mm² (SD345) d=600-70= 530 mm $j = \frac{7}{8} \times \text{d} = \frac{7}{8} \times 530 = 463.75 \text{ mm}$ 検定比 $at = \frac{M_L}{\text{ft} \cdot \text{j}} = \frac{56,500,000}{215 \times 463.75} = 566.66 \text{ mm²} < 860 \text{mm²} 3-D19 OK 0.659$

〇せん断力

$$Q_L$$
= 72.5 kN $\alpha = \frac{4}{\frac{M_L}{Q_L \cdot d}} + 1 = \frac{4}{\frac{56.5}{72.5 \times 530}} + 1 = 3.99$ よって、 $\alpha = 2.0$ 検定比 $\alpha f_S bj = 2.0 \times 0.7 \times 300 \times 463.75/1000 = 194.78 kN > Q_L = 72.5 kN 0.372$ よって、 $Pw = 0.2\%$ とする。 strp 2-D10 $a_W = 143 \ \text{mm}^2$ strp@ $x = a_W \ /(b \cdot P_W) = 143/(300 \times 0.002) = 238.3 \ \text{mm}$ D10- \Box -@200 **OK**

•短期

○曲げモーメント

$$M_S$$
= 57.1 kN·m ft= 345 N/mm² (SD345) d=600-70= 530 mm
$$j = \frac{7}{8} \times d = \frac{7}{8} \times 530 = 463.75 \text{ mm}$$
 検定比 $at = \frac{M_S}{ft \cdot j} = \frac{57,100,000}{345 \times 463.75} = 356.89 \text{ mm²} < 860 \text{mm²} 3-D19 OK 0.415$

〇せん断力

検討用
$$Q_S$$
= 117.1 kN Q_S = 98.8 kN
$$\alpha = \frac{4}{\frac{M_S}{Q_S \cdot d} + 1} = \frac{4}{\frac{57.1}{98.8 \times 530} + 1} = 4.00$$
 よって、 $\alpha = 2.0$

検定比

lpha f_sbj=2.0×(0.7×1.5)×300×463.75/1000= 292.2 kN > 検討用Q_S= 117.1 kN 0.401 よって、Pw=0.2%とする。

strp 2-D10
$$a_W = 143 \text{ mm}^2$$

strp@ $x = a_W / (b \cdot P_W) = 143 / (300 \times 0.002) = 238.3 \text{ mm}$ D10- \Box -@200 **OK**

(2)-4-4 X12通り地中梁の検定

FG2 b × D = 300 x 600 上下主筋3-D19 strpD10-□-@200

長期

○曲げモーメント

$$M_L = 62.5 \text{ kN·m}$$
 ft = $215 \text{ N/mm}^2 \text{ (SD345)}$ d = $600-70 = 530 \text{ mm}$ j = $\frac{7}{8} \times \text{ d} = \frac{7}{8} \times 530 = 463.75 \text{ mm}$ 検定比 at = $\frac{M_L}{\text{ft·i}} = \frac{62,500,000}{215 \times 463.75} = 626.84 \text{ mm}^2 < 860 \text{mm}^2$ 3-D19 **OK** 0.729

〇せん断力

•短期

○曲げモーメント

$$M_S$$
= 64.8 kN·m ft= 345 N/mm² (SD345) d=600-70= 530 mm
$$j = \frac{7}{8} \times d = \frac{7}{8} \times 530 = 463.75 \text{ mm}$$
 検定比 at= $\frac{M_S}{\text{ft·j}} = \frac{64,800,000}{345 \times 463.75} = 405.02 \text{ mm²} < 860 \text{mm²}$ 3-D19 **OK** 0.471

〇せん断力

検討用
$$Q_S$$
= 132.0 kN Q_S = 114.0 kN
$$\alpha = \frac{4}{\frac{M_S}{Q_S \cdot d} + 1} = \frac{4}{\frac{64.8}{114.0 \times 530} + 1} = 4.00$$
 よって、 $\alpha = 2.0$

検定比

 $\alpha\,f_{\rm S}$ bj=2.0×(0.7×1.5)×300×463.75/1000= 292.2 kN > 検討用 $Q_{\rm S}$ = 132.0 kN 0.452 よって、 $P_{\rm W}$ =0.2%とする。

strp 2-D10
$$a_W = 143 \text{ mm}^2$$

 $strp@x = a_W /(b \cdot P_W) = 143/(300 \times 0.002) = 238.3 \text{ mm}$ D10- \Box -@200 **OK**

(2)-4-5 X16通り地中梁の検定

長期

○曲げモーメント

$$M_L = 20.3 \text{ kN·m}$$
 ft = $215 \text{ N/mm}^2 \text{ (SD345)}$ d = $600-70 = 530 \text{ mm}$ j = $\frac{7}{8} \times \text{ d} = \frac{7}{8} \times 530 = 463.75 \text{ mm}$ 検定比 at = $\frac{M_L}{\text{ft·i}} = \frac{20,300,000}{215 \times 463.75} = 203.60 \text{ mm}^2 < 860 \text{mm}^2 \quad 3-D19$ OK 0.237

〇せん断力

$$_{L}Q=25.4$$
 kN $\alpha=\frac{4}{\frac{M_{L}}{Q_{L}\cdot d}+1}=\frac{4}{\frac{20.3}{25.4\times530}+1}=3.99$ よって、 $\alpha=2.0$ 検定比 $\alpha=0.7$ N/mm² $\alpha=0.7$ K $\alpha=0.7$ K

•短期

○曲げモーメント

$$M_S$$
= 82.7 kN·m ft= 345 N/mm² (SD345) d=600-70= 530 mm
$$j = \frac{7}{8} \times d = \frac{7}{8} \times 530 = 463.75 \text{ mm}$$
 検定比 $at = \frac{M_S}{ft \cdot j} = \frac{82,700,000}{345 \times 463.75} = 516.90 \text{ mm²} < 860 \text{mm²} 3-D19 OK 0.601$

〇せん断力

検討用
$$Q_S$$
= 220.6 kN Q_S = 145.0 kN
$$\alpha = \frac{4}{\frac{M_S}{Q_S \cdot d} + 1} = \frac{4}{\frac{82.7}{145.0 \times 530} + 1} = 4.00$$
 よって、 $\alpha = 2.0$

検定比

lpha f_sbj=2.0×(0.7×1.5)×300×463.75/1000= 292.2 kN > 検討用 Q_s = 220.6 kN 0.755 よって、 P_w =0.2%とする。

strp 2-D10
$$a_W = 143 \text{ mm}^2$$

strp@x= a_W /(b·P_W) = 143/(300 × 0.002) = 238.3 mm D10- \Box -@200 **OK**

(2)-(4)-6 Y2通り地中梁の検定

FG1 b × D = 300 x 600 上下主筋4-D19 (2段配筋) strpD10-□-@200

長期

○曲げモーメント

$$M_L$$
= 102.0 kN·m ft= 215 N/mm² (SD345) d=600-90= 510 mm
$$j = \frac{7}{8} \times d = \frac{7}{8} \times 510 = 446.25 \text{ mm}$$
 検定比 at= $\frac{M_L}{\text{ft·j}} = \frac{102,000,000}{215 \times 446.25} = 1,063 \text{ mm²} < 1146 \text{mm²} 4-D19 OK 0.928$

〇せん断力

$$Q_L$$
= 127.3 kN $\alpha = \frac{4}{\frac{M_L}{Q_L \cdot d} + 1} = \frac{4}{\frac{102.0}{127.3 \times 510} + 1} = 3.99$ よって、 $\alpha = 2.0$ 検定比 $\alpha = 0.7 \text{ N/mm}^2$ 検定比 $\alpha = 0.7 \text{ N/mm}^2$ なって、 $\alpha = 0.0 \text{ K}$ はって、 $\alpha = 0$

•短期

○曲げモーメント

$$M_S$$
= 103.2 kN·m ft= 345 N/mm² (SD345) d=600-90= 510 mm
$$j = \frac{7}{8} \times d = \frac{7}{8} \times 510 = 446.25 \text{ mm}$$
 検定比 $at = \frac{M_S}{\text{ft·j}} = \frac{103,200,000}{345 \times 446.25} = 670.32 \text{ mm²} < 1146 \text{mm²} 4-D19 OK 0.779$

〇せん断力

検討用
$$Q_S$$
= 223.0 kN Q_S = 190.3 kN
$$\alpha = \frac{4}{\frac{M_S}{Q_S \cdot d} + 1} = \frac{4}{\frac{103.2}{190.3 \times 510} + 1} = 4.00$$
 よって、 $\alpha = 2.0$

検定比

 $\alpha\,f_{\rm S}$ bj=2.0×(0.7×1.5)×300×463.75/1000= 281.1 kN > 検討用 $\rm Q_{\rm S}$ = 223.0 kN 0.793 よって、 $\rm Pw$ =0.2%とする。

strp 2-D10
$$a_W = 143 \text{ mm}^2$$
 strp@ $x = a_W / (b \cdot P_W) = 143 / (300 \times 0.002) = 238.3 \text{ mm}$ D10- \Box -@200 **OK**

(2)-(4)-7 Y6通り地中梁の検定

FG3 b × D = 300 x 600 上下主筋3-D19 strpD10-□-@200

長期

〇曲げモーメント

$$M_L$$
= 42.8 kN·m ft= 215 N/mm² (SD345) d=600-70= 530 mm
$$j = \frac{7}{8} \times d = \frac{7}{8} \times 530 = 463.75 \text{ mm}$$
 検定比 at= $\frac{M_L}{\text{ft·j}} = \frac{42,800,000}{215 \times 463.75} = 429 \text{ mm²} < 860 \text{mm²} 3-D19 OK 0.499$

〇せん断力

$$Q_L$$
= 53.8 kN α = $\frac{4}{\frac{M_L}{Q_L \cdot d}}$ = $\frac{4}{\frac{42.8}{53.8 \times 530}}$ = 3.99 よって、 α = 2.0 検定比 α f_Sbj=2.0 × 0.7 × 300 × 463.75/1000 = 194.78 kN > α Rough α Rough Ro

•短期

○曲げモーメント

$$M_S$$
= 61.9 kN·m ft= 345 N/mm² (SD345) d=600-70= 530 mm
$$j = \frac{7}{8} \times d = \frac{7}{8} \times 530 = 463.75 \text{ mm}$$
 検定比 $at = \frac{M_S}{\text{ft·j}} = \frac{61,900,000}{345 \times 463.75} = 386.89 \text{ mm²} < 860 \text{mm²} 3-D19 OK 0.450$

〇せん断力

検討用
$$Q_S$$
= 84.4 kN Q_S = 72.2 kN
$$\alpha = \frac{4}{\frac{M_S}{Q_S \cdot d} + 1} = \frac{4}{\frac{61.9}{72.2 \times 530} + 1} = 3.99$$
 よって、 $\alpha = 2.0$

検定比

 $\alpha\,f_{\rm S}$ bj=2.0×(0.7×1.5)×300×463.75/1000= 292.2 kN > 検討用 $\rm Q_S$ = 84.4 kN 0.289 よって、 $\rm Pw$ =0.2%とする。

strp 2-D10
$$a_W = 143 \text{ mm}^2$$
 strp@ $x = a_W / (b \cdot P_W) = 143 / (300 \times 0.002) = 238.3 \text{ mm}$ D10- \Box -@200 **OK**

(2)-(4)-8 Y7通り地中梁の検定

FG3 b × D = 300 x 600 上下主筋3-D19 strpD10-□-@200

長期

○曲げモーメント

$$M_L = 33.9 \text{ kN·m}$$
 ft = $215 \text{ N/mm}^2 \text{ (SD345)}$ d = $600-70 = 530 \text{ mm}$ j = $\frac{7}{8} \times \text{ d} = \frac{7}{8} \times 530 = 463.75 \text{ mm}$ 検定比 at = $\frac{M_L}{\text{ft·j}} = \frac{33,900,000}{215 \times 463.75} = 340 \text{ mm}^2 < 860 \text{mm}^2 \quad 3-D19$ OK 0.395

〇せん断力

$$Q_L$$
= 41.5 kN $\alpha = \frac{4}{\frac{M_L}{Q_L \cdot d}} + \frac{4}{1} = \frac{4}{\frac{33.9}{41.5 \times 530}} + 1 = 3.99$ よって、 $\alpha = 2.0$ 検定比 $\alpha f_S bj = 2.0 \times 0.7 \times 300 \times 463.75/1000 = 194.78 \text{ kN} > Q_L = 41.5 \text{ kN} 0.213$ よって、 $Pw = 0.2\%$ とする。 strp 2-D10 $a_W = 143 \frac{mm^2}{mm^2}$ strp@x = $a_W / (b \cdot P_W) = 143/(300 \times 0.002) = 238.3 \text{ mm}$ D10- \Box -@200 **OK**

-短期

○曲げモーメント

〇せん断力

検討用
$$Q_S$$
= 94.0 kN Q_S = 76.5 kN
$$\alpha = \frac{4}{\frac{M_S}{Q_S \cdot d} + 1} = \frac{4}{\frac{45.1}{76.5 \times 530} + 1} = 4.00$$
 よって、 $\alpha = 2.0$

検定比

 $\alpha\,f_{\rm S}$ bj=2.0×(0.7×1.5)×300×463.75/1000= 292.2 kN > 検討用 $Q_{\rm S}$ = 94.0 kN 0.322 よって、 $P_{\rm W}$ =0.2%とする。

strp 2-D10
$$a_W = 143 \text{ mm}^2$$
 strp@ $x = a_W / (b \cdot P_W) = 143 / (300 \times 0.002) = 238.3 \text{ mm}$ D10- \Box -@200 **OK**

(2)-4-9 Y11通り地中梁の検定

長期

〇曲げモーメント

$$M_L = 29.1 \text{ kN·m}$$
 ft = $215 \text{ N/mm}^2 \text{ (SD345)}$ d = $600-70 = 530 \text{ mm}$ j = $\frac{7}{8} \times \text{ d} = \frac{7}{8} \times 530 = 463.75 \text{ mm}$ 検定比 at = $\frac{M_L}{\text{ft·j}} = \frac{29,100,000}{215 \times 463.75} = 292 \text{ mm}^2 < 860 \text{mm}^2 \quad 3-D19$ OK 0.339

〇せん断力

$$_{\text{L}}Q$$
= 66.3 kN α = $\frac{4}{\frac{\text{M}_{\text{L}}}{\text{Q}_{\text{L}} \cdot \text{d}}}$ = $\frac{4}{\frac{29.1}{66.3 \times 530}}$ = 4.00 よって、 α = 2.0 検定比 α f_Sbj=2.0 × 0.7 × 300 × 463.75/1000 = 194.78 kN > Q_L= 66.3 kN 0.340 よって、Pw=0.2%とする。 strp 2-D10 a_W = 143 mm² strp@x=a_W /(b·P_W) = 143/(300 × 0.002) = 238.3 mm D10-□-@200 **OK**

-短期

○曲げモーメント

$$M_S$$
= 42.9 kN·m ft= 345 N/mm² (SD345) d=600-70= 530 mm
$$j = \frac{7}{8} \times d = \frac{7}{8} \times 530 = 463.75 \text{ mm}$$
 検定比 $at = \frac{M_S}{\text{ft·i}} = \frac{42,900,000}{345 \times 463.75} = 268.14 \text{ mm²} < 860 \text{mm²} 3-D19 OK 0.312$

〇せん断力

検討用
$$Q_S$$
= 188.7 kN Q_S = 147.3 kN
$$\alpha = \frac{4}{\frac{M_S}{Q_S \cdot d} + 1} = \frac{4}{\frac{42.9}{147.3 \times 530} + 1} = 4.00$$
 よって、 $\alpha = 2.0$

検定比

 $\alpha\,f_{\rm S}$ bj=2.0×(0.7×1.5)×300×463.75/1000= 292.2 kN > 検討用 $\rm Q_{\rm S}$ = 188.7 kN 0.646 よって、 $\rm Pw$ =0.2%とする。

strp 2-D10
$$a_W = 143 \text{ mm}^2$$
 strp@ $x = a_W / (b \cdot P_W) = 143 / (300 \times 0.002) = 238.3 \text{ mm}$ D10- \Box -@200 **OK**

(2)-4-10 Y12.7通り地中梁の検定

FG2 b × D = 300 x 600 上下主筋3-D19 strpD10-□-@200

長期

○曲げモーメント

$$M_L = 20.6 \text{ kN} \cdot \text{m}$$
 ft = $215 \text{ N/mm}^2 \text{ (SD345)}$ d = $600 \text{-} 70 \text{ = } 530 \text{ mm}$ j = $\frac{7}{8} \times \text{ d} = \frac{7}{8} \times 530 = 463.75 \text{ mm}$ 検定比 at = $\frac{M_L}{\text{ft} \cdot \text{j}} = \frac{20,600,000}{215 \times 463.75} = 207 \text{ mm}^2 < 860 \text{mm}^2 3 \text{-D19}$ OK 0.240

〇せん断力

$$Q_L$$
= 35.0 kN $\alpha = \frac{4}{\frac{M_L}{Q_L \cdot d}} + 1 = \frac{4}{\frac{20.6}{35.0 \times 530}} + 1 = 4.00$ よって、 $\alpha = 2.0$ 検定比 $\alpha f_S bj = 2.0 \times 0.7 \times 300 \times 463.75/1000 = 194.78 \text{ kN} > Q_L = 35.0 \text{ kN} 0.180$ よって、 $Pw = 0.2\%$ とする。 strp 2-D10 $a_W = 143 \text{ mm}^2$ strp@ $x = a_W$ /($b \cdot P_W$) = $143/(300 \times 0.002) = 238.3 \text{ mm}$ D10- \Box -@200 OK

•短期

○曲げモーメント

$$M_S$$
= 65.1 kN·m ft= 345 N/mm² (SD345) d=600-70= 530 mm
$$j = \frac{7}{8} \times d = \frac{7}{8} \times 530 = 463.75 \text{ mm}$$
 検定比
$$at = \frac{M_S}{\text{ft·j}} = \frac{65,100,000}{345 \times 463.75} = 406.89 \text{ mm²} < 860 \text{mm²} \qquad 3-D19 \text{ OK} \qquad 0.473$$

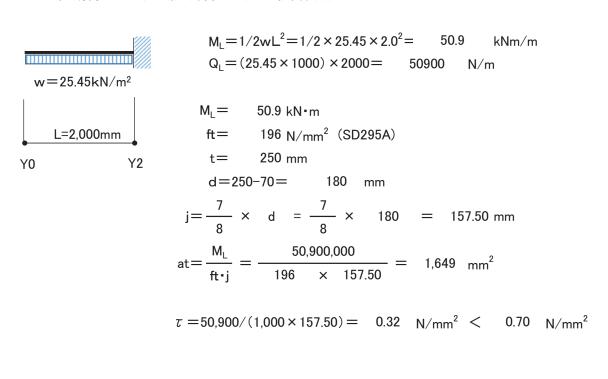
〇せん断力

検討用
$$Q_S$$
= 157.5 kN Q_S = 108.1 kN
$$\alpha = \frac{4}{\frac{M_S}{Q_S \cdot d} + 1} = \frac{4}{\frac{65.1}{108.1 \times 530} + 1} = 4.00$$
 よって、 $\alpha = 2.0$

検定比

 $\alpha\,f_{\rm S}$ bj=2.0×(0.7×1.5)×300×463.75/1000= 292.2 kN > 検討用 $\rm Q_{\rm S}$ = 157.5 kN 0.539 よって、 $\rm Pw$ =0.2%とする。

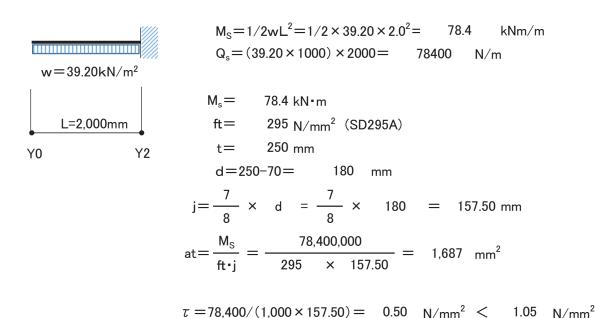
strp 2-D10
$$a_W = 143 \text{ mm}^2$$
 strp@ $x = a_W / (b \cdot P_W) = 143 / (300 \times 0.002) = 238.3 \text{ mm}$ D10- \Box -@200 **OK**


8-3 底版の検定

底版の検定は、負担面積が最も大きい箇所にて検定する。負担応力は「8-1基礎接地圧の算定」で求めた地反力にて検討を行う。断面算定は、断面計算プログラム「RCチャート(ver.8.1.12)」にて算定する。

(1) 長期荷重 基礎底版:四辺固定 検討箇所:Y2-6/X4-8 表8-3-1 底版配筋の算定

1x = 4.00m, $w = -25.45k$	1y = 4.00m, $N/m2$	t = 200mm, o	lt = 67mm		
支持条件:[可辺固定 (精算)	, 使用材料:F	c21, SD295		
荷重の種別:	:長期, 応力の	割增率:1.00,	変形增大係数:	16	
	短辺端部	短辺中央	長辺端部	長辺中央	
M kN·m	21.1	7. 1	21.1	7. 1	
at mm2	929	314	1005	340	
Q kN	44. 7		44. 7		
上端筋	D13@100	D13@100	D13@100	D13@100	
下端筋	D13@100	D13@100	D13@100	D13@100	
検定比	0.73	0. 25	0.79	0. 27	
t/1x = 1/20	$\tau \max = 0.42$	N/mm2 < 0.70			


(2) 長期荷重 基礎底版: 片持ちスラブ 検討箇所: Y0-Y2/X0-X16

(3) 短期荷重 基礎底版:四辺固定 検討箇所:Y2-6/X4-8 表8-3-2 底版配筋の算定

00	1y = 4.00m,	t = 200 mm,	lt = 67mm		
w = -39.2kN	m2				
支持条件:四	1辺固定(精算)	, 使用材料: I	c21, SD295		
荷重の種別:	短期, 応力の	割增率:1.00,	変形増大係数	: 16	
	短辺端部	短辺中央	長辺端部	長辺中央	
M kN·m	32. 5	11.0	32.5	11.0	
at mm2	946	320	1023	346	
Q kN	68. 9		68. 9		
上端筋	D13@100	D13@100	D13@100	D13@100	
下端筋	D13@100	D13@100	D13@100	D13@100	
検定比	0.75	0.25	0.81	0. 27	

(4) 短期荷重 基礎底版: 片持ちスラブ 検討箇所: Y0-Y2/X0-X16

8-4 引張金物アンカーボルトの検定(コーン破壊の検定)

アンカーボルトには、M16のアンカーボルト(ABR490)を用いている。アンカーボルトの 検討では、コンクリートのコーン状破壊に対する短期許容耐力を上回ることを確認する。 なお、定着板についてはJISB1220に準拠した仕様とする。

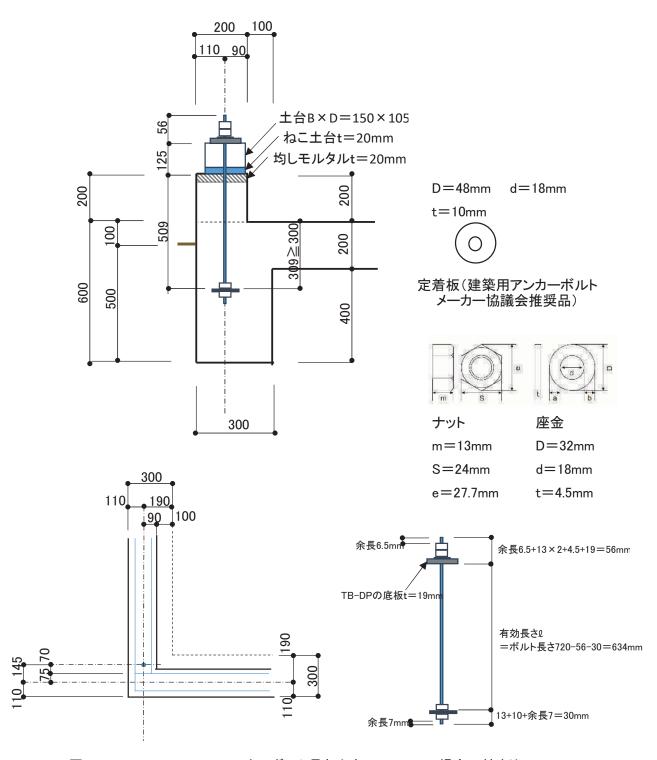


図8-4-1 ABR490 M16 アンカーボルト長さ寸法&=720mmの場合の納まり

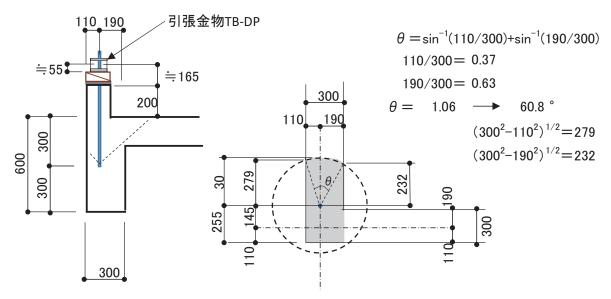


図8-4-2 コーン状破壊面の鉛直方向投影図 図8-4-3 コーン状破壊面の水平方向投影面積

アンカーボルト: M16(ABR490) F= 325.00 N/mm^d コンクリート: 設計基準強度 Fc= 21.00 N/mm^d

アンカーボルト接合部の検定 : T/min(P_{a1}, P_{a2})≦1.0 A_b[mm] : アンカーボルト軸断面積 M1 166.0 mm

アンカーボルトの規格降伏耐力の上限値[kN]: T=F×1.37×A_b T=325*1.37*166= 73,912 kN

 A_0 [mm] : 支圧板の支圧面積 M16用定着板48mm×48mm 内径18mmより A_0 =48×48- $(16/2)^2$ × π = 2,103 mm

Ac [mm] : コンクリートのコーン状破壊面の有効水平投影面積 Ac =(255×300)+(279×110×1/2)+(232×190×1/2)+(3.14×400²)×60.8/360= 161,613 mm²

fnコンクリートの支圧強度[N/mm²] : min((√Ac/A₀)×Fc,6×Fc)
fn=((√161,613/2,103)×21,6×21)=(184.09 , 126)= 126 N/mm²

定着部の短期許容支圧耐力[kN] : $P_{a1}=2/3 \times fn \times A_0 \times 10^{-3}$ $P_{a1}=2/3 \times 126 \times 2,103 \times 10^{-3}=$ 176.66 kN

コーン状破壊による短期許容支圧耐力[kN] : $P_a=2/3*0.31*\sqrt{F_c*A_c*10^{-3}}$ $P_{a2}=2/3\times0.31\times\sqrt{21}\times161,613\times10^{-3}=153.06$ kN

表8-4-1 ボルトの規格降伏耐力

アンカーボルト		軸断面積	ボルト	引張力
径	材種		F	T(上限値)
1 1	1711里	[m m i]	[N/m ㎡]	[kN]
M16	SNR490	166	325	73.9

表8-4-2 コーン状破壊による短期許容耐力及び定着部の短期支圧耐力の検定

_	役0年2 コーン仏拠場による位効計合則力及い足相即の位朔文圧則力の快足										
	アンカー ボルト	梁幅	埋込長	は可参 準 み度	支圧面 積	支圧強 度	容支圧	水平投 影面積	破壊に	ボルト 本数	検定
ſ	径	В	I	Fc	A_0	fn	P _{a1}	Ac	P _{a2}	n	min(P _{a1} , P _{a2})
	1±	[mm]	[mm]	[N/mm²]	[mm ²]	[N/mm ²]	[kN]	[mm ²]	[kN]	[kN]	$ min(P_{a1},P_{a2}) $
	M16	300	300	21	2,103	126	176.66	161,613	153.06	1	0.48

検定値が厳しい場合は、引張ボルトと基礎の外端までの離間距離を大きくすることで、検定を安

参考資料1

Mx60-5-5 基準強度、弾性係数、応力度算定シート

□CLT パネルの基準強度、弾性係数および応力度の算定

1. CLT パネルの基準強度

平28 国交告第562 号(平13 国交告第1024 号の改正)によりCLT パネルの基準強度は次のように規定されている。 以下、ラミナの繊維方向がCLT パネルの長手方向に平行な層を「平行層」、直交する層を「直交層」と称する。

A ラミナの強度、曲げヤング係数と寸法 CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。 表1.1 ラミナの強度、曲げヤング係数と寸法(幅、厚み寸法は、製造工場で異なります。必ず確認してください。)

ラミナ種類	等級区分		ラミナの強	寸法			
ノベノ作主規		σ _{c,oml}	σt,oml	σ b,oml	Ei	幅 (mm)	厚み (mm)
M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30
M30A	等級区分機による等級	15.6	11.5	19.5	3000	124	30

1.1 圧縮基準強度 F_{o} (平13国交告第1024 号第三第九号イ) 圧縮基準強度は下記式より算出する。ここで、 σ 。、omは、強軸方向の基準強度を計算する場合は外層ラミナの圧縮強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの圧縮強度となる。

圧縮
$$F_c = \sigma_{cond} \cdot \frac{A_A}{A_0} \times 0.75$$
 $A_A = \frac{\sum E_i \cdot A_i}{E_0}$

 ${
m Ei(N/mm^2)}$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

E0(N/mm²):強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数

 $A_0(mm^2)$:CLT パネルの断面積

1.1.1強軸方向の圧縮基準強度 Fcの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7~ 7 7 H	EI AI
1	900	30	27000	6000	平行層	162000000
2	900	30	27000	0	直交層	0
3	900	30	27000	3000	平行層	81000000
4	900	30	27000	0	直交層	0
5	900	30	27000	6000	平行層	162000000
6	_	_	_	_	_	_
7	_	_	_	_	_	_
8	_	_	_	_	_	_
9	_	_	_	_	_	_
					Σ Ei•Ai	405000000

6000 (N/mm) $E_0 =$ 135000 (mm) $A_0 =$

 $AA = \Sigma EiAi/E_0 =$ 67500 (mm)

> $\sigma_{c,oml} =$ 21.6 (N/mm) 表1.1による。

以上より、 **強軸**Fc= 8.10 (N/mm)

1.1.2弱軸方向の圧縮基準強度 Fc の算定

Γ	ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
Г	5層5プライ	Mx60-5-5	900	弱軸

	OL THE		日がエキ				
層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)		ELAI	
1	900	30	27000	0	直交層	0	
2	900	30	27000	3000	平行層	81000000	
3	900	30	27000	0	直交層	0	
4	900	30	27000	3000	平行層	81000000	
5	900	30	27000	0	直交層	0	
6	_	_	_	_	_	_	
7	_	_	_	_	_	_	
8	_	_	_	_	_	_	
9	_	_	_	_	_	_	
					Σ Ei•Ai	162000000	

 $E_0 =$ 3000 (N/mm) $A_0 =$ 135000 (mm) 54000 (mm) $Aa=\Sigma EiAi/E_0=$

 $\sigma_{c,oml} =$ 15.6 (N/mm) 表1.1による。

以上より、 **弱軸**Fc = 4.68 (N/mm)

A ラミナの強度、曲げヤング係数と寸法

CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。

表1.1 ラミナの強度、曲げヤング係数と寸法(幅、厚み寸法は、製造工場で異なります。必ず確認してください。)

20111 / 1/ 1/	次に17人人の意及も同じてクトが然と「ID(同じ子)」「ID(G)、								
ラミナ種類	等級区分		ラミナの強度 (N/mm)				寸法		
ノベノ作業規	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	σ _{c,oml}	σt,oml	σ b,oml	Ei	幅 (mm)	厚み (mm)		
M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30		
M30A	等級区分機による等級	15.6	11.5	19.5	3000	124	30		
			·						

1.2 引張基準強度 Ft (平13国交告第1024 号第三第九号口)

引張基準強度は下記式より算出する。ここで、のtomに強軸方向の基準強度を計算する場合は外層ラミナの引張強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの引張強度となる。

引張
$$F_t = \sigma_{total} \cdot \frac{A_A}{A_0} \times 0.75$$
 $A_A = \frac{\sum E_i \cdot A_i}{E_0}$

 $\mathrm{Ei}(\mathrm{N/mm^2}):$ 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

Eo(N/mm²):強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数

A₀(mm²) :CLT パネルの断面積

1.2.1強軸方向の引張基準強度Ftの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm³)	ノミノカドリ	El'Al
1	900	30	27000	6000	直交層	162000000
2	900	30	27000	0	平行層	0
3	900	30	27000	3000	直交層	81000000
4	900	30	27000	0	平行層	0
5	900	30	27000	6000	直交層	162000000
6	_	_	_	_	_	_
7	_	_	_	_	_	_
8	_	_	_	_	_	_
9	_	_	_	_	_	_
					Σ Ei•Ai	405000000

 $egin{array}{lll} E_0 &=& 6000 \ (N/m\mathaleft) \\ A_0 &=& 135000 \ (m\mathaleft) \\ A_A &=& 67500 \ (m\mathaleft) \end{array}$

 $\sigma_{\rm t,oml} = 16.0 \, ({
m N/m m})$ 表1.1による。

以上より、 **強軸**Ft= 6.00 (N/mm)

1.2.2弱軸方向の引張基準強度の算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	900	弱軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	フェアカ川	El-Al
1	900	30	27000	0	直交層	0
2	900	30	27000	3000	平行層	81000000
3	900	30	27000	0	直交層	0
4	900	30	27000	3000	平行層	81000000
5	900	30	27000	0	直交層	0
6	_	_	_	_	_	_
7	_	_	_	_	_	_
8	_	_	_	_	_	_
9	I	-	l	I	-	I
					Σ Ei•Ai	162000000

 $E_0 = 3000 (N/mm)$ $A_0 = 135000 (mm)$ $A_A = 54000 (mm)$

 $\sigma_{
m t,oml}$ = 11.5 (N/mm) 表1.1による。

以上より、 **弱軸**Ft = 3.45 (N/mm)

A ラミナの強度、曲げヤング係数と寸法

CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。

表1.1 ラミナの強度、曲げヤング係数と寸法

		XIII) () (MAC IN									
	ラミナ種類	等級区分		ラミナの強	食度(N/mm)		4	法			
		守敝囚刀	σ _{c,oml}	σt,oml	σ _{b,oml}	Ei	幅 (mm)	厚み (mm)			
	M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30			
	M30A	等級区分機による等級	15.6	11.5	19.5	3000	124	30			

1.3 曲げ基準強度 Fb (平13国交告第1024 号第三第九号ハ)

曲げ基準強度は下記式より算出する。ここで、のbomに強軸方向の基準強度を計算する場合は外層ラミナの曲げ強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの曲げ強度となる。

曲げ 積層(面外)方向 $F_b = \sigma_{b \; oml} \cdot \frac{I_A}{I_0} \times 0.4875$

幅(面内)方向 $F_b = \sigma_{b.oml} \cdot \frac{A_A}{A} \times 0.6$

 $A_{A} = \frac{\sum E_{i} \cdot A_{i}}{E_{0}} \qquad I_{A} = \frac{\sum (E_{i} \cdot I_{i} + E_{i} \cdot A_{i} \cdot z_{i}^{2})}{E_{0}}$

 $Ei(N/mm^2)$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

 $Eo(N/mm^2)$: 強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数

Ao(mm²) :CLT パネルの断面積

Ii(mm⁴) :i 番目の層の断面二次モーメント

zi(mm) :i 番目の層の重心とCLT パネルの中立軸との距離

Io(mm⁴) :CLT パネルの断面二次モーメント

1.3.1強軸方向の面内曲げ基準強度Fbの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	M×60-5-5	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7~ 7 7 H	El'Al	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	6000	直交層	162000000	2025000	30	1.58E+11
2	900	30	27000	0	平行層	0	2025000	0	0
3	900	30	27000	3000	直交層	81000000	2025000	0	6.075E+09
4	900	30	27000	0	平行層	0	2025000	0	0
5	900	30	27000	6000	直交層	162000000	2025000	30	1.58E+11
6	_	_	_	_	_	_	_	_	_
7	_	_	_	_	_	_	_	_	_
8	_	_	_	_	_	_	_	_	_
9	_	_	_	_	_	_	_	_	_
						405000000	Σ Ei•Ii	+Ei•Ai•zi²	3.22E+11

 $E_0 = 6000 (N/mm^2)$

 $egin{array}{lll} I_0 &=& 2.53 E + 08 \; (mm^4) & A_0 &=& 135000 \; (mm^4) \\ I_A &=& 53662500 \; (mm^4) & A_A &=& 67500 \; (mm^4) \\ \end{array}$

 $\sigma_{
m b,oml}$ = 27.0 (N/mm) 表1.1による。

以上より、 幅(面内)方向強軸Fb = 8.10 (N/mm)

1.3.2弱軸方向の面内曲げ基準強度 Fb の算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	900	弱軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	Ei(N/mm)	El Al	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	0	直交層	0	2025000	60	0
2	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
3	900	30	27000	0	直交層	0	2025000	0	0
4	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
5	900	30	27000	0	直交層	0	2025000	60	0
6	_	_	_	_	_	_	_	_	_
7	_	_	_	_	_	_	_	_	_
8	_	_	_	_	_	_	_	_	_
9	_	_		_	_		_	_	_
					Σ Ei•Ai	162000000	Σ Ei•Ii	+Ei•Ai•zi²	1.58E+11

 $E_0 = 3000 \, (N/m\mathring{n})$

 $\sigma_{\rm b,oml}$ = 19.5 (N/mm) 表1.1による。

以上より、 幅(面内)方向弱軸Fb = 4.68 (N/mm)

1.3.3強軸方向の面外曲げ基準強度 Fb の算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	M×60-5-5	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)) =) / J II	El*Al	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	6000	直交層	162000000	2025000	60	5.954E+11
2	900	30	27000	0	平行層	0	2025000	30	0
3	900	30	27000	3000	直交層	81000000	2025000	0	6.075E+09
4	900	30	27000	0	平行層	0	2025000	30	0
5	900	30	27000	6000	直交層	162000000	2025000	60	5.954E+11
6	_	_	_	_	_	_	_	_	_
7	_	_	_	_	_	_	_	_	_
8	_	_	_	_	_	_	_	_	_
9	_	_	_	_	_		_	_	_
					Σ Ei•Ai	405000000	Σ Ei•Ii	+Ei•Ai•zi²	1.197E+12

Eo = 6000 (N/m㎡)
Io = 2.53E+08 (mm⁴)
Ao = 1.99E+08 (mm⁴)
の b,oml = 27.0 (N/m㎡) 表1.1による。 135000 (mm) 67500 (mm)

以上より、 積層(面外)方向強軸 Fb 10.37 (N/mm)

1.3.4弱軸方向の面外曲げ基準強度 Fbの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	S60-5-5	900	弱軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm³)	7 × 7 71 PJ	E1 A1	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	0	直交層	0	2025000	60	0
2	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
3	900	30	27000	0	直交層	0	2025000	0	0
4	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
5	900	30	27000	0	直交層	0	2025000	60	0
6	_	_	_	_	_	_			
7	_	_	_	_	_	_			
8	_	_	_	_	_	_			
9	_	_		_	_				
			•	•	Σ Ei•Ai	162000000	Σ Ei•Ii	+Ei•Ai•zi ²	1.58E+11

 $\begin{array}{rcl} E_0 &=& 3000 \; (\text{N/min}) \\ I_0 &=& 2.53 \text{E} + 08 \; (\text{mm}^4) \\ I_A &=& 5.27 \text{E} + 07 \; (\text{mm}^4) \\ \sigma_{b, \text{oml}} &=& 19.5 \; (\text{N/min}) \end{array}$ $A_0 =$ 135000 (mm) AA = 表1.1による。 54000 (mm)

以上より、 積層(面外)方向弱軸Fb 1.97 (N/mm) 1.97 (N/mm)

1.4 せん断基準強度Fs (平13国交告第1024 号第三第九号二)

せん断基準強度は下記式より算出する。

fv,lam,0

fs= min fv,lam,90 · (tnet/tgross)

 $\label{eq:continuous} $$ (b - nca/2 - tgross) - 1/(1/fv, tor - (1-1/m^2) + 2/fR - (1/m-1/m^2)) \times k5th $$$

fv.lam.0	:ラミナの繊維方向せん断強度N/mm2
IV,Iaiii,U	. ノベノ V/収/吐/川川 ピ / V 四川虫/文 N / I I I I I I

ひのき、からまつ	3.6 N/mm ²
つが	3.3 N/mm ²
とどまつ	3.0 N/mm ²
すぎ	2.7 N/mm ²

 $f_{V,lam,90}$: ラミナの繊維方向に直交する方向のせん断強度 N/mm^2

ひのき、からまつ	10.8 N/mm ²	f _{v,lam,0} × 3
つが	9.9 N/mm ²	
とどまつ	9.0 N/mm ²	
すぎ	8.1 N/mm ²	

tnet :総層数に占める少ない層のラミナ厚の和 3層3プライ

3層3プライ net 1層分 30 mm 5層5プライ net 2層分 60 mm 7層7プライ net 3層分 90 mm

tgross :総厚さ

3層3プライ 総厚さ 90 mm 5層5プライ 総厚さ 150 mm 7層7プライ 総厚さ 210 mm 120 mm

b :ラミナ幅

3層3プライ 2 5層5プライ 4

nca :厚さ方向の接着面数

5層5プライ 4 7層7プライ 6

fv,tor 接着された直交するラミナの交差面のねじりせん断強度

ひのき、からまつ	4.7 N/mm ²	
つが	3.0 N/mm^2	
とどまつ	3.0 N/mm^2	
すぎ	3.0 N/mm^2	20181212改正前4.0

m:幅方向のラミナの最小枚数

すぎ 3.0 N/ 成500mm 3 成600mm 4 成700mm 5 成900mm 6

fR :ローリングシア強度

_ 成1000mm	1
ひのき、からまつ	2.0 N/mm ²
つが	1.8 N/mm ²
とどまつ	1.6 N/mm ²
すぎ	1.5 N/mm ²

1.4.1せん断基準強度Fs(面外、面内)の算定

m=3	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層5プライ	M×60-5-5	150	500	120	4	3

fv,lam,0		2.70	1.0	2.70	
fv,lam,90 • (tnet/tgross)	5層5プライ	3.24	1.0	3.24	2.02
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		2.03	1.0	2.025	

右図より、m=3とする。

以上より、

積層(面外)方向 <i>Fs</i> y =	0.9	(N/mm)
幅(面内)方向 <i>Fs</i> x =	2.02	(N/mm)

面外方向は、ラミナ構成に関係なく_{面外}**Fs**=0.9N/mm²とする。

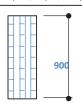
m=4	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層5プライ	M×60-5-5	90	600	120	4	4
	0/8 00 0 1						

fv,lam,0		2.70	1.0	2.70	
fv,lam,90 • (tnet/tgross)	5層5プライ	3.24	1.0	3.240	2.13
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		2.13	1.0	2.133	

右図より、m=4とする。

			_
以上より、	積層(面外)方向 <i>Fs</i> y =	0.9 (N/mm)	面外方向は、ラミナ構成に関係なく _{面外} Fs =0.9N/mm ² とする。
	幅(面内)方向 Fex =	2 13 (N/mm)	

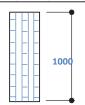
m=5	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネ 直交接着層 <i>0</i>		ラミナ幅 数の最/	
	5層5プライ	Mx60-5-5	90	700	120) 4		5	5
f , 0						2.70	1.0	2.70	


fv,lam,0		2.70	1.0	2.70	
fv,lam,90 · (tnet/tgross)	5層5プライ	3.24	1.0	3.240	2.25
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		2.25	1.0	2.25	

右図より、m=5とする。

以上より、	積層(面外)方向 <i>Fs</i> y =	0.9 (N/mm)	面外方向は、ラミナ構成に関係なく _{面外} Fs =0.9N/mm ² とする。
	幅(面内)方向 <i>Fs</i> x =	2.25 (N/mm)	

m=6			=6 ラミナ構成 強度等級 パネル厚さ (LT幅 (mm) 5層5プライ Mx60-5-5 90 900		(mm)	ラミナ幅 b (mm)	CLTパネ 直交接着層		ラミナ幅方向の 数の最小値 m	
	5暦5ノフ1	MIX00-3-3	90	900	120	4			•	
f _V ,lam,0						2.70	1.0	2.70		
fv,lam,90·(tnet/tgross)					5層5プライ	3.24	1.0	3.24	2.35	
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²)+2/fR • (1/m-1/m²))						2.36	1.0	2.35		



右図より、m=6とする。

以上より、	積層(面外)方向 <i>Fs</i> y =	0.9 (N/mm)	面外方向は、ラミナ構成に関係なく _{面外} Fs =0.9N/mm ² とする。
	幅(面内)方向 <i>Fs</i> x =	2.35 (N/mm)	

m=7	ラミナ構成	強度等級	パネル厚さ t _{gross (mm)}	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層5プライ	Mx60-5-5	150	1000	120	4	7

fv,lam,0		2.70	1.0	2.70	
fv,lam,90 · (tnet/tgross)	5層5プライ	3.24	1.0	3.24	2.45
$(3b \cdot nca/8 \cdot tgross) \cdot 1/(1/fv,tor \cdot (1-1/m^2) + 2/fR \cdot (1/m-1/m^2))$]	2.45	1.0	2.45	

右図より、m=7とする。

以上より、	積層(面外)方向 <i>Fs</i> y =	0.9 (N/mm)	 面外方向は、ラミナ構成に関係なく _{面外} Fs =0.9N/mm ² とする。
	幅(面内)方向 Fs x =	2 45 (N/mm)	

めり込みの基準強度は外層ラミナの樹種に応じて表1.2のように規定されている。

表1.2 CLTパネルのめり込みの基準強度 Fev

外層ラミナの樹種	Fov (N/mm)
あかまつ、くろまつ、ダフリカからまつ、サザンパイン、べいまつ、ホワイトサイプレスパイン及び ウエスタンラーチ	9.0
ひのき、ひば、からまつ及びべいひ	7.8
つが、アラスカイエローシダー、ベにまつ、ラジアタパイン、ペいつが、もみ、とどまつ、えぞまつ、ベいもみ、スプルース、ロッジボールパイン、ポンデローサパイン、おうしゅうあかまつ、 <u>すぎ</u> 、べいすぎ及びジャックパイン	6.0

2. CLT パネルの弾性係数(曲げヤング係数E、せん断弾性係数G)

2.1 面外方向の弾性係数

Shear Analogy Method*: に基づいて、面外方向の縦弾性係数E とせん断弾性係数G を次のように計算する。以下、ラミナの繊維方向がCLT パネルの長手方向に平行な層を「平行層」、直交する層を「直交層」と称する。

2.1.1面外方向強軸の曲げヤング係数の算定

縦弾性係数 $E = \frac{\sum (E_i \cdot I_i + E_i \cdot A_i \cdot z_i^2)}{I_0}$

Ei, Ii, Ai, zi, Io: 1.4節に同じ(Eの計算においては、直交層はEi=0)

ラミナ構成	強度等級	パネル厚さ t _{gross (mm)}	CLT幅 (mm)	外層ラミナ方向
5層5プライ	M×60-5-5	150	900	強軸
	E ₀	ラミナ厚		
	6000	30	1	

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm³)	7 × 7 71 IPJ	E1. A1	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	6000	平行層	162000000	2025000	60	5.954E+11
2	900	30	27000	0	直交層	0	2025000	30	0
3	900	30	27000	3000	平行層	81000000	2025000	0	6.075E+09
4	900	30	27000	0	直交層	0	2025000	30	0
5	900	30	27000	6000	平行層	162000000	2025000	60	5.954E+11
6	_	_	_	_	_	_	_	_	_
7	_	_	_	_	_	_	_	_	_
8	_	ı	_	-	_	_	_	_	_
9	_	-	_	-	_	_	_	_	_
		$\mathbf{A_0} = \Sigma Ai$	135000		Σ Ei•Ai	624.00	Σ Ei•Ii	i+Ei•Ai•zi²	1.20E+12

 $\Sigma E i \cdot I i + E i \cdot A i \cdot Z i^2 = 1.20E + 12 (N \cdot mm)$

 $I_0 = 2.53E+08 \, (mm^4)$

以上より、<u>E = 4728 (N/mm)</u>

2.1.2面外方向弱軸の曲げヤング係数の算定

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	150	900	弱軸
	E ₀	ラミナ厚		
	3000	30	1	

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向		住度 □ □ □ □	ラミナ方向 Ei・Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
	(mm)	(mm)	Ai(mm)	Ei(N/mm)			El Al	Ii (mm4)	zi (mm)	Ei•Ai•zi ²	
1	900	30	27000	0	直交層	0	2025000	60	0		
2	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10		
3	900	30	27000	0	直交層	0	2025000	0	0		
4	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10		
5	900	30	27000	0	直交層	0	2025000	60	0		
6	_	_	_	_	_	_	_	_	_		
7	_	_	_	_	_	_	_	_	_		
8	_	_	_	_	_	_	_	_	_		
9	_	_	_	l	_	-	l	_	_		
	<u> </u>				Σ Ei•Ai	162000000	Σ Ei•Ii	i+Ei•Ai•zi²	1.58E+11		

 $\Sigma \mathrm{Ei} \cdot \mathrm{Ii} + \mathrm{Ei} \cdot \mathrm{Ai} \cdot \mathrm{Zi}^2 = 1.58 \mathrm{E} + 11 \, (N \cdot \mathrm{mm})$

 $I_0 = 2.53E+08 \text{ (mm}^4\text{)}$

以上より、 E = 624 (N/mm)

2.1.3面外方向強軸のせん断弾性係数の算定

せん断弾性係数 $G = \frac{a^2}{\frac{h_l}{2 \cdot G_l} + \sum\limits_{l=2}^{e-1} \frac{h_l}{G_l} + \frac{h_a}{2 \cdot G_o}} \cdot \frac{1}{t_{gross}}$

a(mm) :外層同士の重心間距離(外層が弱軸の場合、その一つ内側のラミナ同士の距離とする)

hi(mm) :i番目の層の厚さ

 ${
m Gi(N/mm^2)}$:i番目の層のせん断弾性係数(平行層 ${
m Gi}={
m Ei}/16$ 、直交層 ${
m Gi}={
m Ei}/160$)

tgross(mm) :CLTパネルの厚さ

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層同士の重心間 距離 a(mm)	外層ラミナ方向	
5層5プライ	M×60-5-5	150	900	120	強軸	

E ₀	ラミナ厚
6000	30

外層ラミナが強軸の場合、1層目は1番目の外層、もう一方の外層がn層目となる。

層	ラミナ厚	ラミナ強度	ラミナ方向	層のせん断弾性係数	hi/Gi	備考
眉	hi(mm)	Ei(N/mm³)		Gi(N/mm)	111/01)用プ
1	30	6000	平行層	375	0.04	$h_1/(2 \cdot G_1)$
2	30	3000	直交層	18.75	1.6	
3	30	3000	平行層	187.5	0.16	
4	30	3000	直交層	18.75	1.6	
5	30	6000	平行層	375	0.04	hn/(2•Gn)
6	_	_	_	_	_	
7	_	_	_	_	_	
8	_	_	_	_	_	
9	_	_	_	_	-	
	1月	暑目と3層目の	のhi/Giは半:	分としている。 Σ hi/Gi	3.44	

以上より、 G = 27.91 (N/mm)

2.1.4面外方向弱軸のせん断弾性係数の算定

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層同士の重心間 距離 a(mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	150	900	60	弱軸
	E ₀	ラミナ厚			_
	6000	30	1		

外層ラミナが弱軸の場合、外層ラミナ直交層はhi/Gi=0とし、その一つ内側のラミナを1番目として算出する。

層	ラミナ厚	ラミナ強度	ラミナ方向	層のせん断弾性係数	hi/Gi	備考
/8	hi(mm)	Ei(N/mm))	Gi(N/mm)	111/01	IIII 75
1	30	6000	直交層	37.5	0	
2	30	3000	平行層	187.5	0.08	hn/(2•Gn)
3	30	3000	直交層	18.75	1.6	
4	30	3000	平行層	187.5	0.08	hn/(2•Gn)
5	30	6000	直交層	37.5	0	
6	_	_	_	_	_	
7	_	_	_	_	_	
8	_	_	_	_	_	
9	_	-	_	-		
		1.76				

以上より、 G = 13.64 (N/mm)

2.2 面内方向の弾性係数

面内方向の縦弾性係数Eは、平行層のみを有効として次のように算定する。

$$E = \frac{\sum (E_i \cdot A_i)}{A_0}$$

Ei Ai Ao :1.2 節に同じ。

面内方向のせん断弾性係数G は、既往の実験結果に基づいて、 ラミナ構成、強度等級にかかわらず $G_{\overline{\mathrm{mh}}}$ =500N/mm 2 とする。

2.2.1面内方向強軸の曲げヤング係数

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅(mm)	外層ラミナ方向
5層5プライ	MX60-5-5	150	900	強軸
	E ₀	ラミナ厚		
	6000	30	1	

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7 ~ 7 7 IFJ	121 711	
1	900	30	27000	6000	平行層	162000000	
2	900	30	27000	0	直交層	0	
3	900	30	27000	3000	平行層	81000000	
4	900	30	27000	0	直交層	0	
5	900	30	27000	6000	平行層	162000000	
6	_	_	_	_	_	_	
7	_	_	_	_	_	_	
8	_	_	_	_	_	_	
9	_	_	_	_	_	_	
		A0= Σ Ai	135000		Σ Ei•Ai	4.05E+08	

 $A_A = \Sigma(E_i \cdot A_i)/E_0 = 6.75E + 04 \text{ (N)}$

 $A_0 = 135000 \, (\text{mr}\text{m})$

以上より、 E = 3000 (N/mm) (N/mm)

2.2.2面内方向弱軸の曲げヤング係数

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅(mm)	外層ラミナ方向
5層5プライ	S60-5-5	150	900	弱軸
	E ₀	ラミナ厚		
	3000	30		

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7 × 7 71 HJ	El-Ai
1	900	30	27000	0	直交層	0
2	900	30	27000	3000	平行層	81000000
3	900	30	27000	0	直交層	0
4	900	30	27000	3000	平行層	81000000
5	900	30	27000	0	直交層	0
6	_	_	_	_	_	_
7	_	_	_	_	_	_
8	_	_	_	_	_	_
9	_	_	_	_	_	_
		A0= Σ Ai	135000		Σ Ei•Ai	1.62E+08

 $\begin{array}{rcl} A_A \!\!=\!\! \Sigma(Ei\!\cdot\!Ai)\!/E_0 \!\!=\! & 1.62 \text{E+08 (N)} \\ A_0 & = & 135000 \text{ (mfi)} \end{array}$

以上より、 E = 1200 (N/mm)

2.2.3面内方向(強軸、弱軸共通)のせん断弾性係数

ラミナ構成、強度等級にかかわらず面内方向せん断弾性係数Gは、下記とする。

G_{面内}= 500 (N/m㎡)

3. CLT パネルの応力度計算方法

CLT パネルを線要素(梁要素)にモデル化する場合に、応力変形解析によって得られる当該要素の軸方向の圧縮応力をC、引張応力をT、曲げ応力をM、せん断応力をQとする。このとき、CLT パネルの応力度は次のように求める。

圧縮応力度
$$\sigma_c = \frac{C}{A}$$

引張応力度
$$\sigma_i = \frac{T}{A}$$

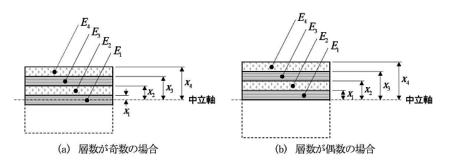
曲げ応力度
$$\sigma_b = \frac{M}{Z_0}$$

面内せん断応力度
$$au_I = 1.5 \cdot \frac{Q}{A_0}$$
 面外せん断応力度 $au_O = \mathcal{B} \cdot \frac{Q}{A_0}$

ここで、 A_0 はCLTパネルの断面積、 Z_0 は面内または面外方向の断面係数で、Mの方向に応じて決定する。いずれも直交層を含む全断面を有効とした値とする。

3.1面外方向強軸のせん断応力度分布係数β

βは面外方向のせん断応力度分布係数(の最大値)で、次のように求める。


$$\beta = \frac{A_0}{2 \cdot E \cdot I_0} \cdot \left\{ E_1 \cdot x_1^2 + \sum_{i=2}^m E_i \cdot (x_i^2 - x_{i-1}^2) \right\}$$

E, Io(mm4):CLT パネル面外方向の弾性係数、断面二次モーメント

m:CLTパネル中立軸(対称構成の場合は厚さの中央)より外側のラミナ層数

Ei(N/mm²):i番目の層の弾性係数(直交層ではEi= 0)

xi:CLT パネル中立軸から、i番目の層のCLT パネル中立軸から遠い面までの距離

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	CLTパネル中立軸より 外側のラミナ総数 m	外層ラミナ方向
5層5プライ	S60-5-5	150	900	2	強軸
_	E ₀	ラミナ厚			
	6000	30			

層	CLT幅 (mm)	ラミナ厚 (mm)	ラミナ強度 Ei(N/mm)	ラミナ方向	xi	xi² - xi-1²	Ei• (xi² - xi-1²)	$E_1 {}^\bullet x_1{}^2$
x3	900	30	6000	平行層	75	3600	21600000	
x2	900	30	0	直交層	45	1800	0	
x1	900	30	3000	平行層	15		0	675000
				x1を除く				
				ΣEi•($xi^2 - xi^{-1^2}$	21600000		

面外方向の弾性係数・断面二次モーメント

E = 4728.00 (N/mm)

 $I_0 = 2.53E + 08 \text{ (mm}^4\text{)}$

 $A_0 = 2.53E + 08 \text{ (mm}^3\text{)}$ $A_0 = 135000 \text{ (mm}^3\text{)}$ 2.1.1面外方向強軸の曲げヤング係数の算定による。

2.1.1面外方向強軸の曲げヤング係数の算定による。

2.1.1面外方向強軸の曲げヤング係数の算定による。

4. Mx60-5-5の基準強度・弾性係数一覧

「1. CLT パネルの基準強度」及び、「3. CLT パネルの応力度計算方法」によるせん断応力度分布係数、β の値を表4.1 に示す。また、「2. CLT パネルの弾性係数」による弾性係数E ,Gを表4.2に示す。面内方向のせん断の基準強度Fs 以外はラミナの厚さに依存しない。また、面内方向のせん断の基準強度Fs を計算する際のラミナの幅b・厚さtは本物件で使用する下記値を採用する。ラミナ幅方向の数の最小値mは断面応力度検定時に各部材ごとに設定する事とするが、ここではm=7まで設定した算定結果を示す。

ラミナ幅 b(mm)	120	
ラミナ厚さ t(mm)	30	
ラミナ幅方向の数の最小値 m	7	※断面応力度検定時に各部材ごとに設定する

表4.1 CLTパネルの基準強度、せん断応力度分布係数

			<u> </u>							面外方向							
ラミナ構成	強度等級	F	c	F	t	FI	ЭX		Fsx			Fby		Fsy	ļ.	3	
		強軸	弱軸	強軸	弱軸	強軸	弱軸	m=3	m=4	m=5	m=6	m=7	強軸	弱軸	共通	強軸	弱軸
5層5プライ	Mx60-5-5	8.10	4.68	6.00	3.45	8.10	4.68	2.02	2.13	2.25	2.35	2.45	10.37	1.97	0.90	1.256	2.308

単位:N/mil

表42 CLTパネルの弾性係数

					不ノレリング			
		Ī	面内方向		面外方向			
ラミナ構成	強度等級	E		G	E		G	
		強軸	弱軸	共通	強軸	弱軸	強軸	弱軸
5層5プライ	Mx60-5-5	3000	1200	500	4728	624	27.91	13.64
							177.1-1	. NI / 2

単位:N/mi

4.1.1基準強度および弾性係数とCLT パネルに作用する荷重の方向の関係

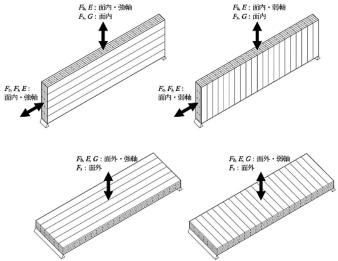


図4.1 CLTパネルの基準強度・弾性係数と荷重方向の関係

以上より、 β = 1.256 設計施エマニュアルP79のS60-5-5は、1.288としている。

3.1.2面外方向弱軸のせん断応力度分布係数β

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	CLTパネル中立軸より 外側のラミナ総数 m	外層ラミナ方向
5層5プライ	S60-5-5	150	900	2	弱軸
	E ₀	ラミナ厚			
	3000	30			

層	CLT幅	ラミナ厚	ラミナ強度	ラミナ方向	xi	$xi^2 - xi^{-1}$	Ei•	E ₁ •x ₁ ²	
眉	(mm)	(mm)	Ei(N/mm)	ノベノノハロ	XI	X1 — X1-1	$(xi^2 - xi^{-1})$	E1-X1	
x3	900	30	0	直交層	75	3600	0	_	
x2	900	30	3000	平行層	45	1800	5400000	_	
x1	900	30	0	直交層	15		0	0	
x1を除く					ΣEi•($xi^2 - xi^{-1^2}$	5400000		

面外方向の弾性係数・断面二次モーメント

 $E = 624 \, (N/m^{4})$

2.1.2面外方向強軸の曲げヤング係数の算定による。 2.1.2面外方向強軸の曲げヤング係数の算定による。

 $I_0 = 2.53E+08 \text{ (mm}^4\text{)}$ $A_0 = 135000 \text{ (mm}^3\text{)}$

2.1.2面外方向強軸の曲げヤング係数の算定による。

以上より、 $\beta = 2.308$

参考資料2

Mx60-5-7 基準強度、弾性係数、応力度算定シート

□CLT パネルの基準強度、弾性係数および応力度の算定

1. CLT パネルの基準強度

平28 国交告第562 号(平13 国交告第1024 号の改正)によりCLT パネルの基準強度は次のように規定されている。 以下、ラミナの繊維方向がCLT パネルの長手方向に平行な層を「平行層」、直交する層を「直交層」と称する。

A ラミナの強度、曲げヤング係数と寸法 CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。 表1.1 ラミナの強度、曲げヤング係数と寸法(幅、厚み寸法は、製造工場で異なります。必ず確認してください。)

ラミナ種類	生処反 厶	等級区分 ラミナの強度 (N/mil)			寸法		
ノベノ作生規		σ _{c,oml}	σ t,oml	σ _{b,oml}	Ei	幅 (mm)	厚み (mm)
M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30
M30A	等級区分機による等級	15.6	11.5	19.5	3000	124	30

1.1 圧縮基準強度 Fo (平13国交告第1024 号第三第九号イ) 圧縮基準強度は下記式より算出する。ここで、σο, omlは、強軸方向の基準強度を計算する場合は外層ラミナの圧縮強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの圧縮強度となる。

压缩
$$F_c = \sigma_{c.omi} \cdot \frac{A_A}{A_0} \times 0.75$$
 $A_A = \frac{\sum E_i \cdot A_i}{E_0}$

 $Ei(N/mm^2)$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

 $E_0(N/mm^2)$: 強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数

 $A_0(mm^2)$:CLT パネルの断面積

1.1.1強軸方向の圧縮基準強度Fcの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm³)	Ei(N/mm³)	ノミノカ川	El Al
1	900	30	27000	6000	平行層	162000000
2	900	30	27000	6000	平行層	162000000
3	900	30	27000	0	直交層	0
4	900	30	27000	3000	平行層	81000000
5	900	30	27000	0	直交層	0
6	900	30	27000	6000	平行層	162000000
7	900	30	27000	6000	平行層	162000000
8	_	_	_	_	_	_
9	_	_	_	_	_	_
					Σ Ei•Ai	729000000

6000 (N/mm) 189000 (mm) $A_0 =$

 $AA = \Sigma EiAi/E_0 =$ 121500 (mm)

> $\sigma_{c,oml} =$ 21.6 (N/mm) 表1.1による。

以上より、 **強軸**Fc = 10.41 (N/mm)

1.1.2弱軸方向の圧縮基準強度Fcの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	M×60-5-7	900	弱軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
盾	(mm)	(mm)	Ai(mm)	Ei(N/mm)	ノベノノ川町	EI-AI
1	900	30	27000	0	直交層	0
2	900	30	27000	0	直交層	0
3	900	30	27000	3000	平行層	81000000
4	900	30	27000	0	直交層	0
5	900	30	27000	3000	平行層	81000000
6	900	30	27000	0	直交層	0
7	900	30	27000	0	直交層	0
8	_	_	_	_	_	_
9	_	_	_	_	_	_
					Σ Ei•Ai	162000000

3000 (N/mm) $E_0 =$ 189000 (mm) $A_0 =$

54000 (mm) 15.6 (N/mm) 表1.1による。 $\sigma_{\text{c,oml}} \; = \;$

以上より、**弱軸**Fc= 3.34 (N/mm)

 $A_A = \Sigma E_i A_i / E_0 =$

A ラミナの強度、曲げヤング係数と寸法

CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。

表1.1 ラミナの強度、曲げヤング係数と寸法(幅、厚み寸法は、製造工場で異なります。必ず確認してください。)

201.11 / 1/ 1/	Will A CANDY MAN LANGE IN CHECK TO CHECK TO CHECK								
ラミナ種類	ナ種類 等級区分		ラミナの強度 (N/mm)				寸法		
ノベノ作業規		σ _{c,oml}	σt,oml	σ b,oml	Ei	幅 (mm)	厚み (mm)		
M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30		
M30A	等級区分機による等級	15.6	11.5	19.5	3000	124	30		

1.2 引張基準強度 Ft (平13国交告第1024 号第三第九号口)

引張基準強度は下記式より算出する。ここで、のtomに強軸方向の基準強度を計算する場合は外層ラミナの引張強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの引張強度となる。

引張
$$F_t = \sigma_{total} \cdot \frac{A_A}{A_0} \times 0.75$$
 $A_A = \frac{\sum E_i \cdot A_i}{E_0}$

 $Ei(N/mm^2)$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

Eo(N/mm²):強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数

A₀(mm²) :CLT パネルの断面積

1.2.1強軸方向の引張基準強度Ftの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	M×60-5-7	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7 × 7 7 1 1 PJ	El-Ai
1	900	30	27000	6000	平行層	162000000
2	900	30	27000	6000	平行層	162000000
3	900	30	27000	0	直交層	0
4	900	30	27000	3000	平行層	81000000
5	900	30	27000	0	直交層	0
6	900	30	27000	6000	平行層	162000000
7	900	30	27000	6000	平行層	162000000
8	_	_	_	_	_	_
9	_	_	_	_	_	_
					Σ Ei•Ai	729000000

 $egin{array}{lll} E_0 &=& 6000 \ (N/m\mathaleft) \\ A_0 &=& 189000 \ (m\mathaleft) \\ A_A &=& 121500 \ (m\mathaleft) \end{array}$

 $\sigma_{\rm t,oml} = 16.0 \, ({
m N/m m})$ 表1.1による。

以上より、 **強軸Ft= 7.71 (N/m㎡)**

1.2.2弱軸方向の引張基準強度の算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	900	弱軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7 × 7 7 1 1 1 1	EI-AI
1	900	30	27000	0	直交層	0
2	900	30	27000	0	直交層	0
3	900	30	27000	3000	平行層	81000000
4	900	30	27000	0	直交層	0
5	900	30	27000	3000	平行層	81000000
6	900	30	27000	0	直交層	0
7	900	30	27000	0	直交層	0
8	_	_	_	_	_	_
9	_	_	-	_	_	_
					Σ Ei•Ai	162000000

 $E_0 = 3000 \text{ (N/mm)}$ $A_0 = 189000 \text{ (mm)}$ $A_A = 54000 \text{ (mm)}$

 $\sigma_{
m t,oml}$ = 11.5 (N/mm) 表1.1による。

以上より、 **弱軸**Ft = 2.46 (N/mm)

A ラミナの強度、曲げヤング係数と寸法

CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。

表1.1 ラミナの強度、曲げヤング係数と寸法

	XIII > () > MXC 1D							
ラミナ種類	等級区分		ラミナの強度(N/mm)				寸法	
ノベノが主対	守敝囚刀	σ _{c,oml}	σt,oml	σ _{b,oml}	Ei	幅 (mm)	厚み (mm)	
M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30	
M30A	等級区分機による等級	15.6	11.5	19.5	3000			

1.3 曲げ基準強度Fb (平13国交告第1024 号第三第九号ハ)

曲げ基準強度は下記式より算出する。ここで、のbomは強軸方向の基準強度を計算する場合は外層ラミナの曲げ強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの曲げ強度となる。

曲げ 積層(面外)方向 $F_b = \sigma_{b.oml} \cdot \frac{I_A}{I_0} \times 0.4875$

幅(面内)方向 $F_b = \sigma_{b.oml} \cdot \frac{A_A}{A} \times 0.6$

 $A_{A} = \frac{\sum E_{i} \cdot A_{i}}{E_{0}} \qquad I_{A} = \frac{\sum (E_{i} \cdot I_{i} + E_{i} \cdot A_{i} \cdot z_{i}^{2})}{E_{0}}$

 $\mathrm{Ei}(\mathrm{N/mm^2})$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

 $Eo(N/mm^2)$: 強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数

Ao(mm²) :CLT パネルの断面積

Ii(mm⁴) :i 番目の層の断面二次モーメント

zi(mm) :i 番目の層の重心とCLT パネルの中立軸との距離

Io(mm⁴) :CLT パネルの断面二次モーメント

1.3.1強軸方向の面内曲げ基準強度Fbの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	M×60-5-7	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)) ~ / / / III	El*Al	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	6000	平行層	162000000	2025000	90	1.324E+12
2	900	30	27000	6000	平行層	162000000	2025000	60	5.954E+11
3	900	30	27000	0	直交層	0	2025000	30	0
4	900	30	27000	3000	平行層	81000000	2025000	0	6.075E+09
5	900	30	27000	0	直交層	0	2025000	30	0
6	900	30	27000	6000	平行層	162000000	2025000	60	5.954E+11
7	900	30	27000	6000	平行層	162000000	2025000	90	1.324E+12
8	_	_	_	_	_	_	_	_	_
9		_	l	-	-		_	-	_
						729000000	Σ Ei•Ii	+Ei•Ai•zi²	3.85E+12

 $E_0 = 6000 \, (N/mm)$

 $\sigma_{
m b,oml}$ = 27.0 (N/mm) 表1.1による。

以上より、 幅(面内)方向強軸Fb = 10.41 (N/mm)

1.3.2弱軸方向の面内曲げ基準強度Fbの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	900	弱軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm³)	7 × 7 7 1 1 1	El*Al	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	0	直交層	0	2025000	60	0
2	900	30	27000	0	直交層	0	2025000	30	0
3	900	30	27000	3000	平行層	81000000	2025000	0	6.075E+09
4	900	30	27000	0	直交層	0	2025000	0	0
5	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
6	900	30	27000	0	直交層	0	2025000	60	0
7	900	30	27000	0	直交層	0	2025000	90	0
8	_	_	_	_	_	_	_	_	_
9	_	_	_	_	_		_	_	_
						162000000	Σ Ei•Ii	+Ei•Ai•zi ²	8.505E+10

 $E_0 = 3000 \, (N/m\mathring{n})$

 $\sigma_{\rm b,oml}$ = 19.5 (N/mm) 表1.1による。

以上より、 幅(面内)方向弱軸Fb = 3.34 (N/mm)

1.3.3強軸方向の面外曲げ基準強度 Fb の算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	ノミノカドリ	El*Al	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	6000	平行層	162000000	2025000	90	1.324E+12
2	900	30	27000	6000	平行層	162000000	2025000	60	5.954E+11
3	900	30	27000	0	直交層	0	2025000	30	0
4	900	30	27000	3000	平行層	81000000	2025000	0	6.075E+09
5	900	30	27000	0	直交層	0	2025000	30	0
6	900	30	27000	6000	平行層	162000000	2025000	60	5.954E+11
7	900	30	27000	6000	平行層	162000000	2025000	90	1.324E+12
8	_	_	_	_	_	_	_	_	_
9	_	_	_	_	_	_	_	_	_
						729000000	Σ Ei•Ii	+Ei•Ai•zi²	3.845E+12

 $E_0 = 6000 \, (N/mm^2)$ $E_0 = 0000 \text{ (N/min)}$ $E_0 = 0.95\text{E} + 08 \text{ (mm}^4)$ $E_0 = 0.41\text{E} + 08 \text{ (mm}^4)$ E_0

以上より、 積層(面外)方向強軸Fb 12.14 (N/mm)

1.3.4弱軸方向の面外曲げ基準強度 Fbの算定

1	ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
	5層7プライ	Mx60-5-7	900	弱軸

	OI 구세급	ニュエ同		二二十分在	1		断面二次モーメント	中立軸との距離	Ei•Ii+
層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	_
/11	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7 7 7 3 1 1 3	121 741	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	0	直交層	0	2025000	90	0
2	900	30	27000	0	直交層	0	2025000	60	0
3	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
4	900	30	27000	0	直交層	0	2025000	0	0
5	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
6	900	30	27000	0	直交層	0	2025000	60	0
7	900	30	27000	0	直交層	0	2025000	90	0
8	_	_	_	_	_	_			
9	_	_	_	_	-	_			
	•					162000000	Σ Ei•Ii	+Ei•Ai•zi ²	1.58E+11

 $E_0 = 3000 (N/mm^2)$

 $I_0 = 6.95E+08 \text{ (mm}^4\text{)}$ $I_A = 5.27E+07 \text{ (mm}^4\text{)}$ $\sigma_{b,oml} = 19.5 \text{ (N/mm}^6\text{)}$ 189000 (mm) $A_0 =$ AA = 表1.1による。 54000 (mm)

以上より、 積層(面外)方向弱軸Fb 0.72 (N/mm) 0.72 (N/mm)

1.4 せん断基準強度Fs (平13国交告第1024 号第三第九号二)

せん断基準強度は下記式より算出する。

fv,lam,0

fs= min fv,lam,90 • (tnet/tgross)

 $(b \cdot nca/2 \cdot tgross) \cdot 1/(1/fv,tor \cdot (1-1/m^2) + 2/fR \cdot (1/m-1/m^2)) \times k5th$

:ラミナの繊維方向せん断強度N/mm² fv,lam,0

ひのき、からまつ	3.6 N/mm ²
つが	3.3 N/mm ²
とどまつ	3.0 N/mm ²
すぎ	2.7 N/mm ²

fv.lam.90 : ラミナの繊維方向に直交する方向のせん断強度N/mm²

ひのき、か	らまつ	10.8 N/mm ²	$f_{v,lam,0} \times 3$
つが		9.9 N/mm ²	
とどまつ		9.0 N/mm ²	
すぎ		8.1 N/mm^2	
3層3プライ	net 1層分	30 mm	

改正前4.0

tnet

:総層数に占める少ない層のラミナ厚の和 3層3プライ

5層7プライ 5層5プライ net 2層分 60 mm 7層7プライ net 3層分

:総厚さ **t**gross

90 mm 3層3プライ 総厚さ 90 mm 5層5プライ 総厚さ 150 mm

:ラミナ幅 b

5層7プライ 7層7プライ 総厚さ 210 mm 120 mm

nca :厚さ方向の接着面数

3層3プライ 2 5層7プライ 5層5プライ 4

6 7層7プライ

:接着された直交するラミナの交差面のねじりせん断強度 fv,tor

ひのき、からまつ 4.7 N/mm² $3.0 \, N/mm^2$ つが

:幅方向のラミナの最小枚数

3.0 N/mm とどまつ すぎ 3.0 N/mm^2 成500mm 成600mm 4

成700mm 5 成900mm 6

fR :ローリングシア強度

成1000mm	1
ひのき、からまつ	2.0 N/mm ²
つが	1.8 N/mm ²
とどまつ	1.6 N/mm ²
すぎ	1.5 N/mm^2

1.4.1せん断基準強度Fs (面外、面内)の算定

m=3	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層7プライ	M×60-5-7	210	500	120	4	3

fv,lam,0		2.70	1.0	2.70	
fv,lam,90 • (tnet/tgross)	5層7プライ	2.31	1.0	2.314	1.44
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		1.45	1.0	1.446	

右図より、m=3とする。

以上より、

積層(面外)方向	Fs y	=	0.9	(N/mm)
幅(面内)方向	Fs ×	=	1.44	(N/mm)

面外方向は、ラミナ構成に関係なく $_{\text{面} h}$ $Fs = 0.9 \text{N/mm}^2$ とする。

m=4	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層7プライ	Mx60-5-7	210	600	124	4	4

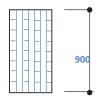
fv,lam,0		2.70	1.0	2.70	
fv,lam,90 · (tnet/tgross)	5層7プライ	2.31	1.0	2.314	1.52
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		1.52	1.0	1.524	

右図より、m=4とする。

以上より、 積層(面外)方向 Fsy = 0.9 (N/mm) 幅(面内)方向 Fsx = 1.52 (N/mm)

|面外方向は、ラミナ構成に関係なく_{面外**Fs**=0.9N/mm²とする。}

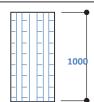
m=5	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層7プライ	Mx60-5-7	210	700	124	4	5


fv,lam,0		2.70	1.0	2.70	
fv,lam,90 • (tnet/tgross)	5層7プライ	2.31	1.0	2.314	1.60
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		1.61	1.0	1.607	

右図より、m=5とする。

m=6	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層7プライ	M×60-5-7	210	900	124	4	6

fv,lam,0		2.70	1.0	2.70	
fv,lam,90 · (tnet/tgross)	5層7プライ	3.24	1.0	3.240	1.68
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		1.68	1.0	1.683	


右図より、m=6とする。

以上より、

積層(面外)方向	<i>Fs</i> y	=	0.9	(N/mm)
幅(面内)方向	Fs×	=	1.68	(N/mm)

m=7	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層7プライ	Mx60-5-7	210	1000	124	4	7

fv,lam,0		2.70	1.0	2.70	
fv,lam,90 • (tnet/tgross)	5層7プライ	3.24	1.0	3.24	1.75
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		1.75	1.0	1.750	

右図より、m=7とする。

以上より、 積層(面外)方向 Fsy = 0.9 (N/mil) 幅(面内)方向 Fsx = 1.75 (N/mil)

面外方向は、ラミナ構成に関係なく $_{\text{ms}}$ Fs = 0.9N/mm^2 とする。

めり込みの基準強度は外層ラミナの樹種に応じて表1.2のように規定されている。

表1.2 CLTパネルのめり込みの基準強度 Fev

<u> </u>					
外層ラミナの樹種	Fcv (N/mm)				
あかまつ、くろまつ、ダフリカからまつ、サザンパイン、べいまつ、ホワイトサイプレスパイン及び ウエスタンラーチ	9.0				
ひのき、ひば、からまつ及びべいひ	7.8				
つが、アラスカイエローシダー、べにまつ、ラジアタパイン、べいつが、もみ、とどまつ、えぞまつ、べいもみ、スプルース、ロッジボールパイン、ポンデローサパイン、おうしゅうあかまつ、 <u>すぎ</u> 、べいすぎ及びジャックパイン	6.0				

2. CLT パネルの弾性係数(曲げヤング係数E、せん断弾性係数G)

2.1 面外方向の弾性係数

Shear Analogy Method*: に基づいて、面外方向の縦弾性係数E とせん断弾性係数G を次のように計算する。以下、ラミナの繊維方向がCLT パネルの長手方向に平行な層を「平行層」、直交する層を「直交層」と称する。

2.1.1面外方向強軸の曲げヤング係数の算定

縦弾性係数 $E = \frac{\sum (E_i \cdot I_i + E_i \cdot A_i \cdot z_i^2)}{I_0}$

Ei, Ii, Ai, zi, Io: 1.4節に同じ(Eの計算においては、直交層はEi=0)

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	強軸
	E ₀	ラミナ厚		
	6000	30		
	3000	30		

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
盾	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7277111	EI-AI	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	6000	平行層	162000000	2025000	90	1.324E+12
2	900	30	27000	6000	平行層	162000000	2025000	60	5.954E+11
3	900	30	27000	0	直交層	0	2025000	30	0
4	900	30	27000	3000	平行層	81000000	2025000	0	6.075E+09
5	900	30	27000	0	直交層	0	2025000	30	0
6	900	30	27000	6000	平行層	162000000	2025000	60	5.954E+11
7	900	30	27000	6000	平行層	162000000	2025000	90	1.324E+12
8	_	_	_	_	_	_	_	_	_
9	-	ı		_	_	_	_	_	I
		A ₀ = Σ Ai	189000		Σ Ei•Ai	729000000	Σ Ei•Ii	i+Ei•Ai•zi²	3.85E+12

 $\Sigma \mathrm{Ei} \cdot \mathrm{Ii} + \mathrm{Ei} \cdot \mathrm{Ai} \cdot \mathrm{Zi}^2 = 3.85 \mathrm{E} + 12 \, (\mathrm{N} \cdot \mathrm{mm})$

 $I_0 = 6.95E + 08 \text{ (mm}^4\text{)}$

以上より、 E = 5536 (N/m㎡)

2.1.2面外方向弱軸の曲げヤング係数の算定

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	弱軸
	E ₀	ラミナ厚		•
	6000	30		
	3000	30	İ	

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	757 77 PJ	E1•A1	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	0	直交層	0	2025000	90	0
2	900	30	27000	0	直交層	0	2025000	60	0
3	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
4	900	30	27000	0	直交層	0	2025000	0	0
5	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
6	900	30	27000	0	直交層	0	2025000	60	0
7	900	30	27000	0	直交層	0	2025000	90	0
8	-	_	_	_	_	_	_	_	_
9	_	_	_	_	_	_	_	_	-
						162000000	Σ Ei•Ii	i+Ei•Ai•zi²	1.58E+11

 $\Sigma \mathrm{Ei} \cdot \mathrm{Ii} + \mathrm{Ei} \cdot \mathrm{Ai} \cdot \mathrm{Zi}^2 = 1.58 \mathrm{E} + 11 \; (N \cdot \mathrm{mm})$

 $I_0 = 6.95E + 08 \text{ (mm}^4\text{)}$

以上より、 E = 227 (N/mm)

2.1.3面外方向強軸のせん断弾性係数の算定

せん物弾性係数
$$G = \frac{a^2}{\frac{h_l}{2 \cdot G_l} + \sum\limits_{k=2}^{s-1} \frac{h_l}{G_l} + \frac{h_n}{2 \cdot G_n}} \cdot \frac{1}{t_{grass}}$$

a(mm) :外層同士の重心間距離(外層が弱軸の場合、その一つ内側のラミナ同士の距離とする)

hi(mm) :i番目の層の厚さ

 ${
m Gi(N/mm^2)}$:i番目の層のせん断弾性係数(平行層 ${
m Gi}={
m Ei}/16$ 、直交層 ${
m Gi}={
m Ei}/160$)

tgross(mm) :CLTパネルの厚さ

ラミナ構成	強度等級	パネル厚さ	CLT幅	外層同士の重心間	外層ラミナ方向
ノベノ作成	選及守収	t _{gross} (mm)	(mm)	距離 a(mm)	が度 ノミノ カド

5層7プライ	Mx60-5-7	210	900	150	強軸
	E_0	ラミナ厚			
	6000	30			
	3000	30]		

外層ラミナが強軸の場合、1層目は1番目の外層、もう一方の外層がn層目となる。

層	ラミナ厚	ラミナ強度	ラミナ方向	層のせん断弾性係数	hi/Gi	備考	
76	hi(mm)	Ei(N/mm)		Gi(N/mm²)	III/GI	JH 25	
1	30	6000	平行層	375	0.04	$h_1/(2 \cdot G_1)$	
2	30	6000	平行層	375	0.08		
3	30	3000	直交層	18.75	1.6		
4	30	3000	平行層	187.5	0.16		
5	30	3000	直交層	18.75	1.6		
6	30	6000	平行層	375	0.08		
7	30	6000	平行層	375	0.04	hn/(2•Gn)	
8	_	_	_	_	_		
9	_	_		_	_		
	1層目と7層目のhi/Giは半分としている。 Σ hi/Gi 3.6						

以上より、 G = 29.76 (N/mm)

2.1.4面外方向弱軸のせん断弾性係数の算定

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層同士の重心間 距離 a(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	60	弱軸
	E ₀	ラミナ厚			
	6000	30	1		
	3000	30]		

外層ラミナが弱軸の場合、外層ラミナ直交層はhi/Gi=0とし、その一つ内側のラミナを1番目として算出する。

層	ラミナ厚	ラミナ強度	ラミナ方向	層のせん断弾性係数	hi/Gi	備考
眉	hi(mm)	Ei(N/mm)	ノベノハ川	Gi(N/mm²)	III/GI)HI 75
1	30	6000	直交層	37.5	0	
2	30	6000	直交層	37.5	0	
3	30	3000	平行層	187.5	0.08	hn/(2•Gn)
4	30	3000	直交層	18.75	1.6	
5	30	3000	平行層	187.5	0.08	hn/(2•Gn)
6	30	6000	直交層	37.5	0	
7	30	6000	直交層	37.5	0	
8	_	_	_	_	_	
9	_	_	_	_	_	
		1.76				

以上より、 G = 9.74 (N/mm)

2.2 面内方向の弾性係数 面内方向の縦弾性係数E は、平行層のみを有効として次のように算定する。

$$E = \frac{\sum (E_i \cdot A_i)}{A_0}$$

Ei Ai Ao :1.2 節に同じ。

面内方向のせん断弾性係数G は、既往の実験結果に基づいて、 ラミナ構成、強度等級にかかわらずG_{面内}=500N/mm²とする。

2.2.1面内方向強軸の曲げヤング係数

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	強軸
	E ₀	ラミナ厚		
	6000	30		
	3000	30		

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7 × 7 71 1 PJ	E1 A1
1	900	30	27000	6000	平行層	162000000
2	900	30	27000	6000	平行層	162000000
3	900	30	27000	0	直交層	0
4	900	30	27000	3000	平行層	81000000
5	900	30	27000	0	直交層	0
6	900	30	27000	6000	平行層	162000000
7	900	30	27000	6000	平行層	162000000
8	_	_	_	_	_	_
9	_	_	_	_	_	_
		$A0 = \Sigma Ai$	189000		Σ Ei•Ai	7.29E+08

 $A_0 = 189000 \, (\text{mm}^2)$

以上より、 E = 3857 (N/mm)

2.2.2面内方向弱軸の曲げヤング係数

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	弱軸
	E ₀	ラミナ厚		
	6000	30		
	3000	30		

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7 × 7 7 1 1 PJ	EI-AI
1	900	30	27000	0	直交層	0
2	900	30	27000	0	直交層	0
3	900	30	27000	3000	平行層	81000000
4	900	30	27000	0	直交層	0
5	900	30	27000	3000	平行層	81000000
6	900	30	27000	0	直交層	0
7	900	30	27000	0	直交層	0
8	_	_	_	_	_	_
9	_	_	_	_	_	_
		$A0 = \Sigma Ai$	189000		Σ Ei•Ai	1.62E+08

 $\begin{array}{ccc} A_A\!\!=\!\!\Sigma(E\!\operatorname{i}\!\!\cdot\! A\!\operatorname{i}\!\!\:i)\!/E_0\!\!=& 1.62\text{E}\!\!\:+\!\!08 \text{ (N)} \\ A_0 &=& 189000 \text{ (mfi)} \end{array}$

以上より、 E = 857 (N/mm²)

2.2.3面内方向(強軸、弱軸共通)のせん断弾性係数

ラミナ構成、強度等級にかかわらず面内方向せん断弾性係数Gは、下記とする。

G_{面内}= 500 (N/m㎡)

3. CLT パネルの応力度計算方法

CLT パネルを線要素(梁要素)にモデル化する場合に、応力変形解析によって得られる当該要素の軸方向の圧縮応力をC、引張応力をT、曲げ応力をM、せん断応力をQとする。このとき、CLT パネルの応力度は次のように求める。

圧縮応力度
$$\sigma_c = \frac{C}{A}$$

引張応力度
$$\sigma_i = \frac{T}{A}$$

曲げ応力度
$$\sigma_b = \frac{M}{Z_0}$$

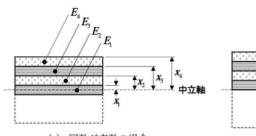
面内せん断応力度
$$au_I = 1.5 \cdot \frac{Q}{A_0}$$

面外せん断応力度
$$\tau_0 = \beta \cdot \frac{Q}{A_0}$$

ここで、 A_0 はCLTパネルの断面積、 Z_0 は面内または面外方向の断面係数で、Mの方向に応じて決定する。いずれも直交層を含む全断面を有効とした値とする。

3.1面外方向強軸のせん断応力度分布係数 В

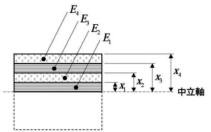
βは面外方向のせん断応力度分布係数(の最大値)で、次のように求める。


$$\beta = \frac{A_0}{2 \cdot E \cdot I_0} \cdot \left\{ E_1 \cdot x_1^2 + \sum_{i=2}^m E_i \cdot (x_i^2 - x_{i-1}^2) \right\}$$

E, $I_0(mm^4)$: CLT パネル面外方向の弾性係数、断面二次モーメント

m:CLTパネル中立軸(対称構成の場合は厚さの中央)より外側のラミナ層数

 $Ei(N/mm^2)$:i 番目の層の弾性係数(直交層ではEi=0)


xi:CLT パネル中立軸から、i番目の層のCLT パネル中立軸から遠い面までの距離

30

(a) 層数が奇数の場合

3000

(b) 層数が偶数の場合

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	CLTパネル中立軸より 外側のラミナ総数 m	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	3	強軸
	E_0	ラミナ厚			
	6000	30			

層	CLT幅	ラミナ厚	ラミナ強度	ラミナ方向	xi	$xi^2 - xi^{-1}$	Ei•	$\mathbf{E}_1 \cdot \mathbf{x}_1^2$
肩	(mm)	(mm)	Ei(N/mm)	ノベノンゴロ	XI	X1 — X1-1	$(xi^2 - xi^2)$	E1-X1
x4	900	30	6000	平行層	105	5400	32400000	-
x3	900	30	6000	平行層	75	3600	21600000	_
x2	900	30	0	直交層	45	1800	0	-
X1	900	30	3000	平行層	15		0	675000
				ΣEi•($xi^2 - xi^{-1^2}$	54000000		

面外方向の弾性係数・断面二次モーメント

 $E = 5536.00 (N/mm^2)$

 $I_0 = 6.95E+08 \text{ (mm}^4)$ $A_0 = 189000 \text{ (mm}^3)$ 2.1.1面外方向強軸の曲げヤング係数の算定による。

2.1.1面外方向強軸の曲げヤング係数の算定による。

2.1.1面外方向強軸の曲げヤング係数の算定による。

 設計施工マニュアルP79のS60-7-7は、1.378としている。

3.1.2面外方向弱軸のせん断応力度分布係数β

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	CLTパネル中立軸より 外側のラミナ総数 m	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	2	弱軸
	E_0	ラミナ厚		•	_
	6000	30			
	3000	30			

層	CLT幅	ラミナ厚	ラミナ強度	ラミナ方向	xi	xi² - xi-1²	Ei•	E1•x1²
/百	(mm)	(mm)	Ei(N/mm)		XI	XI XI-1	$(xi^2 - xi^{-1})$	121 - X1
x4	900	30	0	直交層	105	5400	0	_
x3	900	30	0	直交層	75	3600	0	_
x2	900	30	3000	平行層	45	1800	5400000	_
X1	900	30	0	直交層	15			0
	•	•		x1を除く	ΣEi•($xi^2 - xi^{-1^2}$	5400000	

面外方向の弾性係数・断面二次モーメント

227 (N/mm³) E =

2.1.2面外方向強軸の曲げヤング係数の算定による。 $I_0 = 6.95E + 08 \text{ (mm}^4\text{)}$ 2.1.2面外方向強軸の曲げヤング係数の算定による。

 $A_0 = 189000 \, (mm)$ 2.1.2面外方向強軸の曲げヤング係数の算定による。

以上より、 $\beta = 3.237$

4. Mx60-5-5の基準強度・弾性係数一覧

「1. CLT パネルの基準強度」及び、「3. CLT パネルの応力度計算方法」によるせん断応力度分布係数、β の値を表4.1 に示す。また、「2. CLT パネルの弾性係数」による弾性係数E ,Gを表4.2に示す。面内方向のせん断の基準強度Fs 以外はラミナの厚さに依存しない。また、面内方向のせん断の基準強度Fs を計算する際のラミナの幅b・厚さtは本物件で使用する下記値を採用する。ラミナ幅方向の数の最小値mは断面応力度検定時に各部材ごとに設定する事とするが、ここではm=7mまで設定した算定結果を示す。

ラミナ幅 b(mm)	120	
ラミナ厚さ t(mm)	30	
ラミナ幅方向の数の最小値 m	7	※断面応力度検定時に各部材ごとに設定する。

表4.1 CLTパネルの基準強度、せん断応力度分布係数

												i	面外方向]			
ラミナ構成	強度等級	F	c	F	t	FI	ЭX			Fsx			Fby		Fsy	ļ.	3
		強軸	弱軸	強軸	弱軸	強軸	弱軸	m=3	m=4	m=5	m=6	m=7	強軸	弱軸	共通	強軸	弱軸
5層7プライ	Mx60-5-7	10.41	3.34	7.71	2.46	10.41	3.34	1.44	1.52	1.60	1.68	1.75	12.14	0.72	0.90	1.344	3.237

単位:N/mil

表49 CITパネルの弾性係数

	衣4.2 CL1/ 个/1/07年11/1/										
		Ī	面内方向]		面外	方向				
ラミナ構成	強度等級	E	Ē	G	E		0	à			
		強軸	弱軸	共通	強軸	弱軸	強軸	弱軸			
5層7プライ	Mx60-5-7	3857	857	500	5536	227	29.76	9.74			
								単代			

単位:N/mi

4.1.1基準強度および弾性係数とCLT パネルに作用する荷重の方向の関係

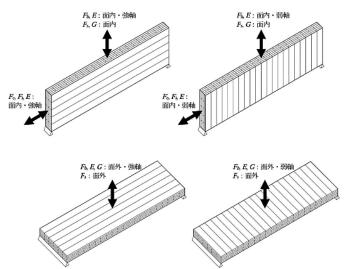


図4.1 CLTパネルの基準強度・弾性係数と荷重方向の関係

参考資料3

燃えしろを考慮したMx60-5-5 基準強度、弾性係数、応力度算定シート

□CLT パネルの基準強度、弾性係数および応力度の算定

1. CLT パネルの基準強度

平28 国交告第562 号(平13 国交告第1024 号の改正)によりCLT パネルの基準強度は次のように規定されている。 以下、ラミナの繊維方向がCLTパネルの長手方向に平行な層を「平行層」、直交する層を「直交層」と称する。

A ラミナの強度、曲げヤング係数と寸法

CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。 表1.1 ラミナの強度、曲げヤング係数と寸法(幅、厚み寸法は、製造工場で異なります。必ず確認してください。)

ラミナ種類	等級区分		ラミナの強		寸法		
ノミノ性規		σ c,oml	σ t,oml	σ b,oml	Ei	幅 (mm)	厚み (mm)
M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30
M30A	等級区分機による等級	15.6	11.5	19.5	3000	124	30

1.1 圧縮基準強度 Fc (平13国交告第1024 号第三第九号イ)

圧縮基準強度は下記式より算出する。ここで、の。omlは、強軸方向の基準強度を計算する場合は外層ラミナの圧縮強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの圧縮強度となる。

圧縮
$$F_c = \sigma_{cond} \cdot \frac{A_A}{A_0} \times 0.75$$
 $A_A = \sum_{i=1}^{n} A_{ij} \times 0.75$

 $Ei(N/mm^2)$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

Eo(N/mm²):強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数

Ao(mm²) :CLT パネルの断面積

1.1.1強軸方向の圧縮基準強度 Fc の算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	900	強軸

-								
Γ	層		CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
L	眉		(mm)	(mm)	Ai(mm)	Ei(N/mm³)	ノベノカド	EI AI
		1	900	30	27000	6000	平行層	162000000
		2	900	30	27000	0	直交層	0
		3	900	30	27000	3000	平行層	81000000
	炭化層	4	900	0	0	0	直交層	0
炭化層 5		900	0	0	6000	平行層	0	
Г							Z E: A:	242000000

6000 (N/mm) $E_0 =$ $A_0 =$ 81000 (mm)

 $AA = \Sigma EiAi/E_0 =$ 40500 (mm)

 $\sigma_{c,oml}$ = 21.6 (N/mm) 表1.1による。

以上より、 強軸 Fc = 8.10 (N/mm)

1.1.2弱軸方向の圧縮基準強度Fcの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	M×60-5-5	900	弱軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	ノベノノハロ	EITAI
1	900	30	27000	0	直交層	0
2	900	30	27000	3000	平行層	81000000
3	900	30	27000	0	直交層	0
炭化層 4	900	0	0	3000	平行層	0
炭化層 5	900	0	0	0	直交層	0
		Σ Ei•Ai	81000000			

E0 = 3000 (N/mm) 81000 (mm) $A_0 =$ $AA = \Sigma EiAi/E_0 =$

27000 (mm) $\sigma_{\text{c.oml}} =$ 15.6 (N/mm) 表1.1による。

以上より、**弱軸**Fc= 3.90 (N/mm)

A ラミナの強度、曲げヤング係数と寸法 CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。

表1.1 ラミナの強度、曲げヤング係数と寸法(幅、厚み寸法は、製造工場で異なります。必ず確認してください。)

<u> </u>	/	C 1177 (4用 /)			くがなりみり	2017年即	$C \subset C \subset$
ラミナ種類	等級区分		ラミナの強		寸法		
ノベノ作主規	等 拟色刀	σ _{c,oml}	σ t,oml	σ _{b,oml}	Ei	幅 (mm)	厚み (mm)
M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30
M30A	等級区分機による等級	15.6	11.5	19.5	3000	124	30

1.2 引張基準強度 Ft (平13国交告第1024 号第三第九号口)

引張基準強度は下記式より算出する。ここで、のtomに強軸方向の基準強度を計算する場合は外層ラミナの引張強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの引張強度となる。

引張
$$F_t = \sigma_{toml} \cdot \frac{A_A}{A_0} \times 0.75$$
 $A_A = \frac{\sum E_i \cdot A_i}{E_0}$

 $Ei(N/mm^2)$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

Eo(N/mm²):強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数

A₀(mm²) :CLT パネルの断面積

1.2.1強軸方向の引張基準強度Ftの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	M×60-5-5	900	強軸

層	I	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉		(mm)	(mm)	Ai(mm)	Ei(N/mm)	ノベノカ川	El-Ai
	1	900	30	27000	6000	直交層	162000000
:	2	900	30	27000	0	平行層	0
;	3	900	30	27000	3000	直交層	81000000
炭化層 4	ŀ	900	0	0	0	平行層	0
炭化層 5	;	900	0	0	6000	直交層	0
				Σ Ei•Ai	243000000		

E₀ = 6000 (N/mm) 81000 (mm) $A_0 =$ $A_A =$ 40500 (mm)

16.0 (N/mm) 表1.1による。 $\sigma_{\text{t.oml}} =$

以上より、 強軸 Ft = 6.00 (N/mm)

1.2.2弱軸方向の引張基準強度の算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	900	弱軸

層		CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
/百		(mm)	(mm)	Ai(mm)	Ei(N/mm)		El-Al
	1	900	30	27000	0	直交層	0
	2	900	30	27000	3000	平行層	81000000
	3	900	30	27000	0	直交層	0
炭化層	4	900	0	0	3000	平行層	0
炭化層	5	900	0	0	0	直交層	0
			Σ Ei•Ai	81000000			

3000 (N/mm) $E_0 =$ 81000 (mm) $A_0 =$ $A_A =$ $27000\;(\text{mm}^{\mathring{}})$

 $\sigma_{t,oml} =$ 11.5 (N/mm) 表1.1による。

以上より、 弱軸Ft = 2.88 (N/mm)

A ラミナの強度、曲げヤング係数と寸法 CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。

表1.1 ラミナの強度、曲げヤング係数と寸法

 数1.1 プンプン 点及 、 							
ラミナ種類	等級区分		ラミナの強	寸法			
ノベノ作主共	守拟区刀	σ _{c,oml}	σ _{t,oml}	σ _{b,oml}	Ei	幅 (mm)	厚み (mm)
M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30
M30A	等級区分機による等級	15.6	11.5	19.5	3000	124	30

1.3 曲げ基準強度 76 (平13国交告第1024 号第三第九号/ハ) 曲げ基準強度は下記式より算出する。ここで、の bomは強軸方向の基準強度を計算する場合は外層ラミナの曲げ強度、弱軸 方向の基準強度を計算する場合は外層に最も近い内層ラミナの曲げ強度となる。

曲げ 積層(面外)方向 $F_b = \sigma_{b.om} \cdot \frac{I_A}{I_0} \times 0.4875$

幅(面内)方向

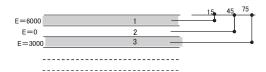
 $A_{A} = \frac{\sum E_{i} \cdot A_{i}}{E_{0}} \qquad I_{A} = \frac{\sum (E_{i} \cdot I_{i} + E_{i} \cdot A_{i} \cdot z_{i}^{2})}{E_{0}}$

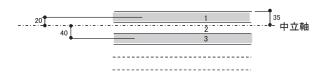
 $\mathrm{Ei}(\mathrm{N/mm^2})$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

Eo(N/mm²):強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数


Ao(mm²) :CLT パネルの断面積


:i 番目の層の断面二次モーメント Ii(mm⁴)

:i 番目の層の重心とCLT パネルの中立軸との距離 zi(mm)

Io(mm⁴) :CLT パネルの断面二次モーメント

E=6000

中立軸の算定

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F /~_							
層	ラミナ厚t	Ei(N/mm³)	t•Ei	Σt•Ei -	У	t•Ei•y	Σt•Ei•y	中立軸
/6	(mm)	121(11/ 11111)			mm	ССГУ	_ C L	y0 mm
1	30	6000	180000		15	2700000		
2	30	0	0		45	0		
3	30	3000	90000	270000	75	6750000	9450000	35

1.3.1強軸方向の面内曲げ基準強度 Fbの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	900	強軸

層	CL	T幅	ラミナ厚	層断面積	積 ラミナ強度 ₌	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(n	nm)	(mm)	Ai(mm)	Ei(N/mm)	7~7 /J I ^{II} J	E1 A1	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
	1	900	30	27000	6000	直交層	162000000	2025000	20	7.695E+10
	2	900	30	27000	0	平行層	0	2025000	10	0
	3	900	30	27000	3000	直交層	81000000	2025000	40	1.357E+11
炭化層 4	l l	900	0	0	0	平行層	0	0	0	0
炭化層:	5	900	0	0	6000	直交層	0	0	0	0
			-	-	-	Σ Ei•Ai	243000000	Σ Ei·I	i+Ei•Ai•zi²	2.13E+11

6000 (N/mm)

 $I_0 = 54675000 \, (mm^4)$ 81000 (mm) $A_0 =$ $I_A = 35437500 \, (mm^4)$ 40500 (mm) AA =

27.0 (N/mm) 表1.1による。 $\sigma_{\rm b,oml} =$

以上より、 幅(面内)方向強軸Fb = 8.10 (N/mm)

1.3.2弱軸方向の面内曲げ基準強度 Fbの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	M×60-5-5	900	弱軸

層		CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉		(mm)	(mm)	Ai(mm²)	Ei(N/mm³)	7 × 7 71 PJ	E1-A1	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
	1	900	30	27000	0	直交層	0	2025000	20	0
	2	900	30	27000	3000	平行層	81000000	2025000	10	1.418E+10
	3	900	30	27000	0	直交層	0	2025000	40	0
炭化層 4	4	900	0	0	3000	平行層	0	0	0	0
炭化層:	5	900	0	0	0	直交層	0	0	0	0
							81000000	Σ Ei•Ii	i+Ei•Ai•zi²	1.418E+10

81000 (mm)

27000 (mm)

 $E_0 = 3000 \, (N/m\mathring{n})$

 $I_0 = 54675000 \, (mm^4)$ $A_0 =$ AA =

 $I_{A} = 4725000 \text{ (mm}^{4}\text{)}$ $\sigma_{b,oml} = 19.5 \text{ (N/mm}^{2}\text{)}$ 表1.1による。

以上より、幅(面内)方向弱軸**Fb**= 3.90 (N/mm))

1.3.3強軸方向の面外曲げ基準強度 Fbの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	M×60-5-5	900	強軸

層		CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉		(mm)	(mm)	Ai(mm)	Ei(N/mm³)	7 × 7 71 PJ	EI AI	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
	1	900	30	27000	6000	直交層	162000000	2025000	20	7.695E+10
	2	900	30	27000	0	平行層	0	2025000	10	0
	3	900	30	27000	3000	直交層	81000000	2025000	40	1.357E+11
炭化層	4	900	0	0	0	平行層	0	0	0	0
炭化層	5	900	0	0	6000	直交層	0	0	0	0
							243000000	Σ Ei•Ii	i+Ei•Ai•zi²	2.126E+11

 $E_0 = 6000 \, (N/m \mathring{n})$

 $I_0 = 54675000 \, (mm^4)$ 81000 (mm) $A_0 =$ $I_A = 35437500 \, (mm^4)$ AA =40500 (mm)

 $\sigma_{\rm b,oml} =$ 27.0 (N/mm) 表1.1による。

以上より、 積層(面外)方向強軸Fb 8.53 (N/mm)

1.3.4弱軸方向の面外曲げ基準強度 Fbの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層5プライ	S60-5-5	900	弱軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	フミナカ凹	EI AI	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
	900	30	27000	0	直交層	0	2025000	20	0
	900	30	27000	3000	平行層	81000000	2025000	10	1.418E+10
	900	30	27000	0	直交層	0	2025000	40	0
炭化層 4	900	0	0	3000	平行層	0	0	0	0
炭化層 5	900	0	0	0	直交層	0	0	0	0
					Σ Ei•Ai	81000000	Σ Ei•Ii	i+Ei•Ai•zi²	1.418E+10

3000 (N/mm)

 $I_0 = 5.47E+07 \, (mm^4)$ $A_0 =$ 81000 (mm) 27000 (mm)

 $IA = 4.73E + 06 (mm^4)$ $AA = \sigma_{b,oml} = 19.5 (N/mm^3)$ 表1.1による。

以上より、 積層(面外)方向弱軸**Fb** 0.82 (N/mm)

1.4 せん断基準強度Fs (平13国交告第1024 号第三第九号二)

せん断基準強度は下記式より算出する。

fv,lam,0

fs= min fv,lam,90 · (tnet/tgross)

(b • nca/2 • tgross) • $1/(1/fv,tor • (1-1/m^2) + 2/fR • (1/m-1/m^2)) × k5th$

fv.lam.0	:ラミナの繊維方向せん断強度N/mm²
IV.Iam.u	. ノミ / Uノが吹がた / TIPI に ハノをバう虫 / ラ N/ TTITT

ひのき、からまつ	3.6 N/mm^2
つが	3.3 N/mm ²
とどまつ	3.0 N/mm ²
すぎ	2.7 N/mm ²

f_{v,lam,90}:ラミナの繊維方向に直交する方向のせん断強度N/mm²

ひのき、からまつ	10.8 N/mm ²	$f_{V,lam,0} \times 3$
つが	9.9 N/mm ²	
とどまつ	9.0 N/mm ²	
すぎ	8.1 N/mm ²	

燃えしろの場合

					がぶんしつ	
t net	:総層数に占める少ない層のラミナ厚の和	3層3プライ	net 1層分	30 mm		
		5層5プライ	net 2層分	60 mm	30	mm
		5層7プライ	net 3層分	60 mm		
		7層7プライ	net 3層分	90 mm		
t gross	:総厚さ	3層3プライ	総厚さ	90 mm		
		5層5プライ	総厚さ	150 mm	90	mm
		5層7プライ	総厚さ	210 mm		
		7層7プライ	総厚さ	210 mm		
h	- ニミナ 恒			120 mm		

7層7プライ 総厚さ 210 mm b :ラミナ幅 120 mm nca :厚さ方向の接着面数 3層3プライ 2

5層5プライ 4 5層7プライ 4 2 7層7プライ 6

fv,tor :接着された直交するラミナの交差面のねじりせん断強度

ひのき、からまつ	4.7 N/mm^2
つが	3.0 N/mm^2
とどまつ	3.0 N/mm^2
すぎ	3.0 N/mm^2
成500mm	3
成600mm	4
成700mm	5
-b	•

:幅方向のラミナの最小枚数

成900mm 6 成1000mm 7 7 ひのき、からまつ 2.0 N/mm² つが 1.8 N/mm² とどまつ 1.6 N/mm²

1.5 N/mm²

fR :ローリングシア強度

1.4.1せん断基準強度Fs (面外、面内)の算定

60mm燃えしろ設計の場合

すぎ

m=3	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層5プライ	Mx60-5-5	90	500	120	2	3
150-60=90 4から2へ							

fv,lam,0		2.70	1.0	2.70	
$f_{V,lam,90} \cdot (t_{net}=30/t_{gross}=90)$	5層5プライ	2.70	1.0	2.70	1.68
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		1.69	1.0	1.688	

右図より、m=3とする。 ラミナ幅120mmを有する箇所をカウントする。

以上より、 積り

積層(面外)方向 <i>Fs</i> y =	0.9	(N/mm)
幅(面内)方向 <i>Fs</i> x =	1.68	(N/mm)

面外方向は、ラミナ構成に関係なく $_{\rm mh}$ Fs = 0.9N/mm²とする。

m=4	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層5プライ	Mx60-5-5	90	500	120	2	4
			150 00 00			41. 70.	

150-60=90 4から2へ

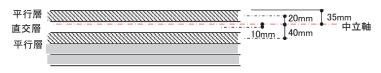
f _V ,lam,0		2.70	1.0	2.70	
fv,lam,90 • (tnet/tgross)	5層5プライ	2.70	1.0	2.700	1.77
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		1.78	1.0	1.778	

右図より、m=4とする。

以上より、	積層(面外)方向 <i>Fs</i> y =	0.9 (N/mm)	 面外方向は、ラミナ構成に関係なく _{面外} Fs =0.9N/mm ² とする。
	恒(南内) 方向 Fe v —		=

めり込みの基準強度は外層ラミナの樹種に応じて表1.2のように規定されている。

表1.2 CLTパネルのめり込みの基準強度 Fev


外層ラミナの樹種	Fcv (N/mm)					
あかまつ、くろまつ、ダフリカからまつ、サザンパイン、べいまつ、ホワイトサイプレスパイン及び ウエスタンラーチ	9.0					
ひのき、ひば、からまつ及びべいひ	7.8					
つが、アラスカイエローシダー、べにまつ、ラジアタパイン、べいつが、もみ、とどまつ、えぞまつ、べいもみ、スプルース、ロッジボールパイン、ポンデローサパイン、おうしゅうあかまつ、 <u>すぎ</u> 、べいすぎ及びジャックパイン	6.0					

2. 燃えしろ60mmの場合のMx60-5-5の弾性係数(曲げヤング係数E、せん断弾性係数G)

2.1 面外方向の弾性係数

Shear Analogy Method**に基づいて、面外方向の縦弾性係数E とせん断弾性係数G を次のように計算する。以下、ラミナの繊維方向がCLT パネルの長手方向に平行な層を「平行層」、直交する層を「直交層」と称する。

2.1.1面外方向強軸の曲げヤング係数の算定

縦弾性係数 $E = \frac{\sum (E_i \cdot I_i + E_i \cdot A_i \cdot z_i^2)}{I_0}$

6000 15 90000 0 45 0 3000 75 225000 9000 315000 y= 35

Ei, Ii, Ai, zi, Io: Eの計算においては、直交層はEi=0

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	GLT順 \	外層ラミナ方向
5層5プライ	Mx60-5-5	90	900	強軸
	E ₀	ラミナ厚		
	6000	30	1	

層	П	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	ſ	(mm)	(mm)	Ai(mm)	Ei(N/mm³)	JEJ JIII	E1. A1	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
	1	900	30	27000	6000	平行層	162000000	2025000	20	7.695E+10
	2	900	30	27000	0	直交層	0	2025000	10	0
	3	900	30	27000	3000	平行層	81000000	2025000	40	1.357E+11
炭化層	4	900	0	0	0	直交層	0	0	0	0
炭化層	5	900	0	0	0	平行層	0	0	0	0
			$\mathbf{A_0} = \Sigma Ai$	81000		Σ Ei•Ai	259.26	Σ Ei•Ii	i+Ei•Ai•zi²	2.13E+11

 $\begin{array}{rcl} \Sigma E i \! \cdot \! I i \! + \! E i \! \cdot \! A i \! \cdot \! Z i^2 &=& 2.13E \! + \! 11 \; (\text{N} \cdot \text{mm}^{\text{i}}) \\ I_0 &=& 54675000 \; (\text{mm}^{\text{d}}) \end{array}$

以上より、 E = 3889 (N/mẩ)

2.1.2面外方向弱軸の曲げヤング係数の算定

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	90	900	弱軸
	E ₀	ラミナ厚		•
	3000	30		

層		CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉		(mm)	(mm)	Ai(mm)	Ei(N/mm³)] J = J J J P]	E1•A1	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
	1	900	30	27000	0	直交層	0	2025000	20	0
	2	900	30	27000	3000	平行層	81000000	2025000	10	1.418E+10
	3	900	30	27000	0	直交層	0	2025000	40	0
炭化層	4	900	0	0	0	平行層	0	0	0	0
炭化層	5	900	0	0	0	直交層	0	0	0	0
						Σ Ei•Ai	81000000	Σ Ei•Ii	i+Ei•Ai•zi²	1.42E+10

 $\Sigma \mathrm{Ei} \cdot \mathrm{Ii} + \mathrm{Ei} \cdot \mathrm{Ai} \cdot \mathrm{Zi}^2 = 1.42 \mathrm{E} + 10 \, (N \cdot \mathrm{mm})$

 $I_0 = 54675000 \, (mm^4)$

以上より、 E = 259 (N/mm)

2.1.3面外方向強軸のせん断弾性係数の算定

せん断弾性係数
$$G = \frac{a^2}{\frac{h_l}{2 \cdot G_l} + \sum\limits_{i=2}^{g-1} \frac{h_i}{G_i} + \frac{h_a}{2 \cdot G_a}} \cdot \frac{1}{t_{gross}}$$

a(mm) :外層同士の重心間距離(外層が弱軸の場合、その一つ内側のラミナ同士の距離とする) hi(mm) :i番目の層の厚さ

Gi(N/mm²):i番目の層のせん断弾性係数(平行層Gi = Ei/16、直交層Gi = Ei/160)

tgross(mm) :CLTパネルの厚さ

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	GLTW版 /\	外層同士の重心間 距離 a(mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	90	900	120	強軸
	E ₀	ラミナ厚			_
	6000	30	1		

外層ラミナが強軸の場合、1層目は1番目の外層、もう一方の外層がn層目となる。

層	ラミナ厚	ラミナ強度	ラミナ方向	層のせん断弾性係数	hi/Gi	備考							
/=	hi(mm)	Ei(N/mm)	77776	Gi(N/mm³)	111/01	DH, 77							
1	30	6000	平行層	375	0.04	h ₁ /(2•G ₁)							
2	30	3000	直交層	18.75	1.6								
3	30	3000	平行層	187.5	0.16								
4	0	3000	直交層	18.75	0								
5	0	6000	平行層	375	0	hn/(2•Gn)							
6	_	_	_	_	_								
7	_	_	_	_	_								
8	_	_	_	_	_								
9	_	_	_	_	_								
	1月	暑目と3層目の	のhi/Giは半:	分としている。 Σ hi/Gi	1.8								

以上より、 G = 88.89 (N/mm) (N/mm)

2.1.4面外方向弱軸のせん断弾性係数の算定

ラミナ構成	強度等級	パネル厚さ tgross (mm)	CLT幅 (mm)	外層同士の重心間 距離 a(mm)	外層ラミナ方向
5層5プライ	Mx60-5-5	90	900	60	弱軸
	E ₀	ラミナ厚			
	6000	30			

外層ラミナが弱軸の場合、外層ラミナ直交層はhi/Gi=0とし、その一つ内側のラミナを1番目として算出する。

層		ラミナ厚	ラミナ強度	ラミナ方向	層のせん断弾性係数	hi/Gi	備考
盾		hi(mm)	Ei(N/mm)	ノミノカ川	Gi(N/mm)	III/G1	III 75
	1	30	6000	直交層	37.5	0	
	2	30	3000	平行層	187.5	0.08	hn/(2•Gn)
	3	30	3000	直交層	18.75	1.6	
炭化層	4	0	3000	平行層	187.5	0	hn/(2•Gn)
炭化層	5	0	6000	直交層	37.5	0	
	Σ hi/G						

以上より、 G = 23.81 (N/mm)

2.2 面内方向の弾性係数 面内方向の縦弾性係数E は、平行層のみを有効として次のように算定する。

$$E = \frac{\sum (E_i \cdot A_i)}{A_0}$$

Ei Ai Ao :1.2 節に同じ。

面内方向のせん断弾性係数G は、既往の実験結果に基づいて、 ラミナ構成、強度等級にかかわらず G_{mh} =500N/mm 2 とする。

2.2.1面内方向強軸の曲げヤング係数

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅(mm)	外層ラミナ方向
5層5プライ	MX60-5-5	90	900	強軸
	E ₀	ラミナ厚		
	6000	30	1	

層		CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉		(mm)	(mm)	Ai(mm)	Ei(N/mm)	ノベノノハロ	El'Al
	1	900	30	27000	6000	平行層	162000000
	2	900	30	27000	0	直交層	0
	3	900	30	27000	3000	平行層	81000000
炭化層	4	900	0	0	0	直交層	0
炭化層	5	900	0	0	6000	平行層	0
			$A0 = \Sigma Ai$	81000		Σ Ei•Ai	2.43E+08

81000 (mm²) $A_0 =$

以上より、 E = 3000 (N/mm)

2.2.2面内方向弱軸の曲げヤング係数

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅(mm)	外層ラミナ方向
5層5プライ	S60-5-5	90	900	弱軸
	E ₀	ラミナ厚		
	3000	30		

層		CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉		(mm)	(mm)	Ai(mm)	Ei(N/mm)	7< 7 71 PJ	EI AI
	1	900	30	27000	0	直交層	0
	2	900	30	27000	3000	平行層	81000000
	3	900	30	27000	0	直交層	0
炭化層	4	900	0	0	3000	平行層	0
炭化層	5	900	0	0	0	直交層	0
			A0= Σ Ai	81000		Σ Ei•Ai	8.10E+07

 $A_A = \Sigma(E_i \cdot A_i)/E_0 = 8.10E + 07 (N)$

 $A_0 = 81000 \, (\text{mm})$

以上より、 E = 1000 (N/mm)

2.2.3面内方向(強軸、弱軸共通)のせん断弾性係数

ラミナ構成、強度等級にかかわらず面内方向せん断弾性係数Gは、下記とする。

500 (N/mm) G_{面内}=

3. CLT パネルの応力度計算方法

CLT パネルを線要素(梁要素)にモデル化する場合に、応力変形解析によって得られる当該要素の軸方向の圧縮応力をC 、引張応力をT、曲げ応力をM、せん断応力をQとする。このとき、CLTパネルの応力度は次のように求める。

圧縮応力度
$$\sigma_c = \frac{C}{A}$$

引張応力度
$$\sigma_t = \frac{T}{A}$$

曲げ応力度
$$\sigma_b = \frac{M}{Z_c}$$

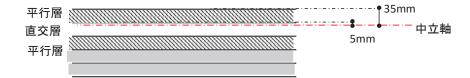
面内せん断応力度
$$au_I = 1.5 \cdot \frac{Q}{A_0}$$
 面外せん断応力度 $au_O = eta \cdot \frac{Q}{A_0}$

面外せん断応力度

ここで、A₀はCLTパネルの断面積、Z₀は面内または面外方向の断面係数で、Mの方向に応じて決定する。 いずれも直交層を含む全断面を有効とした値とする。

3.1面外方向強軸のせん断応力度分布係数 В

βは面外方向のせん断応力度分布係数(の最大値)で、次のように求める。


$$\beta = \frac{A_0}{2 \cdot E \cdot I_0} \cdot \left\{ E_1 \cdot x_1^2 + \sum_{l=2}^m E_l \cdot (x_l^2 - x_{l-1}^2) \right\}$$
 設計施工マニュアル第皿部 第3章 3.2 3.2.1 (1)より

E, Io(mm4):CLT パネル面外方向の弾性係数、断面二次モーメント

m:CLT パネル中立軸(対称構成の場合は厚さの中央)より外側のラミナ層数

Ei(N/mm²):i番目の層の弾性係数(直交層ではEi= 0)

xi:CLT パネル中立軸から、i番目の層のCLT パネル中立軸から遠い面までの距離

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	CLTパネル中立軸より 外側のラミナ総数 m	外層ラミナ方向
5層5プライ	S60-5-5	90	900	1	強軸
	E ₀	ラミナ厚			
ľ	6000	30	1		

層	CLT幅	ラミナ厚	ラミナ強度	ラミナ方向	xi	xi² - xi-1²	Ei• (xi² — xi-1²)	$\mathbf{E}_1 \mathbf{\cdot x}_1^2$
眉	(mm)	(mm)	Ei(N/mm)	フミナカ回	XI	XI — XI-1	$(xi^2 - xi^2)$	E1-X1
x3	900	30	6000	平行層	35	1200	7200000	
x2	900	30	0	直交層	5	25	0	
x1	900	30	3000	平行層	0		0	0
			-	x1を除く	ΣEi•($xi^2 - xi^{-1^2}$	7200000	

面外方向の弾性係数・断面二次モーメント

 $A_0 =$

E =3888.89 (N/mm) $I_0 = 54675000 \, (mm^4)$

81000 (mm)

面外方向強軸の曲げヤング係数の算定による。 面外方向強軸の曲げヤング係数の算定による。 面外方向強軸の曲げヤング係数の算定による。

以上より、 β =

設計施エマニュアルP79のS60-5-5は、1.288としている。

3.1.2面外方向弱軸のせん断応力度分布係数β

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	CLTパネル中立軸より 外側のラミナ総数 m	外層ラミナ方向
5層5プライ	S60-5-5	90	900	1	弱軸
	E ₀	ラミナ厚			
	3000	30			

層	CLT幅	ラミナ厚	ラミナ強度	ラミナ方向	xi	$xi^2 - xi^{-1}$	Ei•	E ₁ •x ₁ ²
	(mm)	(mm)	Ei(N/mm)				$(xi^2 - xi^{-1})$	
x3	900	30	0	直交層	35	1200	0	_
x2	900	30	3000	平行層	5	25	75000	_
x1	900	30	0	直交層	0		0	0
				ΣEi•(:	$xi^2 - xi^2$	75000		

面外方向の弾性係数・断面二次モーメント

 $E = 259.2593 \, (N/mm)$

 $I_0 = 54675000 \, (mm^4)$

 $A_0 = 81000 \, (mm)$

面外方向強軸の曲げヤング係数の算定による。 面外方向強軸の曲げヤング係数の算定による。 2.1.2面外方向強軸の曲げヤング係数の算定による。

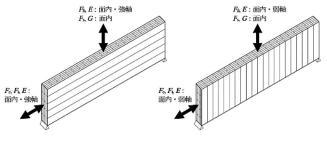
以上より、 $\beta = 0.214$

4. 燃えしろ60mmの場合のMx60-5-5の基準強度・弾性係数一覧

「1. CLT パネルの基準強度」及び、「3. CLT パネルの応力度計算方法」によるせん断応力度分布係数 β の値を表4.1 に示す。また、「2. CLT パネルの弾性係数」による弾性係数E,Gを表4.2に示す。面内方向のせん断の基準強度Fs 以外はラミナの厚さに依存しない。また、面内方向のせん断の基準強度Fs を計算する際のラミナの幅b・厚さtは本物件で使用する下記値を採用する。ラミナ幅方向の数の最小値mは断面応力度検定時に各部材ごとに設定する事とするが、ここではm=7と設定した算定結果を示す。

ラミナ幅 b(mm)	120	
ラミナ厚さ t(mm)	30	
ラミナ幅方向の数の最小値 m		※各部材ごとに合わせて設定する。

±4.1	燃えしろ60mmのにおけるMx60-	この甘油込由	4) 帐片力度八左接粉
₹4.I	燃えしろbUmmのにおけるMxbU=	h-hの基準強厚、	せん断応力度分布係数


単位	<u>:</u> :	N/	mm
			\neg

24 -12 /////			面内方向					V 11- 11-2	面外方向					
ラミナ構成	強度等級	F	c	F	t	FI	X	F	sx	Fl	by	Fsy	/-	3
		強軸	弱軸	強軸	弱軸	強軸	弱軸	m=3	m=4	強軸	弱軸	共通	強軸	弱軸
5層5プライ	Mx60-5-5	8.10	3.90	6.00	2.88	8.10	3.90	1.68	1.77	8.53	0.82	0.90	1.371	0.214

表4.2 燃えしろ60mmのにおけるMx60-5-5の弾性係数 単位:N/mi

			面内方向]	面外方向			
ラミナ構成	強度等級	強度等級 E		G	E		G	
		強軸	弱軸	共通	強軸	弱軸	強軸	弱軸
5層5プライ	Mx60-5-5	3000	1000	500	3889	259	88.89	23.81

4.1.1基準強度および弾性係数とCLT パネルに作用する荷重の方向の関係

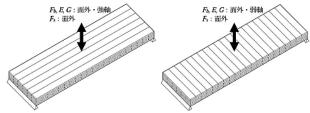


図4.1 CLTパネルの基準強度・弾性係数と荷重方向の関係

参考資料4

燃えしろを考慮したMx60-5-7 基準強度、弾性係数、応力度算定シート

□CLT パネルの基準強度、弾性係数および応力度の算定

1. 燃えしろ60mmのMx60-5-7の基準強度

・ 228 国交告第562 号(平13 国交告第1024 号の改正)によりCLT パネルの基準強度は次のように規定されている。 以下、ラミナの繊維方向がCLT パネルの長手方向に平行な層を「平行層」、直交する層を「直交層」と称する。

A ラミナの強度、曲げヤング係数と寸法

CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。 表1.1 ラミナの強度、曲げヤング係数と寸法(幅、厚み寸法は、製造工場で異なります。必ず確認してください。)

ラミナ種類	等級区分 -		ラミナの強		寸法		
ノベノイ主大尺	プミア性規 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		σ t,oml	σ b,oml	Ei	幅 (mm)	厚み (mm)
M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30
M30A	等級区分機による等級	15.6	11.5	19.5	3000	124	30

1.1 圧縮基準強度 Fo (平13国交告第1024 号第三第九号イ) 圧縮基準強度は下記式より算出する。ここで、 σ e,omは、強軸方向の基準強度を計算する場合は外層ラミナの圧縮強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの圧縮強度となる。

圧縮
$$F_c = \sigma_{c.omi} \cdot \frac{A_A}{A_0} \times 0.75$$

$$A_A = \frac{\sum E_i \cdot A_i}{E_0}$$

 $Ei(N/mm^2)$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

:一方の外層から数えてi 番目の層の断面積

Eo(N/mm²): 強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数

Ao(mm²) :CLT パネルの断面積

1.1.1強軸方向の圧縮基準強度Fcの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	
/=	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7~ 7 7 H	EliAi	
1	900	30	27000	6000	平行層	162000000	
2	900	30	27000	6000	平行層	162000000	
3	900	30	27000	0	直交層	0	
4	900	30	27000	3000	平行層	81000000	
5	900	30	27000	0	直交層	0	
炭化層6	900	0	0	6000	平行層	0	
炭化層7	900	0	0	6000	平行層	0	
		Σ Ei•Ai	405000000				

 $E_0 =$ 6000 (N/mm) $A_0 =$ 135000 (mm)

 $AA = \Sigma EiAi/E_0 =$ 67500 (mm)

 $\sigma_{c,oml} =$ 21.6 (N/mm) 表1.1による。

以上より、 **強軸** Fc = 8.10 (N/mm)

1.1.2弱軸方向の圧縮基準強度Fcの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	M×60-5-7	900	弱軸

-	CLT幅	ラミナ厚	層断面積	ラミナ強度		T
層	(mm)	(mm)	Ai(mm)	Ei(N/mm)	ラミナ方向	Ei•Ai
1	900	30	27000	0	直交層	0
2	900	30	27000	0	直交層	0
3	900	30	27000	3000	平行層	81000000
4	900	30	27000	0	直交層	0
5	900	30	27000	3000	平行層	81000000
炭化層6	900	0	0	0	直交層	0
炭化層7	900	0	0	0	直交層	0
			-	-	Σ Ei•Δi	162000000

 $E_0 =$ 3000 (N/mm) 135000 (mm) $A_0 =$

 $Aa=\Sigma EiAi/E_0=$ 54000 (mm)

> 15.6 (N/mm) 表1.1による。 $\sigma_{c.oml} =$

以上より、**弱軸**Fc= 4.68 (N/mm)

A ラミナの強度、曲げヤング係数と寸法 CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。

表1.1 ラミナの強度、曲げヤング係数と寸法(幅、厚み寸法は、製造工場で異なります。必ず確認してください。)

10.1.1 / 1.1	7年及、四リイン7下数	こ 1 仏 (帽、)			く共体ソムリ		C (//ce/.
ラミナ種類	等級区分		ラミナの強	食(N/mm)		寸法	
ノベノ作生規	ノミア 性規 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		$\sigma_{\text{t,oml}}$	σ b,oml	Ei	幅 (mm)	厚み (mm)
M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30
M30A	等級区分機による等級	15.6	11.5	19.5	3000	124	30
				·			
				·		·	

1.2 引張基準強度 Ft (平13国交告第1024 号第三第九号口)

12 引張基準強度は下記式より算出する。ここで、のていめは強軸方向の基準強度を計算する場合は外層ラミナの引張強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの引張強度となる。

引張
$$F_t = \sigma_{toml} \cdot \frac{A_A}{A_0} \times 0.75$$
 $A_A = \frac{\sum E_i \cdot A_i}{E_0}$

 $Ei(N/mm^2)$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

Eo(N/mm²):強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数

A₀(mm²) :CLT パネルの断面積

1.2.1強軸方向の引張基準強度Ftの算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	M×60-5-7	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	ノベノカ川	EI-AI
1	900	30	27000	6000	平行層	162000000
2	900	30	27000	6000	平行層	162000000
3	900	30	27000	0	直交層	0
4	900	30	27000	3000	平行層	81000000
5	900	30	27000	0	直交層	0
炭化層6	900	0	0	6000	平行層	0
炭化層7	900	0	0	6000	平行層	0
					Σ Ei•Ai	405000000

6000 (N/mm) $E_0 =$ A0 = 135000 (mm)

67500 (mm) AA =

16.0 (N/mm) 表1.1による。 $\sigma_{\text{t.oml}} =$

以上より、 強軸Ft= 6.00 (N/mm)

1.2.2弱軸方向の引張基準強度の算定

Γ	ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
	5層7プライ	Mx60-5-7	900	弱軸

層	CLT幅	ラミナ厚 層断面積		ラミナ強度	ラミナ方向	Ei•Ai	
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7 × 7 7 1 1 1 1	ELAI	
1	900	30	27000	0	直交層	0	
2	900	30	27000	0	直交層	0	
3	900	30	27000	3000	平行層	81000000	
4	900	30	27000	0	直交層	0	
5	900	30	27000	3000	平行層	81000000	
炭化層6	900	0	0	0	直交層	0	
炭化層7	900	0	0	0	直交層	0	
		Σ Ei•Δi	162000000				

3000 (N/mm) E0 =

135000 (mm) $A_0 =$ 54000 (mm) AA =

 $11.5\;(\text{N/mm})$ $\sigma_{t,oml}$ =

表1.1による。

以上より、 **弱軸Ft=** 3.45 (N/mm)

A ラミナの強度、曲げヤング係数と寸法

CLTのラミナの等級区分、ラミナ強度、寸法については、表1.1の通りとする。

表1.1 ラミナの強度、曲げヤング係数と寸法

	ラミナ種類	等級区分		ラミナの強	寸法			
		守敝区刀	σ _{c,oml}	σt,oml	σ b,oml	Ei	幅 (mm)	厚み (mm)
	M60A	等級区分機による等級	21.6	16.0	27.0	6000	124	30
	M30A	等級区分機による等級	15.6	11.5	19.5	3000		
				·	·			

1.3 曲げ基準強度 Fb (平13国交告第1024 号第三第九号ハ)

曲げ基準強度は下記式より算出する。ここで、のbomは強軸方向の基準強度を計算する場合は外層ラミナの曲げ強度、弱軸方向の基準強度を計算する場合は外層に最も近い内層ラミナの曲げ強度となる。

曲げ 積層(面外)方向 $F_b = \sigma_{b \; omt} \cdot \frac{I_A}{I_0} \times 0.4875$

幅(面内)方向 $F_b = \sigma_{b.oml} \cdot \frac{A_A}{A} \times 0.6$

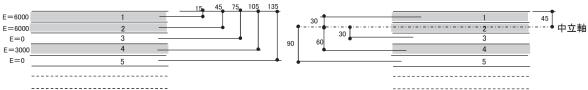
 $A_{\scriptscriptstyle A} = \frac{\sum E_i \cdot A_i}{E_0} \qquad \qquad I_{\scriptscriptstyle A} = \frac{\sum (E_i \cdot I_i + E_i \cdot A_i \cdot z_i^2)}{E_0}$

 $Ei(N/mm^2)$: 一方の外層から数えてi 番目の層のラミナのヤング係数(直交層はEi =0)

Ai(mm²) :一方の外層から数えてi 番目の層の断面積

 $E_0(N/mm^2)$: 強軸方向の基準強度を計算する場合は外層ラミナのヤング係数、弱軸方向の

基準強度を計算する場合は外層に最も近い内層ラミナのヤング係数


Ao(mm²) :CLT パネルの断面積

Ii(mm4) :i番目の層の断面二次モーメント

zi(mm) :i 番目の層の重心とCLT パネルの中立軸との距離

Io(mm⁴) :CLT パネルの断面二次モーメント

1.3.1強軸方向の面内曲げ基準強度Fbの算定

中立軸の算定

	1 2 11 0 7 7 2								
層	ラミナ厚t (mm)	Ei(N/mm)	t•Ei	Σ t•Ei	y mm	t•Ei•y	Σt•Ei•y	中立軸 v0 mm	
	(11111)							y 0 1111111	
1	30	6000	180000		15	2700000			
2	30	6000	180000		45	8100000			
3	30	0	0	450000	75	0	20250000	45	
4	30	3000	90000		105	9450000			
5	30	0	0		135	0			

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
	(mm)	(mm)	Ai(mm)	Ei(N/mm)	ノミノノ川川	El'Al	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	6000	平行層	162000000	2025000	30	1.58E+11
2	900	30	27000	6000	平行層	162000000	2025000	0	1.215E+10
3	900	30	27000	0	直交層	0	2025000	30	0
4	900	30	27000	3000	平行層	81000000	2025000	60	2.977E+11
5	900	30	27000	0	直交層	0	2025000	90	0
炭化層6	900	0	0	6000	平行層	0	0	0	0
炭化層7	900	0	0	6000	平行層	0	0	0	0
						405000000	Σ Ei•I	i+Ei•Ai•zi²	4 68F+11

 $E_0 = 6000 \, (N/mm)$

 $\sigma_{\rm b,oml} = 27.0 \, (N/m \mathring{n})$ 表1.1による。

以上より、 幅(面内)方向強軸Fb = 8.10 (N/mm)

1.3.2弱軸方向の面内曲げ基準強度 Fbの算定

ラミナ構成		CI T幅(mm)	
5層7プライ	Mx60-5-7	900	弱軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm²)	Ei(N/mm)	ノベノノ川川	El'Ai	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	0	直交層	0	2025000	30	0
2	900	30	27000	0	直交層	0	2025000	0	0
3	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
4	900	30	27000	0	直交層	0	2025000	60	0
5	900	30	27000	3000	平行層	81000000	2025000	90	6.622E+11
炭化層6	900	0	0	0	直交層	0	0	0	0
炭化層7	900	0	0	0	直交層	0	0	0	0
					Σ Ei•Ai	162000000	Σ Ei•I	i+Ei•Ai•zi²	7.412E+11

3000 (N/mm) E0 = $I_0 = 2.53E+08 \text{ (mm}^4\text{)}$ 135000 (mm) $A_0 =$ $I_A = 2.47E+08 (mm^4)$ 54000 (mm) $A_A =$

 $\sigma_{\rm b,oml} = 19.5 \, (N/m \mathring{n})$ 表1.1による。

以上より、幅(面内)方向弱軸 Fb= 4.68 (N/mm)

1.3.3強軸方向の面外曲げ基準強度 Fb の算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	900	強軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向 Ei・Ai	E:. A:	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	7 × 7 7 1 1 PJ	El Al	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	6000	平行層	162000000	2025000	30	1.58E+11
2	900	30	27000	6000	平行層	162000000	2025000	0	1.215E+10
3	900	30	27000	0	直交層	0	2025000	30	0
4	900	30	27000	3000	平行層	81000000	2025000	60	2.977E+11
5	900	30	27000	0	直交層	0	2025000	90	0
炭化層6	900	0	0	6000	平行層	0	0	0	0
炭化層7	900	0	0	6000	平行層	0	0	0	0
					Σ Ei•Ai	405000000	Σ Ei•I	i+Ei•Ai•zi²	4.678E+11

6000 (N/mm) $I_0 = 2.53E+08 \text{ (mm}^4)$ $I_A = 77962500 \text{ (mm}^4)$ $I_{Oml} = 27.0 \text{ (N/mm}^2)$ 135000 (mm) $A_0 =$ 67500 (mm) $A_A =$

 $\sigma_{b,oml} =$ 表1.1による。

以上より、 積層(面外)方向強軸**Fb 4.05** (N/mm)

1.3.4弱軸方向の面外曲げ基準強度 Fb の算定

ラミナ構成	強度等級	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	900	弱軸

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	フミナカ回	El'Al	Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	0	直交層	0	2025000	30	0
2	900	30	27000	0	直交層	0	2025000	0	0
3	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
4	900	30	27000	0	直交層	0	2025000	60	0
5	900	30	27000	3000	平行層	81000000	2025000	90	6.622E+11
炭化層6	900	0	0	0	直交層	0	0	0	0
炭化層7	900	0	0	0	直交層	0	0	0	0
						162000000	Σ Ei•I	i+Ei•Ai•zi²	7.412E+11

 $E_0 =$ 3000 (N/mm) $I_0 = 2.53E+08 \text{ (mm}^4\text{)}$ $A_0 =$ 135000 (mm) AA = IA = 2.47E+08 (mm⁴)54000 (mm)

 $\sigma_{\rm b,oml} = 19.5 \, (N/mm)^2$ 表1.1による。

以上より、 積層(面外)方向弱軸Fb 9.27 (N/mm)

1.4 せん断基準強度Fs (平13国交告第1024 号第三第九号二)

せん断基準強度は下記式より算出する。

fv,lam,0

 $f_s =$ min fv,lam,90 • (tnet/tgross)

 $(b = nca/2 = tgross) = 1/(1/fv,tor = (1-1/m^2)+2/fR = (1/m-1/m^2)) \times k5th$

:ラミナの繊維方向せん断強度N/mm² fv,lam,0

ひのき、からまつ	3.6 N/mm ²
つが	3.3 N/mm ²
とどまつ	3.0 N/mm ²
すぎ	2.7 N/mm ²

f_v,lam,90 : ラミナの繊維方向に直交する方向のせん断<u>強度N/mm²</u>

ひのき、からまつ	10.8 N/mm ²
つが	9.9 N/mm ²
とどまつ	9.0 N/mm ²
すぎ	8.1 N/mm ²

 $f_{V,lam,0} \times 3$

燃えしろの場合

:総層数に占める少ない層のラミナ厚の和 3層3プライ **t**net

5層7プライ 5層5プライ

net 1層分 30 mm net 2層分 60 mm 60 mm

60 mm

:総厚さ tgross

5層7プライ net 2層分 7層7プライ net 3層分 3層3プライ 総厚さ 5層5プライ

総厚さ 150 mm 5層7プライ 総厚さ 210 mm 7層7プライ 総厚さ 210 mm

150

b :ラミナ幅

nca

3層3プライ

120 mm 2

90 mm

90 mm

4 4

5層5プライ 5層7プライ 7層7プライ

6

:接着された直交するラミナの交差面のねじりせん断強度 fv,tor

:厚さ方向の接着面数

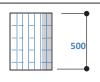
ひのき、からまつ 4.7 N/mm² つが 3.0 N/mm² とどまつ 3.0 N/mm²

:幅方向のラミナの最小枚数

すぎ 3.0 N/mm 成500mm 3 成600mm 4 成700mm 5 成900mm 6

fR :ローリングシア強度

成1000mm	7
ひのき、からまつ	2.0 N/mm ²
つが	1.8 N/mm ²
とどまつ	1.6 N/mm ²
すぎ	1.5 N/mm^2


1.4.1せん断基準強度Fs (面外、面内)の算定

60mm燃えしろ設計の場合

m=3	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 n _{ca}	ラミナ幅方向の 数の最小値 m
	5層7プライ	Mx60-5-7	150	500	120	3	3
		210-60=150 4hc30			111630		

fv,lam,0		2.70	1.0	2.70	
fv,lam,90 · (tnet/tgross)	5層7プライ	3.24	1.0	3.240	1.51
(3b • nca/8 • tgross) • 1/(1/fv.tor • (1-1/m²) + 2/fR • (1/m-1/m²))		1.52	1.0	1.519	

図が違っていた。

右図より、m=3とする。

以上より、

積層(面外)方向 Fs y =	0.9	(N/mm)̇́)
幅(面内)方向 <i>Fs</i> x =	1.51	(N/mm))

面外方向は、ラミナ構成に関係なく $_{\text{面外}}$ Fs=0.9N/mm 2 とする。

m=4	ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	ラミナ幅 b (mm)	CLTパネルの 直交接着層の数 nca	ラミナ幅方向の 数の最小値 m
	5層7プライ	M×60-5-7	150	600	120	3	4
	210-60=150 4から3へ						

210-60=150 4から3へ

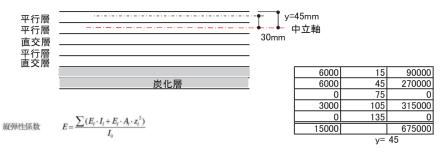
fv,lam,0		2.70	1.0	2.70	
fv,lam,90 • (tnet/tgross)	5層7プライ	3.24	1.0	3.240	1.6
(3b • nca/8 • tgross) • 1/(1/fv,tor • (1-1/m²) + 2/fR • (1/m-1/m²))		1.60	1.0	1.600	

右図より、m=4とする。

以上より、	積層(面外)方向 Fs y =	0.9 (N/mm)	面外方向は、ラミナ構成に関係なく _{面外} Fs =0.9N/mm ² とする。
	幅(面内)方向 <i>Fs</i> x =	1.60 (N/mm)	

めり込みの基準強度は外層ラミナの樹種に応じて表1.2のように規定されている。

表12 CLTパネルのめり込みの基準強度 Fe


衣1.2 CL1ハイルのめり込みの基準独及 Fev	
外層ラミナの樹種	Fcv (N/mm)
あかまつ、くろまつ、ダフリカからまつ、サザンパイン、べいまつ、ホワイトサイプレスパイン及び ウエスタンラーチ	9.0
ひのき、ひば、からまつ及びべいひ	7.8
つが、アラスカイエローシダー、べにまつ、ラジアタパイン、べいつが、もみ、とどまつ、えぞまつ、べいもみ、スプルース、ロッジボールパイン、ポンデローサパイン、おうしゅうあかまつ、 <u>すぎ</u> 、べいすぎ及びジャックパイン	6.0

2. 燃えしろ60mmのMx60-5-7の弾性係数(曲げヤング係数E、せん断弾性係数G)

2.1 面外方向の弾性係数

Shear Analogy Method*:に基づいて、面外方向の縦弾性係数E とせん断弾性係数G を次のように計算する。以下、ラミナの繊維方向がCLT パネルの長手方向に平行な層を「平行層」、直交する層を「直交層」と称する。

2.1.1面外方向強軸の曲げヤング係数の算定

Ei, Ii, Ai, zi, Io: Eの計算においては、直交層はEi=0

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	強軸
	E ₀	ラミナ厚		-
	6000	30		
	3000	30	1	

E	CLT幅	ラミナ厚	層断面積	ラミナ強度		T3: A:	断面二次モーメント	中立軸との距離	Ei•Ii+
層	(mm)	(mm)	Ai(mm)	Ei(N/mm)	ラミナ方向	Ei•Ai	Ii (mm4)	zi (mm)	Ei•Ai•zi²
1	900	30	27000	6000	平行層	162000000	2025000	30	1.58E+11
2	900	30	27000	6000	平行層	162000000	2025000	0	1.215E+10
3	900	30	27000	0	直交層	0	2025000	30	0
4	900	30	27000	3000	平行層	81000000	2025000	60	2.977E+11
5	900	30	27000	0	直交層	0	2025000	90	0
炭化層6	900	0	0	0	平行層	0	0	0	0
炭化層7	900	0	0	0	平行層	0	0	0	0
		$\mathbf{A_0} = \Sigma \operatorname{Ai}$	135000		Σ Ei•Ai	405000000	Σ Ei•Ii	i+Ei•Ai•zi²	4.68E+11

 $\begin{array}{rcl} \Sigma E i \! \cdot \! I i \! + \! E i \! \cdot \! A i \! \cdot \! Z i^2 &=& 4.68E \! + \! 11 \; (\text{N} \cdot \text{mm}) \\ I_0 &=& 6.95E \! + \! 08 \; (\text{mm}^4) \end{array}$

以上より、 E = 673 (N/mm)

2.1.2面外方向弱軸の曲げヤング係数の算定

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	弱軸
	E ₀	ラミナ厚		
	6000	30		
	3000	30		

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai	断面二次モーメント	中立軸との距離	Ei•Ii+
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)			Ii (mm4)	zi (mm)	Ei•Ai•zi ²
1	900	30	27000	0	直交層	0	2025000	30	0
2	900	30	27000	0	直交層	0	2025000	0	0
3	900	30	27000	3000	平行層	81000000	2025000	30	7.898E+10
4	900	30	27000	0	直交層	0	2025000	60	0
5	900	30	27000	3000	平行層	81000000	2025000	90	6.622E+11
炭化層6	900	0	0	0	直交層	0	0	0	0
炭化層7	900	0	0	0	直交層	0	0	0	0
		•	•	•	Σ Ei•Ai	162000000	Σ Ei•Ii	i+Ei•Ai•zi²	7.41E+11

 $\Sigma E i \! \cdot \! I i \! + \! E i \! \cdot \! A i \! \cdot \! Z i^2 \hspace{0.1cm} = \hspace{0.1cm} \textbf{7.41E+11 (N \cdot m \mathring{\textbf{m}})}$

 $I_0 = 6.95 \text{E+08 (mm}^4)$

以上より、 E = 1067 (N/mm)

2.1.3面外方向強軸のせん断弾性係数の算定

せん断弾性係数
$$G = \frac{a^{2}}{\frac{h_{i}}{2 \cdot G_{i}} + \sum\limits_{s=2}^{s=1} \frac{h_{i}}{G_{i}} + \frac{h_{a}}{2 \cdot G_{s}}} \cdot \frac{1}{t_{gross}}$$

a(mm) :外層同士の重心間距離(外層が弱軸の場合、その一つ内側のラミナ同士の距離とする) hi(mm) :i番目の層の厚さ

 ${
m Gi(N/mm^2)}$:i番目の層のせん断弾性係数(平行層 ${
m Gi}$ = ${
m Ei}/16$ 、直交層 ${
m Gi}$ = ${
m Ei}/160$)

tgross(mm):CLTパネルの厚さ

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層同士の重心間 距離 a(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	150	強軸
	E ₀	ラミナ厚			_
	6000	30			
	3000	30]		

外層ラミナが強軸の場合、1層目は1番目の外層、もう一方の外層がn層目となる。

層	ラミナ厚	ラミナ強度	ラミナ方向	層のせん断弾性係数	hi/Gi	備考
眉	hi(mm)	Ei(N/mm))	Gi(N/mm)	III/GI	畑ケ
1	30	6000	平行層	375	0.04	$h_1/(2 \cdot G_1)$
2	30	6000	平行層	375	0.08	
3	30	3000	直交層	18.75	1.6	
4	30	3000	平行層	187.5	0.16	
5	30	3000	直交層	18.75	1.6	
炭化層6	0	6000	平行層	375	0	
炭化層7	0	6000	平行層	375	0	hn/(2•Gn)
	1月	層目と7層目の	3.48			

2.1.4面外方向弱軸のせん断弾性係数の算定

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	外層同士の重心間 距離 a(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	60	弱軸
	E ₀	ラミナ厚			
	6000	30			
	3000	30			

外層ラミナが弱軸の場合、外層ラミナ直交層はhi/Gi=0とし、その一つ内側のラミナを1番目として算出する。

層	ラミナ厚	ラミナ強度	ラミナ方向	層のせん断弾性係数	hi/Gi	備考
眉	hi(mm)	Ei(N/mm³))~))] [F]	Gi(N/mm)	111/01	l⊞ 2⊃
1	30	6000	直交層	37.5	0	
2	30	6000	直交層	37.5	0	
3	30	3000	平行層	187.5	0.08	hn/(2•Gn)
4	30	3000	直交層	18.75	1.6	
5	30	3000	平行層	187.5	0.08	hn/(2∙Gn)
炭化層6	0	6000	直交層	37.5	0	
炭化層7	0	6000	直交層	37.5	0	
				Σ hi/Gi	1.76	

以上より、 G = 9.74 (N/mm)

2.2 面内方向の弾性係数 面内方向の縦弾性係数E は、平行層のみを有効として次のように算定する。

$$E = \frac{\sum (E_i \cdot A_i)}{A_0}$$

Ei Ai Ao :1.2 節に同じ。

面内方向のせん断弾性係数G は、既往の実験結果に基づいて、 ラミナ構成、強度等級にかかわらず $G_{\text{bh}}=500 \text{N/mm}^2$ とする。

2.2.1面内方向強軸の曲げヤング係数

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	強軸
	E ₀	ラミナ厚		
	6000	30		
	3000	30	i	

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	フマアカ門	El-Ai
1	900	30	27000	6000	平行層	162000000
2	900	30	27000	6000	平行層	162000000
3	900	30	27000	0	直交層	0
4	900	30	27000	3000	平行層	81000000
5	900	30	27000	0	直交層	0
炭化層6	900	0	0	6000	平行層	0
炭化層7	900	0	0	6000	平行層	0
		A0= Σ Ai	135000		Σ Ei•Ai	4.05E+08

 $A_A = \Sigma (E_i \cdot A_i)/E_0 = 6.75E + 04 (N)$

 $A_0 \ = \quad \ 189000 \ (\text{mm})$

以上より、 E = 2142 (N/mm)

2.2.2面内方向弱軸の曲げヤング係数

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅(mm)	外層ラミナ方向
5層7プライ	Mx60-5-7	210	900	弱軸
	E ₀	ラミナ厚		
	6000	30		
	3000	30	1	

層	CLT幅	ラミナ厚	層断面積	ラミナ強度	ラミナ方向	Ei•Ai
眉	(mm)	(mm)	Ai(mm)	Ei(N/mm)	ノベノノ川	EI-AI
1	900	30	27000	0	直交層	0
2	900	30	27000	0	直交層	0
3	900	30	27000	3000	平行層	81000000
4	900	30	27000	0	直交層	0
5	900	30	27000	3000	平行層	81000000
炭化層6	900	0	0	0	直交層	0
炭化層7	900	0	0	0	直交層	0
		A0= Σ Ai	135000		Σ Ei•Ai	1.62E+08

 $A_A = \Sigma (E_i \cdot A_i)/E_0 = 1.62E + 08 \text{ (N)}$

 $A_0 = 135000 \, (\text{mr} \hat{\text{m}})$

以上より、 E = 1200 (N/mm)

2.2.3面内方向(強軸、弱軸共通)のせん断弾性係数

ラミナ構成、強度等級にかかわらず面内方向せん断弾性係数Gは、下記とする。

G_{面内}= 500 (N/mm)

3. CLT パネルの応力度計算方法

CLT パネルを線要素(梁要素)にモデル化する場合に、応力変形解析によって得られる当該要素の軸方向の圧縮応力をC、引張応力をT、曲げ応力をM、せん断応力をQとする。このとき、CLT パネルの応力度は次のように求める。

圧縮応力度
$$\sigma_c = \frac{C}{A}$$

引張応力度
$$\sigma_t = \frac{T}{A}$$

曲げ応力度
$$\sigma_b = \frac{M}{Z_c}$$

面内せん断応力度
$$\tau_I = 1.5 \cdot \frac{Q}{A_0}$$
 面外せん断応力度
$$\tau_O = \frac{Q}{A_0}$$

ここで、 A_0 はCLTパネルの断面積、 Z_0 は面内または面外方向の断面係数で、Mの方向に応じて決定する。いずれも直交層を含む全断面を有効とした値とする。

3.1面外方向強軸のせん断応力度分布係数 8

βは面外方向のせん断応力度分布係数(の最大値)で、次のように求める。

$$\beta = \frac{A_0}{2 \cdot E \cdot I_0} \cdot \left\{ E_1 \cdot x_1^2 + \sum_{i=2}^m E_i \cdot (x_i^2 - x_{i-1}^2) \right\}$$

E, Io(mm4):CLT パネル面外方向の弾性係数、断面二次モーメント

m:CLTパネル中立軸(対称構成の場合は厚さの中央)より外側のラミナ層数

 $Ei(N/mm^2)$:i 番目の層の弾性係数(直交層ではEi=0)

xi:CLT パネル中立軸から、i番目の層のCLT パネル中立軸から遠い面までの距離

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	CLTパネル中立軸より 外側のラミナ総数 m	外層ラミナ方向
5層7プライ	Mx60-5-7	150	900	1	強軸
	E ₀	ラミナ厚			
	6000	30			
	3000	30			

層	CLT幅	ラミナ厚	ラミナ強度	ラミナ方向	xi	$xi^2 - xi^{-1}$	Ei•	E ₁ •x ₁ ²
眉	(mm)	(mm)	Ei(N/mm)	ノベノハ川	X1	XI XI-1	$(xi^2 - xi^2)$	121 - X1
x3	900	30	6000	平行層	45	1800	10800000	-
X2	900	30	6000	平行層	15	225	1350000	_
X1	900	30	0	直交層	0	0	0	0
	900	30	3000	平行層				
	900	30	0	直交層				
炭化層6	900	0						
炭化層7	900	0						
				x1を除く	ΣEi•($xi^2 - xi^{-1^2}$	12150000	

面外方向の弾性係数・断面二次モーメント

 $E = 673.00 (N/m\mathring{n})$ $I_0 = 2.53E+08 (mm^4)$

135000 (mm)

面外方向強軸の曲げヤング係数の算定による。 面外方向強軸の曲げヤング係数の算定による。 面外方向強軸の曲げヤング係数の算定による。

 $A_0 =$

3.1.2面外方向弱軸のせん断応力度分布係数β

ラミナ構成	強度等級	パネル厚さ t _{gross} (mm)	CLT幅 (mm)	CLTパネル中立軸より 外側のラミナ総数 m	外層ラミナ方向
5層7プライ	Mx60-5-7	150	900	1	弱軸
	E ₀	ラミナ厚		•	
	6000	30			
	3000	30	1		

層	CLT幅	ラミナ厚	ラミナ強度	ラミナ方向	xi	xi² - xi-1²	Ei•	E ₁ •x ₁ ²
眉	(mm)	(mm)	Ei(N/mm)	ノベノノハロ	XI	XI — XI-1	$(xi^2 - xi^{-1})$	E1-X1
x 3	900	30	0	直交層	45	1800	0	_
X2	900	30	0	直交層	15	225	0	_
X1	900	30	3000	平行層	0	0	0	0
	900	30	0	直交層				
	900	30	3000	平行層				
炭化層6								
炭化層7								
				x1を除く	ΣEi•(:	$xi^2 - xi^{-1^2}$	0	

面外方向の弾性係数・断面二次モーメント

 $E = 1067 (N/mm^2)$

 $I_0 = 2.53E + 08 \text{ (mm}^4\text{)}$ $A_0 = 135000 \text{ (mm}^3\text{)}$ 面外方向強軸の曲げヤング係数の算定による。 面外方向強軸の曲げヤング係数の算定による。 面外方向強軸の曲げヤング係数の算定による。

以上より、 $\beta = 0.000$

4. 燃えしろ60mmの場合のMx60-5-7の基準強度・弾性係数一覧

8.10 4.68

ラミナ構成 強度等級

5層7プライ Mx60-5-7

「1. CLT パネルの基準強度」及び、「3. CLT パネルの応力度計算方法」によるせん断応力度分布係数 β の値を表4.1 に示す。また、「2. CLT パネルの弾性係数」による弾性係数E,Gを表4.2に示す。面内方向のせん断の基準強度Fs 以外はラミナの厚さに依存しない。また、面内方向のせん断の基準強度Fs を計算する際のラミナの幅b・厚さは本物件で使用する下記値を採用する。ラミナ幅方向の数の最小値mは断面応力度検定時に各部材ごとに設定する事とするが、ここではm=7と設定した算定結果を示す。

ラミナ幅 b(mm)	120	
ラミナ厚さ t(mm)	30	
ラミナ幅方向の数の最小値 m		※各部材ごとに合わせて設定する

強軸 弱軸

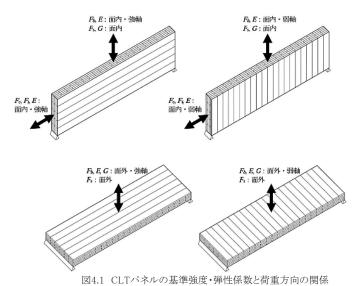
4.68

8.10

表4.1 燃	えしろ60mn	nのにおけるM:	x60-5-7の基準	・強度、せん断り	芯力度分布係数	汝
			面内	方向		
ラミナ構成	強度等級	Fc	Ft	Fbx	Fsx	Fby

3.45

J.	む力度を	分布係数	汝				ĭ:N/m₫	
			面外方向					
	F:	sx	FI	ру	Fsy	/-	3	
	m=3	m=4	強軸	弱軸	共通	強軸	弱軸	
	0.00	0.00	4.05	9.27	0.90	4.814	0.000	

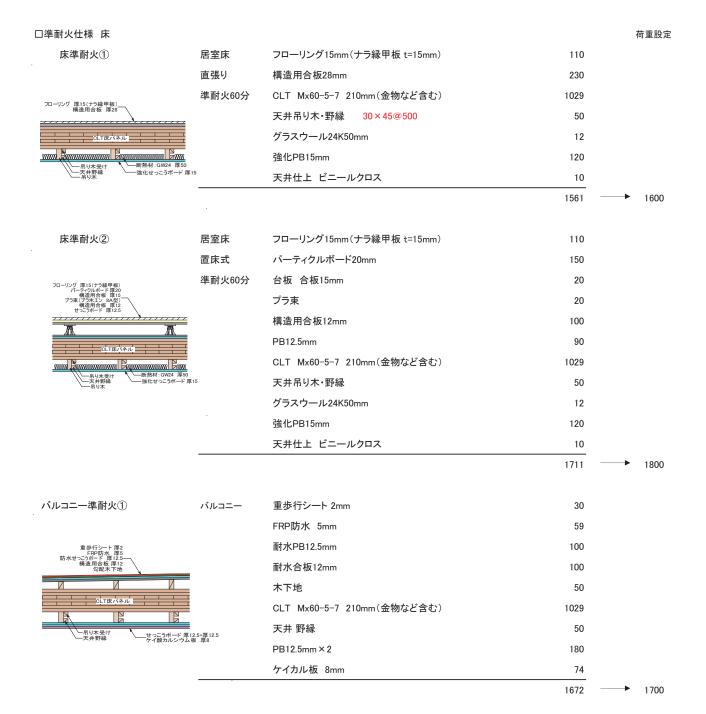

表4.2 燃えしろ60mmのにおけるMx60-5-7の弾性	‡係数	単位:N/mi
-------------------------------	-----	---------

強軸 弱軸 強軸 弱軸

6.00

3X 1.2 //m//	強度等級	面内方向			1 42 37 14	面外	方向			
ラミナ構成		E		G	Е		(à		
		強軸	弱軸	共通	強軸	弱軸	強軸	弱軸		
5層7プライ	Mx60-5-7	2142	1200	500	673	1067	30.79	9.74		

4.1.1基準強度および弾性係数とCLT パネルに作用する荷重の方向の関係

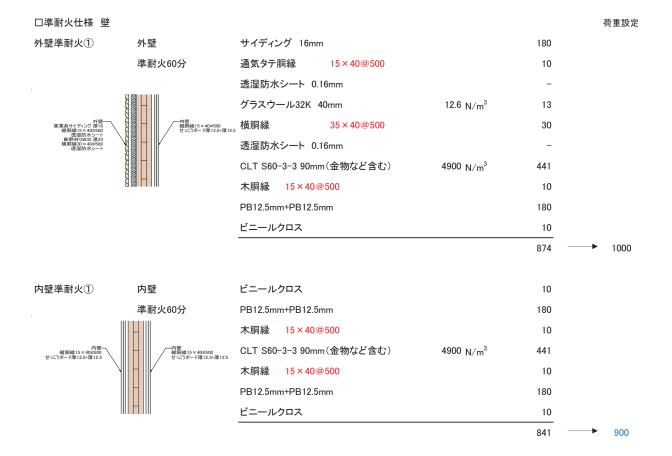

参考資料5 仮定荷重資料

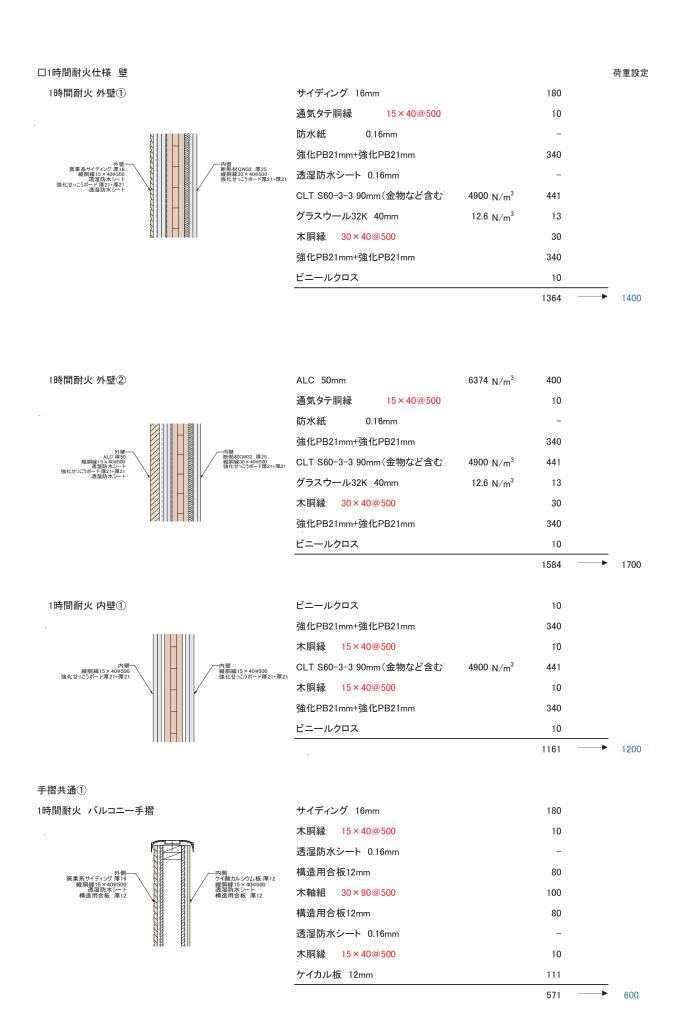
方火仕様 屋根 	- AB4**	100	Ā
屋根防火① 勾配屋		100	
防火仕	策 アスファルトルーフィング	20	
	構造用合板12mm	80	
金属板葺 押スファルトルーフイング 構造用合板厚12 タルキ 45×75@500	重木 45 × 75@500	40	
母屋	母屋組(母屋間隔2.0m以下) 母屋90×90@1000 東90×90@2000	50	
斯熱材:GW16 厚100— 東	グラスウール16k100mm 15.69 N/m ³	16	
	W CLT Mx60-5-7 210mm(金物など含む) 4900 N/m³	1029	
CLT天井パネル	天井吊り木·野縁 30×45@500	50	
ス	PB12.5mm	90	
	天井仕上 ビニールクロス	10	
		1485	-
屋根防火② 勾配屋	限 化粧スレート板葺	260	
防火仕	策 アスファルトルーフィング	20	
(Lateral LACTOR	構造用合板12mm	80	
化粧スレート板葺 アスファルトルーフィング 構造用合板 厚12 タルキ 45×75®500	垂木 45×75@500	40	
母屋	母屋組(母屋間隔2.0m以下) 母屋90×90@1000 東90×90@2000	50	
斯熱材:GW16 厚100— 東	グラスウール16k100mm 15.69 N/m ³	16	
DLT支井バネル	グ W 壹 CLT Mx60-5-7 210mm(金物など含む) 4900 N/m³	1029	
CLT天井バネル スー品リ木受け	■ 天井吊り木・野縁 30×45@500	50	
一天井野緑 吊り木 せっこうボード 厚12.5	PB12.5mm	90	
	・ 天井仕上 ビニールクロス	10	
		1645	
屋根防火③ 勾配屋	根 日本瓦葺(葺き土無し)	470	
防火仕		20	
	構造用合板12mm	80	
	垂木 45×75@500	40	
3本瓦菲(葺き土無し)	母屋組(母屋間隔2.0m以下) 母屋90×90@1000 東90×90@2000	50	
アスファルトルーフハッグ 構造用合板 厚12 タルキ 45×75@500	グラスウール16k100mm 15.69 N/m³	16	
母屋	CLT Mx60-5-7 210mm(金物など含む) 4900 N/m ³	1029	
斯熱村: GW16 厚100—米—	。 ■ 天井吊り木・野縁 30×45@500	50	
OLT天井パネル	スポロッパ・37隊 30~43回300 PB12.5mm	90	
	- ・	10	
		1855	
· 屋根防火④ 陸屋根	合成高分子系ルーフィングシート	15	
屋板防火 鱼		100	
合成高分子ルーフィングシート	_{录 删} 水PB12.5mm 構造用合板12mm	80	
ロ級向力・ボーバンソンジー 防水石膏ボード厚12.5 構造用合板厚12 勾配木下地			
M M	勾配木下地組	50	
VI VI VI	CLT Mx60-5-7 210mm(金物など含む) 4900 N/m ³	1029	
CLT天井バネル	天井吊り木・野縁 30×45@500	50	
- 新熱村: GW16 厚10		16	
	5 PB12.5mm	90	
──天井野線 ──世っこうボード 厚1. ──吊り木	- 天井仕上 ビニールクロス	10	

屋根準耐火①	勾配屋根	金属板葺		100	
		アスファルトルーフィング		20	
	- III]) (0 0) J	構造用合板12mm		80	
金属板葺 アスファルトルーフィング 構造用合板 厚12		垂木 45×75@500		40	
3/μ∓ 45×75@500			0@1000 東90×90@2000	50	
斯勒林:GWI6 厚100一	*	グラスウール16k100mm	15.69 N/m ³	16	
		CLT Mx60-5-7 210mm(金物など含む)	4900 N/m ³	1029	
CLT夫井パネル		天井吊り木・野縁 30×45@500	4300 M/ M	50	
用り木受け 天井野線	WOWWWW	グラスウール24k50mm	11.77 N/m³	12	
一吊り木		強化PB15mm	11.77 N/m	120	
		天井仕上 ビニールクロス		10	
		<u> </u>		1527	
				1027	
屋根準耐火②	勾配屋根	化粧スレート板葺		260	
	準耐火60分	アスファルトルーフィング		20	
		構造用合板12mm		80	
化粧スレート板葺	_	垂木 45×75@500		40	
アスファルトルーフィング 構造用合板 厚12 タルキ 45×75@500	X	母屋組(母屋間隔2.0m以下) 母屋90×90	0@1000 東90×90@2000	50	
	= E	グラスウ―ル16k100mm	15.69 N/m ³	16	
斯熱材: GW16 厚100—	*-/	CLT Mx60-5-7 210mm(金物など含む)	4900 N/m ³	1029	
CLT天井パネル	WWWWIX WW	天井吊り木·野縁 30×45@500		50	
- ポリ木受け	WWWWWWW MWW MWW MWW MWW MWW MWW MWW MWW	グラスウール24k50mm	11.77 N/m ³	12	
一天井野緑 一吊り木	一強化せっこうボード 厚15	強化PB15mm		120	
		天井仕上 ビニールクロス		10	
				1687	-
屋根準耐火③	勾配屋根	日本瓦葺(葺き土無し)		470	
	準耐火60分	アスファルトルーフィング		20	
		構造用合板12mm		80	
		垂木 45×75@500		40	
日本瓦葺(葺き土無し) アスファルトルーフィンヴ 構造用合板 厚12 タルキ 45×75@500	M	母屋組(母屋間隔2.0m以下) 母屋90×90	D@1000 束90×90@2000	50	
	母屋	グラスウール16k100mm	15.69 N/m ³	16	
斯熱村: GW16 厚100	*-/	CLT Mx60-5-7 210mm(金物など含む)	4900 N/m ³	1029	
のして天井パネル		天井吊り木・野縁 30×45@500		50	
		グラスウール24k50mm	11.77 N/m³	12	
mm Summum Com	断熱材:GW24 厚50 強化せっこうボード 厚15	7会/LDD15		120	
- ポリス・受け - 天井野線 - 吊り木		強化PB15mm			
用り木受け 天井野線		天井仕上 ビニールクロス		10	
用り木受け 天井野線				10	
展り未参け 実計算 第50末		天井仕上 ビニールクロス		1897 —	-
用り木受け 天井野線	陸屋根	天井仕上 ビニールクロス 合成高分子系ルーフィングシート		1897 — 15	
是根準耐火④		天井仕上 ビニールクロス 合成高分子系ルーフィングシート 防水下地 耐水PB12.5mm		1897 — 15 100	
展り未参け 実計算 第50末		天井仕上 ビニールクロス 合成高分子系ルーフィングシート 防水下地 耐水PB12.5mm 構造用合板12mm		1897 — 15 100 80	
無り来 東井野線 東井野線 一乗り末 一乗り末 全成高分子ルー24ングシート 防水石書ボート度12 「大田電子を乗り2		天井仕上 ビニールクロス 合成高分子系ルーフィングシート 防水下地 耐水PB12.5mm 構造用合板12mm 勾配木下地組	400 2	1897 — 15 100 80 50	
展り来野け 大学野線 一席り末 屋根準耐火(4) 合成高分子ルーフングシート 防水石電ボート第125 構造用を集即2 一般の一名の一名の一名の一名の一名の一名の一名の一名の一名の一名の一名の一名の一名の		天井仕上 ビニールクロス 合成高分子系ルーフィングシート 防水下地 耐水PB12.5mm 構造用合板12mm 勾配木下地組 CLT Mx60-5-7 210mm(金物など含む)	4900 N/m³	1897 — 15 100 80 50 1029	-
展り本 デオ等は 一乗り木 屋根準而す火④ 合成高分子ルースングシート 防水石膏ボード厚125 構造用合板厚12 分配木下地	準耐火60分	天井仕上 ビニールクロス合成高分子系ルーフィングシート防水下地 耐水PB12.5mm構造用合板12mm勾配木下地組CLT Mx60-5-7 210mm(金物など含む)天井吊り木・野縁 30×45@500		1897 — 15 100 80 50 1029 50	
展り本 東井野津 東井野津 東リオ 屋根準而す火④ 合成高分子ルー2/ソグシート 防水石膏ボード原125 構造用合板原12 分配木下地	準耐火60分	天井仕上 ビニールクロス合成高分子系ルーフィングシート防水下地 耐水PB12.5mm構造用合板12mm勾配木下地組CLT Mx60-5-7 210mm(金物など含む)天井吊り木・野縁 30×45@500グラスウール24k50mm	4900 N/m³ 11.77 N/m³	1897 — 15 100 80 50 1029 50 12	-
用りますけ 天井野様 一用り水 一用り水 一用り水 一用り水 一用り水 一用り水 一月125	進耐火60分	天井仕上 ビニールクロス合成高分子系ルーフィングシート防水下地 耐水PB12.5mm構造用合板12mm勾配木下地組CLT Mx60-5-7 210mm(金物など含む)天井吊り木・野縁 30×45@500		1897 — 15 100 80 50 1029 50	-

P#####		△□	100	
屋根耐火①	勾配屋根	金属板葺	100	
	30分耐火	アスファルトルーフィング	20	
		構造用合板12mm	80	
金属板葺 アスファルトルーフィング 構造用合板 厚 12 タルキ 45×75@500		垂木 45×75@500	40	
	母屋	母屋組(母屋間隔2.0m以下) 母屋90×90@1000 東90×90@2000	50	
断熱村:GW16 厚100	*-	グラスウール16k100mm 15.69 N/m ³	16	
CLTE#/A		CLT Mx60-5-7 210mm(金物など含む) 4900 N/m ³	1029	
- 吊り木受け 万		天井吊り木・野縁 30×45@500	50	
天井野緑 吊り木	旅化せっこうポード 享15+厚12.5	強化PB15mm+強化PB12.5mm	220	
		天井仕上 ビニールクロス	10	
			1615	
屋根耐火②	勾配屋根	化粧スレート板葺	260	
	30分耐火	アスファルトルーフィング	20	
		構造用合板12mm	80	
		垂木 45×75@500	40	
	母屋	母屋組(母屋間隔2.0m以下) 母屋90×90@1000 東90×90@2000	50	
断熱材: GW16 厚10	, *[グラスウール16k100mm 15.69 N/m ³	16	
		CLT Mx60-5-7 210mm(金物など含む) 4900 N/m ³	1029	
CLT天井八木		天井吊り木·野縁 30×45@500	50	
――吊り木受け ス ――天井野緑 ――吊り木	強化せっこうボード 厚15+厚12.5	強化PB15mm+強化PB12.5mm	220	
	月 15十月 12.5	天井仕上 ビニールクロス	10	
			1775	
屋根耐火③	勾配屋根	日本瓦葺(葺き土無し)	470	
产限间入⑤	30分耐火	アスファルトルーフィング	20	
		構造用合板12mm	80	
		垂木 45×75@500	40	
日本瓦葺(葺き土無し) アスファルトルーフィング 構造用合板 厚12 タルキ 45×75@500	X	母屋組(母屋間隔2.0m以下) 母屋90×90@1000 東90×90@2000	50	
	母屋	グラスウール16k100mm 15.69 N/m³	16	
断熱村: GW16 厚10	\	CLT Mx60-5-7 210mm(金物など含む) 4900 N/m ³	1029	
CLT天井バネ		天井吊り木·野縁 30×45@500	50	
カー 吊り木受け カー 天井野緑	強化せっこうボード 厚15+厚12.5	強化PB15mm+強化PB12.5mm	220	
一串り木	厚15+厚12.5	天井仕上 ビニールクロス	10	
	•		1985	
屋根耐火④	陸屋根	合成高分子系ルーフィングシート	15	
连似则入 少	座座板 30分耐火	高水高がナネルーフィングシート 防水下地 耐水PB12.5mm	100	
合成高分子ルーフィングシート	30万顺久	防水下地 順水PB12.5mm 構造用合板12mm	80	
合成高分子ルーフィングシート 防水石膏ボード 厚12.5 構造用合板 厚12 勾配木下地		有這用合板 I Zmm 勾配木下地組	80 50	
ИИ	И	勾配木 F 地祖 CLT Mx60-5-7 210mm(金物など含む) 4900 N/m ³	1029	
CLT天井パネル		CLI MX00-5-7 Z10mm(金初など含む) 天井吊り木・野縁	50	
N SWMWWW SWWW	断熱材:GW16 厚100	大井市り个・野稼 グラスウール16k100mm 15.69 N/m ³	16	
一吊り木受け 一天井野緑 一吊り木 厚15	せっこうボード +厚12.5	97スリール10k100mm 15.09 N/m	220	
		天井仕上 ビニールクロス	10	

居室床防火①	居室床	フローリング15mm(ナラ縁甲板 t=15mm)		110	
,后至外防入①					
	直張り	下地合板9mm	2	70	
プローリング 厚15(ナラ緑甲板) 横進用合板 厚9	防火仕様	CLT Mx60-5-7 210mm(金物など含む)	4900 N/m ³	1029	
		天井吊り木・野縁 30×45@500		50	
		PB12.5mm		90	
- 天井野緑 - せっこうボード 厚12.5		天井仕上 ビニールクロス		10	
	÷			1359 —	→ 1
居室床防火②	居室床	フローリング15mm(ナラ縁甲板 t=15mm)		110	
	置床式	パーティクルボード20mm 750N/m³	147.10	150	
フローリング 厚15(ナラ縁甲板)	防火仕様	台板 合板15mm		20	
パーディクルボード 厚20 構造用合板 厚15 ブラ東(ブラ木エン 8A型)		プラ東		20	
CLT#X*JU		CLT Mx60-5-7 210mm(金物など含む)	4900 N/m ³	1029	
		天井吊り木・野縁 30×45@500		50	
吊り木受け	= =	PB12.5mm		90	
──天井野緑		天井仕上 ビニールクロス		10	
				1479	→ 1
ベルコニー・通路 防火①	バルコニー	重歩行シート 2mm		30	
	防火仕様	FRP防水 5mm	11800 N/m ³	59	
重歩行シート 厚2 FPP防水 厚5_ 構造用合板 厦9-厚12		防水下地 耐水合板9mm		70	
構造用合植物。原物是2 为配本下地	•	耐水合板12mm		100	
	=	木下地		50	
		CLT Mx60-5-7 210mm(金物など含む)	4900 N/m ³	1029	
一吊り木受け 一天井野縁 ケイ酸カルシウム板	三 原8	天井吊り木・野縁 30×45@500		50	
一 吊り木	••	ケイカル板 8mm		74	
				1462	→ 1


外壁タイルの場合


乾式工法 タイル+ベースサイディング 385

防火・準耐火45分のみ

 $385-180=205N/m^2$

(884+205)/884= 1.2319 サイディングに対して1.25倍となる。

アルミサッシ 複層ガラス

 400 N/m^2

玄関ドア

 350 N/m^2

