令和2年度 木材製品の消費拡大対策事業のうち CLT建築実証支援事業のうちCLT等木質建築部材技術開発・普及事業

鉄骨床梁を併用したCLTパネル耐力壁等の開発検討

事業報告書

令和4年2月

一般社団法人 日本CLT協会

公益財団法人 日本住宅・木材技術センター

目 次

第	1章	事業概要	… 第	1 i	章 -1
	1. 1	事業の目的	第	1 1	· 章-1
	1. 2	実施内容	第	1 1	章-1
	1. 3	実施体制	第	1 i	章-2
第	2章	想定する建築物の概要	… 第	2 i	章 -1
	2. 1	モデル設計1 4階建て共同住宅	第	2 ī	章-1
	2. 2	モデル設計2 4階建て事務所	第	2 ī	章- 2
第	3章	既往の S+CLT 工法の整理と試験体の試設計	… 第	3 i	筆 •1
	3. 1	既往の S+CLT 工法の整理とターゲットの絞り込み	第	3 1	章-1
	3. 1	1. 1 調査文献の分類	第	3 1	章-1
	3. 1	1. 2 鉄骨造+CLT 技術に関する文献	第	3 1	章-1
	3. 1	1. 3 CLT 壁の幅高比とせん断応力度の関係とターゲットの絞り込み	第	3 1	章 - 3
	3. 2	想定する構造と目標性能の設定	第	3 1	章 - 6
	3. 3	試験体形状の決定と試設計	第	3 ī	章-7
	3.3	3. 1 試験体形状の決定	第	3 1	章-7
	3.3	3. 2 試設計	第	3 ī	章-9
	3.	3. 2. 1 CLT 壁の終局曲げモーメント	第	3 1	章-9
	3.	 3.2.2 鉄骨はりの断面算定 	第 3	章	-10
	3.	3. 2. 3 CLT 壁の負担せん断応力度	…第 3	章	-11
	3.	3.2.4 接合部の検討	第 3	章	-13
	3.	 3.2.5 鉄骨はりを併用した構造形式 	第 3	章	-15
	3.4	事前解析	第 3	章	-17
	3. 4	4. 1 解析概要	第 3	章	-17
	3. 4	4. 2 解析結果	第 3	章	-18
	3.5	まとめ	第 3	章	-21
	参考文禧	武	第 3	章	-21
				_	
第	4草	実験による性能把握	…第	41	軍 -1
	4. 1	検討の目的	第	4 ī	章-1
	4.2	要素実験	第	4 i	章-1
	4. 2	2.1 ドリフトピン接合部実験	第	4 1	章-1
	4.	2.1.1 検討の目的	第	4 1	拿-1
	4.	2.1.2 CLT の支圧実験	第	4 1	章-1
	4.	2.1.3 単位接合部実験	第	4 1	章-3
	4.	2.1.4 単位接合部実験 実験結果	第	4 1	掌-4
	4.	2.1.5 接合部実験	…第	41	章-9
	4.	2.1.6 接合部実験 実験結果	第 4	草	-10
	4. 2	2.2 モルタル上縮試験	第4	草	-14
	4.2	2.3 ドリフトビン鋼材引張試験	第4	草	-15
	4.3	静的加力実験	第4	草	-17
	4. 3	3.1 実験概要	第4	章	-17
	4.	3.1.1 試験体	第4	章	-17
	4.	3.1.2 施上上の注意点	第4	草	-27
	4. 3	3. 2 美闕万法	第4	草	-27
	4.	3.2.1 加刀装置	第4	草	-27
	4.	3.2.2 川刀計画	第4	草	-29
	4.	- 3. 2.3 計測計画	弟 4	草	-30
	4. 3	3. 3 夫��� 杧禾		早	-36

4.3.3.1 データ処理方法	
4.3.3.2 荷重変形関係と破壊性状	
4.3.3.3 曲げモーメント分布	
4.3.3.4 CLT E縮応力度分布	
4. 3. 3. 5 テンション材応力	
4.3.3.6 鉄骨はりパネルゾーンのせん断変形	
4.3.3.7 CLT ロッキング変形	
4.3.3.8 せん断接合部水平変形	
4.3.3.9 ドリフトピン引張接合部	
4.3.3.10 DP-挿入鋼板-鉄骨はり 力の伝達の違い	
4.3.4 構造特性係数 Ds の検討	第4章-81
4.3.4.1 等価粘性減衰定数	第4章-81
4. 3. 4.2 塑性率を用いた Ds の評価手法(方法①)	
4.3.4.3 累積塑性変形倍率を用いた Ds の評価手法(方法②)	
4.3.4.4 塑性率と等価粘性減衰定数を用いた Ds の評価手法(方法③)	
4.3.4.5 Ds の算定結果	第4章-84
4.3.5 はりのせん断力・CLTの圧縮合力	第4章-86
 4 実験結果の解析による追跡 	第4章-93
4. 4. 1 解析概要	第4章-93
4. 4. 2 解析結果	第4章-100
4. 4. 2. 1 No.1-テンションロッド	第4章-100
4. 4. 2. 2 No.2 フラットバー	第4章-102
4. 4. 2. 3 No.3-片側モルタルあり-24DP	第4章-104
4. 4. 2. 4 No.4・面タッチあり・24DP	第4章-106
4. 4. 2. 5 No.5 片側モルタルあり-16DP	第4章-108
4. 4. 2.6 応力状態の比較	第4章-110
4. 4. 3 まとめ	第4章-111
4.5 まとめ	第 4 章-112
参考文献	第 4 章-113
ᄷᆮᆇᅠᅮᆕᆘᇌᆗᅎᅃᄯ	Antes
第5早 モナル設計の解析	
5.1 モアル設計の解析	
5. 1. 1 セアル設計1 4階建く共同仕毛の構造解析と構造凶	
5.1.2 モアル設計2 4階建て事務所の構造解析と構造凶	
3. 2 モアル設計2の使具	
3. 2. 1 モデル設計2の軟有体案併用 ULI ハイル上法とKC ソーメン構造との上争貨比較 5. 2 ましめ	
り、 う まとめ	
第6音 耐火試 路	第6音-1
6 1 日的	おり半1 笠 6 音-1
6 2 試驗概要	2000年1 2010年1
6 2 1 試驗休	第6章-1 第6章-1
6. 2. 2 実験方法	第6章-3
6.3 試驗結果	第6章-4
6.4 まとめ	第6章-9
第7章 まとめ	第7章-1

巻末資料(付録CD)

- ・資料 01 モデル設計1 4 階建て共同住宅 意匠図
 ・資料 02 モデル設計1 4 階建て共同住宅 構造図
 ・資料 03 モデル設計1 4 階建て共同住宅 構造検討書
 ・資料 04 モデル設計2 4 階建て事務所 意匠図
 ・資料 05 モデル設計2 4 階建て事務所 構造図
 ・資料 06 モデル設計2 4 階建て事務所 構造検討書
 ・資料 07 モデル設計参考 4 階建て事務所(RC) 意匠図
 ・資料 08 モデル設計参考 4 階建て事務所(RC) 構造図
 ・資料 09 モデル設計参考 4 階建て事務所(RC) 構造検討書
- ·資料10 耐火試験 品質性能試験報告書

第1章 事業概要

1.1 事業の目的

令和2年度においては、鉄骨床梁とCLTパネル耐力壁を用いた構造システムによる集合住宅モデルプランを作成し、その構造設計に必要な耐力壁性能、接合部性能、建設コストに関する検討を実施し合理性の高い構造設計法を開発した。

令和3年度においては、前年度の成果をもとに事務所ビルなどの建築物の設計に関する構造システムの 開発に取り組み、住居系でない多用途な中層大規模建築物に対して合理的な設計方法を開発することで、 CLT パネル利用の拡大と CLT パネル工法の普及を図ることを目的としている。

1.2 実施内容

開放的な空間で耐力壁パネルの配置が少なくなる中層事務所建築物を対象としてモデルプランを設計す る。そしてモデルプランについて解析的な検討を行い、構造上で必要な性能を有する接合部と耐力壁につ いて合理的な設計となる仕様を設定する。これら接合部と耐力壁は、必要性能を有するか実験により確認 を行う。

(1) 検討委員会の開催等

学識経験者、構造設計実務者等により構成される検討委員会を設置し、モデルプランの確認、解析結果の確認、接合部設計と実験結果の確認、耐力壁性能実験の結果確認、および、事業成果について取り まとめを行う。

(2) モデルプランの設計

検討対象建築物に用いるモデルプランとして、事務所を用途とする4階建プランの設計を行う。また、 床、壁に CLT パネルを用いて成立するように設計すると、どの程度プランに違いが生じるかを確認する ために、比較用の RC 造の4階建プランの設計を併せて行う。

(3) モデルプランの解析的な検討

構造的に成立させるために必要となる架構に求められる耐力壁性能、接合部性能を特定するために、 フレームモデルによる応力解析シミュレーションを行う。

(4) 接合部設計と実験および耐力壁性能実験

要求性能を満たす接合部の耐力を設定し詳細設計と実験による性能確認を行う。さらに、それら接合 部と耐力壁パネルを用いて架構を構成したフレーム実験により耐力壁性能の確認を行う。また、耐火性 能について確認する必要が求められる場合は、耐火試験を実施し問題ないことを確認する。

(5) 建築コストの検討

4 階建モデルプランと RC 造の4 階建プランについて、建築コストについての比較を行う。

1.3 実施体制

本事業は、学識経験者、構造設計実務者等により構成される検討委員会を設置して実施した。次項に委 員会名簿を示す。委員会開催の実績は以下にて示す。

委員会開催の実績

第1回

日時:2021 年 6 月 23 日 (水) 16:00~17:30 場所:(一社) 日本 CLT 協会事務局 (Web 併用)

第2回

日時:2021 年10 月4 日(月)15:00~17:00 場所:(一社)日本 CLT 協会事務局(Web 併用)

第3回

日時:2022 年1 月 17 日(月) 15:00~17:00 場所:(一社) 日本 CLT 協会事務局(Web 併用)

鉄骨床梁を併用した CLT パネル耐力壁等の開発検討委員会

委員名簿

(順不同、敬称略)

委員長	五十田 博	京都大学生存圈研究所 生活圈木質構造科学分野 教授	
委員	神谷 文夫	セイホク株式会社 技師長	
	小林 研治	静岡大学学術院農学領域 生物資源科学科 准教授	
	荒木 康弘	国土技術政策総合研究所 建築研究部 主任研究	
	中島 昌一	国立研究開発法人建築研究所構造研究グループ主任研究員	
	海老澤 涉	一般社団法人 不動産協会	
		(三菱地所株式会社 関連事業推進室 CLT WOOD PROMOTION	ユニット 統括)
	阿部 裕介	一般社団法人 不動産協会	
		(三菱地所株式会社 関連事業推進室 CLT WOOD PROMOTION	エット主事)
行政			

今井 翔 林野庁林政部木材産業課木材製品技術室 木材技術推 納富 昭光 国土交通省住宅局参事官(建築企画担当)付 課長補佐	
納富 昭光 国土交通省住宅局参事官(建築企画担当)付 課長補佐	1当専門職
長岡 達己 国土交通省住宅局住宅生産課木造住宅振興室 課長補佐	

コンサル

辻 扌	石也	京都大学生存圈研究所 生活	舌圈木質構造科学分野	研究員
都丸	貴文	株式会社ベクトル・ジャパン	> 設計事業部	
重山	遊	株式会社ベクトル・ジャパン	ン 設計事業部	
中越	隆道	中越建築設計事務所一級建築	築士事務所	代表

実験協力

松田	昌洋	信州大学	工学部建築学	科		助教
今村	弘子	信州大学	総合理工学研	F究科	工学専攻	
古澤	知也	京都大学生	存圈研究所	生活圈	和質構造科学分野	

事務局

平原	章雄	木構造振興株式会社	常務取締役
坂部	芳平	一般社団法人日本 CLT 協会	専務理事
谷口	翼	一般社団法人日本 CLT 協会	開発技術部
宿輪	桃花	一般社団法人日本 CLT 協会	開発技術部
金子	弘	公益財団法人日本住宅・木材技術センター	専務理事兼研究技術部長
髙橋	秀樹	公益財団法人日本住宅・木材技術センター	技術主任

第1章-3

第2章 想定する建築物の概要

2.1 モデル設計1 4階建て共同住宅

モデル設計1は、各階ごと4住戸並列配置として総4階建ての共同住宅で計画した。共同住宅の場合は、 住戸内に居住空間を仕切るための内部間仕切壁が多くあり、耐力壁配置が容易に計画できることから、床 面積当りの耐力壁長さを長くするなど、耐力壁配置の調整がしやすい平面計画を行うことができる。

前記のことから耐力壁パネルは、過大な軸力を支持するような状態や過大な地震力を負担するような状態にはならない。よって、1時間耐火仕様のための耐火被覆にせっこうボードが多く使用され、地震力が多少大きくなったとしても、厚み150mmの5層5プライの耐力壁パネルで構造的に成立すると判断して設計を行った。表2.1-1に建物概要を示す。

項目	内容			
用途	共同住宅			
階数	4 階建て			
4 階床面積	$172.00m^2$			
3 階床面積	172.00m^2			
2 階床面積		172.00m^2		
1 階床面積		$178.00m^2$		
延床面積	$694.00m^2$			
建築面積	$192.32m^2$			
耐火仕様	1時間耐火			
基礎	杭基礎			
CIT の	1 階、2 階 S120-5-5			
ULI UNA及守板	3 階、4 階 S90-5-5			
	V 古向	16.50m		
久 哗 耐 力 辟 長 キ	Λ /J [H]	95.93 mm/m ²		
百咱町刀室区で	Y 方向	40.05m		
		232.84 mm/m ²		

表 2.1-1 モデル設計1の建物概要

2. 2 モデル設計2 4 階建て事務所

モデル設計 2 は、用途を事務所とし大きな執務空間を有する事務所ビルとして計画した。事務所ビルの 場合は、大きな空間を設ける必要から内部間仕切壁の長さは限られており、少ない耐力壁配置で構造的に 成立させることが要求される設計となる。このことは、限られた耐力壁に大きな軸力と地震力を負担させ る状況となることから、厚み 210mm の 5 層 7 プライの耐力壁パネルを用いて計画した。また、1 階の耐力 壁の曲げ応力が脚部で過大にならない様にするため、1 階耐力壁パネルの中央下部の H 鋼と基礎の間に、 支点を構成する鋼材を配置し、空間を設けて 1 階耐力壁の曲げ応力が脚部と頭部に振り分けられるような 設計を行った。表 2.2-1 に建物概要を示す。

項目	内容			
用途	事務所			
階数	4 階建て			
4 階床面積	$211.68m^2$			
3 階床面積		$211.68m^{2}$		
2 階床面積		$211.68m^2$		
1 階床面積	$208.80 m^2$			
延床面積	$843.84m^2$			
建築面積	$211.68m^2$			
CLT の強度等級	1 階~4 階 S90-5-7			
耐火仕様	1時間耐火			
基礎	杭基礎			
	V士白	14.77m		
タ叱る十日時長さ	X 万回	69.77 mm/m ²		
1 11111111111111111111111111111111111	Y 方向	13.01m		
		61.46m/m ²		

表 2.2-1 モデル設計1の建物概要

第3章 既往の S+CLT 工法の整理と試験体の試設計

3. 1 既往の S+CLT 工法の整理とターゲットの絞り込み

3.1.1 調査文献の分類

鉄骨架構と CLT 壁との併用構造に関して行われた水平載荷試験について、日本建築学会大会論文を中心 に既往研究を調査した結果を本節末尾の**〈文献リスト〉**に示す。これらの文献を、鉄骨柱はり架構に耐震 要素として CLT 壁を挿入する工法と、CLT パネル工法において鉄骨はりを併用する工法とに分類すると表 3.1-1 のようになる。鉄骨柱はり架構に CLT 壁を挿入する工法に関する研究は一定数行われており、データ が蓄積されつつある。一方で、CLT パネル工法において鉄骨はりを併用する工法に関する研究は少なく、 今後データの蓄積が必要となる。いずれの文献も、新築に適用することを目的とした研究がほとんどであ り、CLT 壁を上下のはりのみに接続させる方法すなわち CLT 壁を間柱として利用する方法が対象とされて いる。

表 3.1-1 鉄骨架構と CLT 壁との併用構造に関する文献の分類

鉄骨造柱はり架構+CLT 壁	鉄骨はり+CLT 壁
文献 1)~12)	文献 13)~15)

3.1.2 鉄骨造+CLT 技術に関する文献

文献 1)~12)に示す鉄骨造柱・はり架構に CLT 壁を挿入する工法では、図 3.1-1 (a) に示すような CLT 壁 中央で CLT 壁と鉄骨はり間のせん断力を主に伝達するせん断接合部と CLT 壁の四隅で CLT 壁と鉄骨はり 間の引張力を主に伝達する引張接合部を有する形式のものがほとんどであった。

文献 1), 2)は、せん断接合部に挿入鋼板とドリフトピンを使用し、引きボルトや挿入鋼板+ドリフトピン などの引張接合方法をパラメータとした実験で、各試験体とも耐力的にはほぼ同等であるものの、引きボ ルトを引張接合として用いたものでは、履歴性状がスリップ型を呈していることが報告されている。

文献 3)は、せん断接合と引張接合として一体となった鋼製プレートを挿入し、それぞれの接合部をドリフトピンで接合するものである。実験パラメータは、CLT の強度等級と配置位置であり、高い強度等級の CLT を用いた試験体は高い剛性を示したが、最大耐力は各試験体でほぼ同等であった。CLT 壁を中央に配 置した試験体では、*R*=1/50 で CLT 表層ラミナのせん断ずれ変形、*R*=1/30 で鉄骨はりの降伏、これに引き続 き CLT の圧壊、CLT スリットの開き、挿入鋼板の座屈が見られた。CLT 壁を端に配置した試験体では、鉄 骨架構の座屈が先行した。

文献 4)は、せん断接合部はなく挿入鋼板とドリフトピンで構成される引張接合部にせん断伝達の機能も 期待するものである。引張接合部では CLT スリットの開きを防止するために CLT 壁面直行方向に座金付き ボルトが設けられている。荷重変形関係は *R*=1/200 は弾性範囲、最大耐力時変形角 1/60 まで大きな剛性低 下は示さなかった。破壊形式は *R*=1/37.5 での挿入鋼製プレートの座屈と引張接合部の集合型引張破断であ る。

文献 5)~8)は、せん断接合部はなく、引張接合部に挿入鋼板とドリフトピンによる接合に加えて LSB(ラ グスクリューボルト)を用いる方法に関するものである。実験パラメータは、ドリフトピン位置と CLT 壁 高さ方向中央位置での接合の有無である。壁高さ中央位置で接合する場合は鋼製プレートを介して上下の CLT 壁をドリフトピンで接合する方法が採られている。試験体には鉄骨架構はなく、加力は回転を拘束し

た剛な上下鉄骨はりを介して行われている。壁壁間接合のない試験体の方が高い耐力を示したが、壁壁間 接合のある試験体では履歴性状のスリップ型からの改善が見られた。破壊形式は、壁壁間接合のない試験 体では LSB に沿う CLT 壁の割裂、壁壁間接合のある試験体では壁高さ中央位置での接合部ドリフトピンの めり込みであった。

文献 9)は、せん断接合部に挿入鋼板とドリフトピン、引張接合には CLT 壁側面に沿って上下梁に接合された鋼製フラットバーを用いるものである。幅 1000mm の CLT 壁をスパン中央に 1 枚配置するもの、2 枚 をスパン両端に配置するもの、3 枚でスパン全長を塞ぐものについて実験している。各試験体とも最大耐力は、CLT パネルの支圧破壊, せん断破壊の複合的破壊によって決まっている。また、壁枚数の増加に伴い最大荷重・初期剛性の増加が確認されている。

文献 10)~12)は、引張接合部・せん断接合部の簡素化を意図して、せん断力は CLT 壁両端の梁との隅角 部に設けられた支圧ブロックで、引張力は CLT 壁側面に沿って上下はりをつなぐ接合金物(フラットバー) を CLT 壁にビス止めすることによって伝達させるものである。CLT 壁の加工が不要なため簡素化・低コス ト化が図れる。試験体は鉄骨架構のない CLT 壁単独の実験で、実験パラメータは、CLT 壁の幅高比で 2.22 と 3.33 の 2 種類である。破壊形式は、接合金物の降伏が先行している。接合金物が降伏する *R*=1/100 にお ける両試験体の耐力は CLT 壁の幅にほぼ比例している。

一方、文献 13)に示す CLT パネル工法において鉄骨はりを併用する工法では、図 3.1-1 (b) に示すような CLT 壁中央で CLT 壁と鉄骨はり間のせん断力を主に伝達するせん断接合部と CLT 壁両端に引張力を負担 する引張材を有する形式であった。また、文献 14),15)では、図 3.1-1 (c) に示すように鉄骨はりの上下に CLT 壁をビス接合した十字型の試験体を水平載荷するものであった。

文献 13)は、壁端部の床へのめり込み変形を低減させるために横架材に鉄骨はりを用い、引張力は、壁両端に配置したテンションロッドで負担し、せん断力は、テンションロッドを固定する箱型金物と CLT 壁上下中央に配置するせん断金物で負担するものである。実験パラメータはせん断金物の有無で、いずれの試験体も箱型金物に接する CLT 壁側面の金物へのめり込み、圧縮側となる CLT 壁脚部でパネルの圧壊が確認されている。せん断金物を有する試験体の方が弾性剛性および降伏後の剛性が高いことが報告されている。

文献 14),15)は、鉄骨はりの上下に CLT 壁をアングル治具とビスで接合した十字型試験体を用意し、CLT 壁と鉄骨はりの接合部性能を確認したものである。無補強の試験体では、アングル治具を接合した鉄骨は りのフランジ付近で大きな塑性変形やボルトの破断が生じ、変形角が小さな領域では鉄骨特有の履歴特性 となった。鉄骨はり、アングル治具を補強した試験体ではビスが CLT にめり込む塑性変形が支配的となっ たことが報告されている。

3.1.3 CLT壁の幅高比とせん断応力度の関係とターゲットの絞り込み

文献 1)~15)について、CLT 壁の幅高比 h/w と 1/100rad 変形時の CLT 壁のせん断応力度 $\tau_{1/100}$ の関係を 図 3.1-2 に示す。複数の CLT 壁を並列させた試験体(文献 9))では、個々の CLT 壁の幅と高さの比を幅高 比としている。また、文献 14),15)では、鉄骨はりフランジから加力点までの距離の 2 倍を壁高さとして幅 高比を求めた。1/100rad 変形時の CLT 壁のせん断応力度 $\tau_{1/100}$ については、文献に数値が示されていない場 合は荷重変形曲線から読みとった CLT 壁せん断力を壁断面積で除して求めた。調査した文献では、CLT 壁 の幅高比 h/w は 1.3~3.3、 $\tau_{1/100}$ は 0.4~3.2 の範囲であった。

文献 1)~9)は、CLT 壁をより有効に利用するため、CLT 使用量を抑え CLT の有する材料せん断強度をで きるだけ発揮させるための研究であり、CLT 壁の幅高比が大きくなるにつれて高まる引張接合部の要求性 能を満たす様々な工夫がなされてきている。これらの研究では、h/w が大きくなるにつれて $\tau_{1/100}$ は低下す る傾向が見られる。一方、文献 10)~12) は接合方法の簡素化を目指した研究であり、h/w が大きくなって も τ =2.0N/mm²程度のせん断応力度を発揮している。ただし、文献 5)~8)および文献 10)~12)では、CLT 壁 が回転拘束された剛な上下はりに接続されており、CLT 壁単体の純せん断状態に近い実験を行っているの で、鉄骨架構内に設置される場合よりも高い $\tau_{1/100}$ が発揮されていると考えられる。文献 13)は、新たな構 造システムの提案とその構造性能の把握を、文献 14),15)は十字型接合部の抵抗機構の確認を主目的として いるため、CLT 壁の負担せん断応力度が低くなったと考えられる。以上より、CLT パネル工法で鉄骨はり を併用する工法において、CLT の性能を十分に発揮させる構造の実現が望まれる。

図 3.1-2 幅高比 h/w と T 1/100 の関係

次に、CLTの曲げモーメントとせん断力の関係について整理する。図 3.1-3 に示すような状態を考えると、 曲げモーメント *M* とせん断力 *Q* は以下の式で表される。

$$M = \sigma_b \times \frac{t \times w^2}{6}$$
 3.1-1

 $Q = \tau \times t \times w$

3.1-2

ここで、 σ_b :曲げ応力度、 τ :せん断応力度、t: CLT 厚さ、w: CLT 幅である。また、反曲点高さを CLT の中央とすると、曲げモーメントとせん断力の関係は以下の式で表される。ここで、h: CLT 高さである。

$$M = Q \times \frac{h}{2}$$
 3.1-3

式 3.1-3 に式 3.1-1 と式 3.1-2 を代入して τ について整理すると、以下のようになる。

$$\tau = \frac{\sigma_b}{3 \times \frac{h}{W}}$$
 3.1-4

図 3.1-4 に σ_b =14.78N/mm² (S90-5-7 の基準曲げ強度)とした際の τ と h/w の関係を、既往研究の τ と h/w の関係と合わせて示す。図中には、ヒノキラミナのせん断強度である τ =3.6N/mm²の線と、その線と式 3.1-4 による曲線との交点の h/w も示している。交点の h/w は 1.37 であり、h/w \leq 1.37 の場合はせん断破壊が先行し、h/w \geq 1.37 の場合は曲げ破壊が先行すると考えられる。本研究では曲げ破壊が先行する、すなわち h/w \geq 1.37 となるような試験体設計を行うこととした。

一方、既往研究の $\tau \ge h/w$ の関係より、 $1.5 \le \tau \le 2.5$ において CLT の性能が十分に活かされていると考え、目標性能の範囲を $1.5 \le \tau \le 2.5$ とすることとした。また、 $\tau = 2.5$ N/mm²の線と式 3.1-4 による曲線との 交点は h/w=1.97 であるため、h/w の範囲は $1.37 \le h/w \le 2.0$ で検討を進めることとした。よって、本研究での ターゲットは、 $1.5 \le \tau \le 2.5$ かつ、 $1.37 \le h/w \le 2.0$ とし、図 3.1-4 にも太線で本研究でのターゲットを示している。

図 3.1-3 CLT に作用する曲げモーメントとせん断力の関係

図 3.1-4 ターゲットの絞り込み

<3.1の文献リスト>

- 文献 1) 三木徳人、中島昌一、山崎義弘、石原直:履歴特性の改善を目指した接合部を有する CLT-鉄骨混構造架構の繰り返し載荷実験、日本建築学会技術報告集,第 27 巻,第 65 号、pp.213-218、2021.2
- 文献 2) 三木徳人、中島昌一、石原直:鉄骨梁降伏型の CLT-S 混構造架構の繰り返し載荷実験、日本建築 学会大会学術講演梗概集、構造Ⅲ、pp.139-140、2021.9
- 文献 3) 金澤和寿美、五十田博、北守顕久、宇佐美徹、荒木康弘: CLT をドリフトピン接合し耐震壁とし て挿入した鉄骨架構の構造性能、日本建築学会構造系論文集,第 86 巻、第 788 号、pp.1430-1439, 2021.10
- 文献 4) 金澤和寿美、北守顕久、荒木康弘、中島昌一、五十田博:鉄骨造に挿入する CLT 耐震壁の面内せん断実験、日本建築学会大会学術講演梗概集,構造Ⅲ, pp461-462, 2018.9
- 文献 5) 河内武、津畑慎哉、貞広修、木村誠、濱智貴、小林研治; CLT を利用した高耐力耐震壁の開発(その1 ドリフトピン接合部の要素実験)、日本建築学会大会学術講演梗概集,構造Ⅲ, pp239-240, 2017.8
- 文献 6) 貞広修、津畑慎哉、木村誠、河内武、濱智貴、小林研治: CLT を利用した高耐力耐震壁の開発(その2 実大壁実験)、日本建築学会大会学術講演梗概集,構造Ⅲ, pp241-242, 2017.8
- 文献 7) 河内武、貞広修、木村誠、津畑慎哉、濱智貴: CLT を利用した高耐力耐震壁の開発(その3 実大 壁追加実験結果)、日本建築学会大会学術講演梗概集,構造Ⅲ, pp443-444, 2018.9
- 文献 8) 貞広修、河内武、木村誠、濱智貴、津畑慎哉: CLT を利用した高耐力耐震壁の開発(その4実験 結果の考察)、日本建築学会大会学術講演梗概集,構造Ⅲ, pp445-446, 2018.9
- 文献 9) 福本晃治、國府田まりな、久保和民、宇佐美徹、北守顕久、宮内靖昌、五十田博:鉄骨架構に耐 震要素として挿入された CLT の実験による構造特性の検討、日本建築学会構造系論文集,第86 巻、第787 号、pp1345-1356, 2021.9
- 文献 10) 梅森浩、森田仁彦、御所園武、稲山正弘: CLT を耐震壁とした中層鉄骨建物の開発 その 1 建物外概要と CLT 支圧実験、日本建築学会大会学術講演梗概集,構造Ⅲ, pp721-722, 2019.9
- 文献 11) 森田仁彦、梅森浩、御所園武、稲山正弘、苅部泰輝、加藤隼人:CLT を耐震壁とした中層鉄骨建物の開発 その2 実大耐震壁水平加力実験、日本建築学会大会学術講演梗概集,構造Ⅲ,pp723-724, 2019.9
- 文献 12) 御所園武、森田仁彦、梅森浩、稲山正弘: CLT を耐震壁とした中層鉄骨建物の開発 その3 鉄 骨架構の解析的検討、日本建築学会大会学術講演梗概集,構造Ⅲ, pp725-726, 2019.9
- 文献 13) 荒木康弘、中島昌一、岡本滋史、車田慎介、小谷竜城、秋山信彦:鉄骨梁を用いた CLT 耐震壁の開発、日本建築学会大会学術講演梗概集,構造Ⅲ, pp145-146, 2018.9
- 文献 14) 許一鳴、山口謙太郎、川原重明: CLT 壁板と鉄骨梁で構成される十字形接合部の静的繰り返し載 荷に対する力学性状 その 1 実験の概要とせん断力-変形角関係、日本建築学会大会学術講演梗 概集,構造Ⅲ, pp307-308, 2020.9
- 文献 15) 山口謙太郎、許一鳴、川原重明: CLT 壁板と鉄骨梁で構成される十字形接合部の静的繰り返し載 荷に対する力学性状 その2接合部の曲げ変形およびせん断変形と耐力算定値の評価、日本建築 学会大会学術講演梗概集,構造Ⅲ, pp309-310, 2020.9

3.2 想定する構造と目標性能の設定

従来の CLT パネル工法では、一次設計時の CLT 負担せん断応力度が ε=0.2N/mm² 程度 ³⁻¹⁾であり、CLT の優れたせん断性能を十分に活かせていない。これは、壁の床へのめり込みによって性能が決まるという ことが一因として考えられる。そのため、従来の CLT パネル工法では、壁量すなわち CLT 使用量が多く なり、CLT にかかるコストが高くなってしまう。具体的に文献 3-2)の CLT パネル工法による 4 階建て建物 の設計事例より、単位床面積あたりの壁長さを算出すると、4階建ての1階部分で150mm/m²程度であり、 RC 壁式構造と同程度であった。また、CLT パネル工法では、引張接合部に引きボルトを用いることが多い が、接合部周辺での脆性破壊が生じる恐れがある。そこで、従来の CLT パネル工法を用いて、CLT のせん 断性能を十分に活かした構造を目指すと、図 3.2-1 のように境界ばり(木はり)のはりせいが大きくなる可 能性がある。以上の 2 点を改善する方法の一つに、鉄骨はりを用いる方法が考えられる。また、CLT パネ ル工法で用いられることの多い引きボルトに代わってより高い引張性能とすることができるテンション材 を用いることで接合部周辺の破壊を避けることができる。さらに、このテンション材を先行降伏させる構 造にすれば、地震後にテンション材の取替等を行うことで継続利用も可能になり、最終的に鉄骨はりが降 伏した場合は靭性も確保できる。一方、一般的な鉄骨ラーメン構造の鉄骨柱を CLT 壁で置換したような構 造についても検討した。この構造では、応力状態の想定が比較的容易で、鉄骨はり降伏による全体崩壊形を 想定することができ、靭性も確保できる。そのため、CLT を扱ったことのない設計者にとっても比較的取 り組みやすい構造となりうる。本研究では、この構造において CLT 耐力壁と鉄骨はりはドリフトピン接合 することとし、検討を進めた。以上より、本研究では鉄骨はりと CLT 耐力壁からなる併用構造に対して実 験的、解析的な検証を行うこととし、引張接合部については、テンション材を用いる場合と鋼板挿入型ドリ フトピン接合を用いる場合を検討する。

図 3.2-1 CLT を用いた構造

本研究での対象建物は4階建て事務所であり、図 3.2-2 のような CLT 壁と鉄骨はりとの併用構造の建物 を想定している。CLT 壁は、水平荷重に抵抗するのみならず、鉛直荷重を支持する。また、CLT 壁以外に も鉛直荷重を支持する木柱を配置することも想定した試験体設計を行うこととした。前述のように、CLT 壁は鉛直荷重を支持する部材でもあるため、地震後の建物の倒壊を防ぐためにも CLT 壁のせん断破壊は極 力避けることが望ましい。また、後述する実大静加力実験では、任意の一構面を取り出した試験体を用意 し、その構造性能を把握する。以下では、CLT 壁と鉄骨はりとの併用構造において、任意の一構面を取り 出した場合の特性を詳述する。

図 3.2-2 想定する構造

本研究では、CLT の面内せん断性能を十分に発揮させることのできる構造を目指し、3.1 の既往研究の結果を参照しつつ目標性能を終局時の CLT 壁負担せん断応力度 $1.5 \leq \tau_u \leq 2.5$ に設定した。また、前述のように、CLT 壁の幅高比 h/w の範囲は $1.37 \leq h/w \leq 2.0$ で検討を進めることとした。

3.3 試験体形状の決定と試設計

3.3.1 試験体形状の決定

対象建物である4階建て事務所を想定し、試験体のスパンを L=6000mm、使用する CLT を S90-5-7(ヒノキ、高さ H=2900mm、厚さ t=210mm)とした。CLT 壁の配置方法として、例えば表 3.3-1 のようなものが考えられる。表のような応力状態を想定し、鉄骨はり断面と CLT 壁断面の最適な組み合わせに関する検討を進めた。想定した応力状態の違いにより、本研究では十字型と I 型の試験体を試験に供することとした。以下に検討方法の詳細を記す。

表 3.3-1 CLT 壁の配置と応力状態

図 3.3-1 試験体設計のフロー

3.3.2 試設計

図 3.3-1 に試験体設計のフローを示す。CLT 壁幅 *D* と CLT 壁に作用する曲げモーメント *cLTM* をパラメ ータとして、鉄骨はりおよび CLT 壁の断面算定を行い、その後接合部の検討をした後、試験体を決定した。 CLT 壁幅 *D* については、ターゲットの絞り込み時に CLT 壁の幅高比 *h/w* の範囲を 1.37 \leq *h/w* \leq 2.0 とした ことから、1500mm と 2000mm をパラメータとした。また、本研究では、CLT 壁の終局負担せん断応力度 *c u* について目標性能を設定しているため、試験体設計時のパラメータは CLT 壁のせん断性能とする方が望 ましい。しかし、前述のように CLT 壁は鉛直荷重も支持し、せん断破壊を避ける必要があるため、CLT 壁 の曲げ性能を十分に発揮させつつ、同時に高い負担せん断応力度 *c* も確保することを目指し、CLT 壁に作 用する曲げモーメント *cLTM* をパラメータとした。

3.3.2.1 CLT 壁の終局曲げモーメント

ここでは、CLT 壁の終局曲げモーメント *cLTMu*が作用したときの CLT 壁負担せん断応力度 τ_u について 検討する。CLT 壁の終局曲げモーメント *cLTMu* および CLT 壁負担せん断応力度 τ_u は以下の式で表され (表 3.3-1 の応力状態参照)、十字型、I 型ともに同様の式である。

$$_{CLT}M_u = F_b \times Z_{clt}$$
 3.3-1

$$\tau_u = \frac{2_{CLT} M_u}{H \times A_{clt}}$$
 3.3-2

ここで、

F_b: CLT の基準曲げ強度(14.78) [N/mm²]、

ZCLT: CLT 壁の断面係数[mm³]、

H: CLT 壁高さ[mm]、

ACLT: CLT 壁の断面積[mm²]

である。

表 3.3・2 に計算結果を示す。どちらの壁幅の場合も、 $\tau_u \ge 1.5$ N/mm²を満たす結果となり、ターゲット の 1.5 $\le \tau \le 2.5$ よりも高いせん断応力度となった。しかし、本検討では CLT 壁が基準強度と同等の曲げ性 能を発揮した場合を想定しており、保証設計については考慮していない。CLT 壁の実性能としては、基準 強度以上の性能が発揮されることが多いが、材料のばらつき等によりどの程度基準強度を上回るのかにつ いては、設計段階で想定することが難しい。そのため、設計段階では CLT 壁が発揮する性能は基準強度以 下を想定するのが望ましいと考えた。また、算定した τ_u はターゲットの上限値を上回っていることから、 CLT 壁の発揮する性能を抑えてもよいと判断した。そこで、CLT 壁の発揮する曲げ性能を調整することと して検討を進めた。

表 3.3-2 _{CLT}M_uおよび T_uの計算結果

	02; d	6
D[mm]	$_{CLT}M_u[kNm]$	$\tau_u[\text{N/mm}^2]$
1500	1165	2.6
2000	2071	3.4

3.3.2.2 鉄骨はりの断面算定

ここでは、CLT 壁に曲げモーメント *cLTM* が作用したときに鉄骨はりに作用する曲げモーメント *sM* を 算出し、鉄骨はりの断面算定を行う。ここで、*cLTM* は発揮される性能が調整された CLT 壁の曲げモーメ ントであり、本研究では CLT 壁の終局曲げモーメントの 100、80、60%をパラメータとして検討を進めた。 *cLTM* が作用したときに鉄骨はりに作用する曲げモーメント *sM*₁ (十字型)、*sM*₂ (I型) はそれぞれ式 3.3-3、3.3-4 で表される (表 3.3-1 の応力状態参照)。

$${}_{s}M_{1} = \frac{L-d}{L}{}_{CLT}M \tag{3.3-3}$$

ここで、

sM1: 十字型試験体の鉄骨はりに作用する曲げモーメント[kNm]、

sM2: Ⅰ型試験体の鉄骨はりに作用する曲げモーメント[kNm]、

L: スパン[mm]、

d:応力中心間距離(D-300)[mm]、

D: CLT 壁幅[mm]

である。

次いで、上式で算出した鉄骨はりに作用する曲げモーメント。Mに対して必要断面係数 Znおよび Znを算 出する。鉄骨はりの必要断面係数 Znおよび Zn算出時には式 3.3-5、3.3-6 を満たすこととした。その後、規 格品の鉄骨はりの断面係数 Zおよび塑性断面係数 Zpが式 3.3-7、3.3-8 を満たすように鉄骨はり断面を算定 した。検討時の鉄骨はり断面は規格品のロール H 鋼(SN400B、中幅)とした。式 3.3-5~3.3-8 を満たすこ とで、設計上は CLT 壁短期耐力<鉄骨はり短期耐力、かつ CLT 壁終局耐力>鉄骨はり終局耐力を満たす ことができ、想定する崩壊形を実現できる。ただし、規格品で断面算定を行ったため、短期も鉄骨はりの性 能で試験体全体の性能が決まる場合もあったことに留意いただきたい。表 3.3-3、3.3-4 に鉄骨はりの断面 算定結果を示す。

$$\frac{2}{3} \times {}_{s}M < F \times Z_n \tag{3.3-5}$$

$$1.1 \times F \times Z'_n < {}_sM \qquad \qquad 3.3-6$$

$$Z_n < Z$$
 3.3-7

$$Z_p < Z'_n \tag{3.3-8}$$

ここで、

sM: cLTMが作用したときに鉄骨はりに作用する曲げモーメント (sM_1 、 sM_2) [kNm] F: 鋼材 F 値 (=235) [N/mm²] である。

表 3.3-3 鉄骨はりの断面算定結果(十字型)

単位[cm³]

			CLA	rM		
D[mm]	100%		80%		60%	
	Z_n	Z_n'	Z_n	Z_n'	Z_n	Z_n'
1500	2643	3605	2115	2884	1586	2163
1900	H-488×300		H-440×300		H-390×300	
2000	4210	5741	3368	4592	2526	3444
2000	H-688	×300 ※	H-688	8×300	H-488	8×300

※短期 CLT の曲げ性能>短期鉄骨曲げ性能となる場合

表 3.3-4 鉄骨はりの断面算定結果(I型)

単位[cm³]

			CL	$_{LT}M$		
D[mm]	10	0%	80)%	6	0%
	Z_n	Z_n'	Z_n	Z_n'	Z_n	Z_n'
1500	1322	1802	1057	1442	793	1081
1900	H-340	×250 ※	H-340	0×250	H-294	×200※
2000	2105	2870	1684	2296	1263	1722
2000	H-440)×300	H-390	0×300	H-340	×250※

※短期 CLT の曲げ性能>短期鉄骨曲げ性能となる場合

3.3.2.3 CLT 壁の負担せん断応力度

まず、短期の CLT 壁負担せん断応力度について検討する。想定する崩壊形より、CLT 壁が鉄骨はりより 先に短期耐力に達する試験体設計とするため、短期の CLT 壁負担せん断応力度 τ_aは以下の式で求める。

$$\tau_a = \frac{Q_a}{A_{clt}}$$
 3.3-9

$$Q_a = \frac{2 \times_{CLT} M_a}{H}$$
 3.3-10

$$_{CLT}M_a = \frac{2}{3} \times _{CLT}M \tag{3.3-11}$$

ここで、

cLTM: CLT 壁に作用する曲げモーメント[kNm] (終局曲げモーメント cLTMuを調整したもの)、

H: CLT 壁高さ[mm]、

ACLT: CLT 壁の断面積[mm²]

である。

次に終局の CLT 壁負担せん断応力度について検討する。想定する崩壊形より、鉄骨はりが CLT 壁より 先に終局耐力に達する試験体設計とするため、終局の CLT 壁負担せん断応力度 *cu*は以下の式で求める。

$$\tau_u = \frac{Q_u}{A_{clt}} \tag{3.3-12}$$

$$Q_u = \frac{2 \times {}_s M_u}{H}$$
 3.3-13

$${}_{s}M_{u} = 1.1 \times F \times Z_{p} \tag{3.3-14}$$

ここで、

F: 鋼材 F 值(=235) [N/mm²]、

Z_p: 鉄骨はりの塑性断面係数[mm³]

である。

13	. 0.0 0				主/
പി				$c_{LT}M$	
			100%	80%	60%
	釒	快骨断面	H-488×300	H-440×300	H-390×300
1500	石田	$\tau_a [\text{N/mm}^2]$	1.7	1.4	1.0
1900	应为	壁倍率	182	146	109
	終局	$\tau_u [N/mm^2]$	2.2	2.0	1.5
	釒	快骨断面	H-688×300	H-688×300	H-488×300
2000	石田	$\tau_a [N/mm^2]$	2.3	1.8	1.4
2000	应为	壁倍率	251	194	146
	終局	$\tau_u [N/mm^2]$	2.6	2.6	1.9

表 3.3-5 CLT 壁の負担せん断応力度(十字型)

പി				$_{CLT}M$	
			100%	80%	60%
	釒	失骨断面	H-340×250	$\text{H-}340{\times}250$	H-294×200
1500	石田	$ au_a[N/mm^2]$	1.8	1.4	1.1
1900	应为	壁倍率	190	146	116
	終局	$ au_u[N/mm^2]$	2.0	2.0	1.2
	鉄骨断面		H-440×300	H-390×300	H-340×250
2000	后曲	$ au_a[N/mm^2]$	2.3	1.8	1.5
2000	湿别	壁倍率	243	194	159
	終局	$\tau_u[N/mm^2]$	3.3	2.5	1.6

表 3.3-6 CLT 壁の負担せん断応力度(I型)

表 3.3⁻⁵、3.3⁻⁶ に CLT 壁の負担せん断応力度の算定結果を示す。表には参考値として壁倍率も示す。目 標性能 $\tau_u \ge 1.5$ N/mm²を満たしつつ、CLT 壁が発揮する曲げ性能が基準強度以下となるような組み合わせ を検討し、鉄骨はり断面と CLT 壁断面の組み合わせを以下のように決定した。十字型試験体では、鉄骨は りを RH-440×300×11×18、CLT 壁を 210×1500、I 型試験体では、鉄骨はりを RH-340×250×9×14、 CLT 壁を 210×1500 とした。しかし、試験体製作時にはロール H 鋼の入手が困難であったため、前述の ロール H 鋼と同等の曲げ強度(同等の断面係数 Z)を確保できるビルド H 鋼を使用することとし、十字型 試験体では、BH-440×330×12×16、I 型試験体では、BH-340×225×9×16 とした。前述の断面の組み 合わせでは、CLT 壁は 80%の曲げ性能を発揮しつつ、 $\tau_u=2.0$ N/mm²のせん断性能を期待できる。また、 決定した CLT 壁の断面を基に、文献 3·1)に倣って基準せん断強度を算出した結果、 $F_s=2.85$ N/mm²であ ったことから、本試験体の CLT 壁は基準強度の約 70%のせん断性能が発揮されることになる。

3.3.2.4 接合部の検討

ここでは、決定した鉄骨はりと CLT 壁の断面において、接合部の必要性能を検討する。まず、せん断接 合部について検討する。せん断接合部はテンション材タイプおよびドリフトピンタイプに共通で、鋼板挿 入型ドリフトピン接合である。使用するドリフトピンは φ 20 (SS400) で長さ 200mm、鋼板は厚さ 16mm (SS400) とした。前述の終局 CLT 壁負担せん断力 *Qu*をドリフトピン一本あたりの終局耐力 *pu*=46.3kN/ 本で除して必要本数を算出した結果、せん断接合部のドリフトピン本数は 14 本となった。なお、ドリフト ピン一本あたりの短期耐力 *pa*、終局耐力 *pu*は文献 3-3) に記載の Eurocode5 における式より支圧強度を算 出したのち、文献 3-4) に基づき、ドリフトピンの降伏耐力 *py*を算出した。そして、以下の式より、短期耐 力 *pa*、終局耐力 *pu*をそれぞれ算出した。

$$p_a = p_y \cdot r_u \cdot \frac{2}{3} \tag{3.3-15}$$

$$p_u = p_y \cdot r_u \tag{3.3-16}$$

ここで、ruは終局強度比で、本研究ではru=1.0とした。

次に、引張接合部について検討する。図 3.3-2 に耐力発現メカニズムを示す。CLT 耐力壁が鉄骨はりに 拘束されることにより、CLT 壁が回転抵抗を生じることで水平剛性を発揮する。そして、CLT 耐力壁頭部 に水平力が作用したとき、CLT 耐力壁に曲げモーメント *cLTM*が生じ、引張接合部には鉛直力 Vが作用す る。その鉛直力 Vは式 3.3-17 で表される。引張接合部では、この鉛直力 Vに対して十分な耐力を有する接 合部設計とした。

$$V = \frac{c_{LT}M}{d}$$
 3.3-17

ここで、

cLTM: CLT 壁に作用する曲げモーメント[kNm] (終局曲げモーメント cLTMuの 80%)、

d: 応力中心間距離[mm]

である。

テンション材タイプでは、崩壊形の違いによる構造性能を確認する狙いで、式 3.3-17 で算出した鉛直力 に対してテンション材の降伏を許容するテンション材先行降伏型のテンションロッド (M33、ABR400)を 片側2本とする仕様と、テンション材の降伏を許容しない鉄骨はり先行降伏型のフラットバー (PL9×200、 SS400)を片側2枚とする仕様を用意した。これらの引張材は鉄骨はりに溶接したガセットプレートに高 カボルトで留め付けた。また、ガセットプレートと引張材との接合部は、文献 3-5) に基づき保有耐力接合 となる仕様とした。

一方、ドリフトピンタイプでは、接合部仕様の違いによる構造性能の違いを確認する狙いで、必要性能に 対してドリフトピン(SNR490)の短期耐力または終局耐力によって必要本数を算出し、ドリフトピン本数 が異なる試験体を用意した。ドリフトピンの必要本数は前述の鉛直力 Vから、式 3.3-18 で求めた。その結 果、ドリフトピン本数は短期耐力の場合は 24 本、終局耐力の場合は 16 本となった。

$$n = \frac{v}{p_a} \quad \text{stat} \quad n = \frac{v}{p_u} \tag{3.3-18}$$

ここで、

*p*_a:ドリフトピン (SNR490) 一本あたりの短期耐力 (=32.9kN/本、式 3.3-15 より算出) *p*_u:ドリフトピン (SNR490) 一本あたりの終局耐力 (=49.4kN/本、式 3.3-16 より算出) である。

ドリフトピンタイプにおける引張接合部を図 3.3-3 に示す。これらの接合部に対して、集合型破壊の検討 を行い、十分な性能を有していることを確認する。

CLT 壁の端抜けせん断破壊、集合型せん断破壊について、図 3.3・4 に示すような破断面を仮定して、CLT の引張強度、せん断強度を用いて計算する。各破断面において、引張面の引張耐力とせん断面のせん断耐力 の和を集合型せん断破壊の耐力とする。引張面の断面積 *Aet*[mm²]とせん断面の断面積 *Aes*[mm²]はそれぞ れ式 3.3-19、3.3-20 で表される。

$$A_{es} = l \sum s_i \tag{3.3-19}$$

$$A_{et} = l \sum r_i \tag{3.3-20}$$

Mode1~3 のように仮定した破断面についてそれぞれ次式で集合型せん断破壊による終局耐力 *Puw*[kN] を定義し、終局耐力 *Puw*が接合部耐力 (ドリフトピン一本あたりの耐力×本数)を上回ることを確認した。

$$P_{uw1} = F_s A_{es1}$$
 3.3-21

 $P_{uw2} = F_s A_{es2} + F_t A_{et2}$
 3.3-22

 $P_{uw3} = F_s A_{es3} + F_t A_{et3}$
 3.3-23

$$P_{uw} = \min(P_{uw1}, P_{uw2}, P_{uw3})$$
 3.3-24

ここで、

Fs: CLT の基準せん断強度[N/mm²]、

Ft: CLT の基準引張強度[N/mm²]

である。

3.3.2.5鉄骨はりを併用した構造形式

表 3.3-7 に CLT 耐力壁と鉄骨はりを併用した際の構造形式一覧を示す。構造形式は、対象建物、耐火仕様、力の伝達方法、破壊モードにより区分した。本研究の対象建物は4階建て事務所であるため、4階建て以上の構造形式を試験対象と考えた。

本実験に供する試験体は以下のとおりである。テンション材タイプとして、ロッド先行降伏型(No.1-テ ンションロッド)と鉄骨はり先行降伏型(No.2-フラットバー)を用意し、降伏する部材の違いによる構造 性能の違いを確認する。ドリフトピンタイプとしては、CLT 壁上部を耐火被覆、下部をモルタルとする耐 火仕様を想定し、ドリフトピン短期耐力時に鉄骨はり降伏する試験体を基本形(No.3-片側モルタルあり-24DP)とした。そのほか、基本形と同じ耐火仕様でドリフトピン終局耐力時に鉄骨はり降伏する試験体

(No.5-片側モルタルあり-16DP)と、CLT壁全体を耐火被覆想定とする試験体(No.4-面タッチあり-24DP) を用意し、これら3仕様の試験体の構造性能を確認する。以上の5仕様の構造性能を把握し、それらを応 用することで、表3.3-7に示す本研究では取り扱わない構造形式にも対応することが可能である。

			いた市場	94	行後		ahu Mode		接合部設計什樣		試験体	太宝略	法法		部門はも	術構形	後線	予想 QCLT
	☆ **	耐火仕様	15 EX8 2 E O O	-0f/	E C		ADDIN X8XM		757 III XUUU II XI		Type	AF XF AV	NACI		87.F134.7	HX48X117	177 (254	kN/枚
	莲物		面タッチ	引張力	圧縮力				引張接合部	せん断接合 部								
		よ か な そ ビ				イント マント 学校	CLT 支圧降伏→	鉄骨降伏	売時本で メ <i>ベロ</i>	DP14本 每期必要性	Type1	0	600mm 5240mm ディンションロッパ	I 型	$\begin{array}{l} \mathrm{BH}\text{-}340\times225\times9\times16\\ Z=1241\mathrm{tm}^3\\ \mathrm{RH}\text{-}340\times250\times9\times14\\ Z=1229\mathrm{cm}^3\end{array}$	ロッド降伏	引張接合部 ロッド2本 Fy=337.9kN	400
	4 階建 以 上	を 中 中 中 の の の の の の の の の の の の の	\$ y	テンショ シャ オ	CLT支圧	アンション材 降伏→		鉄骨降伏		能 配子428.4kN	Type2				Type1の応用			
ンジョン秩 Type							- CLT 支圧降伏→	鉃骨降伏	ロッド5本相当	や、 を、 の り 用 P D P A P の の の の の の の の の の の の の	Type3	0	CLT Tredown	퍼 I	$\begin{array}{l} \mathrm{BH}\text{-}340\times225\times9\times16\\ \mathrm{BH}\text{-}340\times225\times9\times16\\ \mathrm{Z}\text{=}1241\mathrm{cm}^3\\ \mathrm{RH}\text{-}340\times250\times9\times14\\ \mathrm{Z}\text{=}1228\mathrm{cm}^3\end{array}$	鉄降中伏	引 張綾合部 ロッド 5 本相当 Py=944.8kN	520
								鉄骨降伏		を算出	Type4				Type3の応用			
						テンション材 降伏→	CLT 支圧降伏→	鉄骨降伏		1	Type1							
	3 階建て 以下	耐火被覆 不要	あり	テンション大	CLT支圧	テンション材 降伏→		鉄骨降伏	ロッド2本相当		Type2			4	科建て以上の仕様を応用			
					. <u> </u>		CLT 支圧降伏→	鉄骨降伏 鉄骨降伏	ロッド 5本相当	<u> </u>	Type3 Type4							
			Ā	į	f			鉄骨降伏	DP 短期耐力(線形) ⁸⁴²		Type5 ^{%1}	0	And	本 十	$\begin{array}{l} \mathrm{BH}\text{-}440 \times 330 \times 12 \times 16 \\ \mathrm{Z}\text{=}2467 \mathrm{cm}^3 \\ \mathrm{RH}\text{-}440 \times 300 \times 11 \times 18 \\ \mathrm{Z}\text{=}2462 \mathrm{cm}^3 \end{array}$	鉄降水	DP 接合部(24 本) 短期耐力 pa=30.9kN/本 Py=740.8kN	580
	4 諸建て 以上	上部: 耐火破覆 下部: <i>トレット</i>	ية 1	40	d d			鉄骨降伏	DP 終局耐力(線形) ^{並2}	DP14本 絕期必要性	Type6*1	0	10 44 - 1-5-9-7- - 1064 - 1064	南 小 十	$\begin{array}{l} BH\text{-}440\times330\times12\times16\\ Z\text{=}2467\text{cm}^3\\ RH\text{-}440\times300\times11\times18\\ Z\text{=}2462\text{cm}^3\\ Z\text{=}2462\text{cm}^3\end{array}$	鉄降伐	DP 接合部(16本) 終局前力 pu=46.3kN/本 Py=740.8kN	580
			: 龍上				(CLT 支圧降伏→)	鉄骨降伏	DP 短期耐力(線形) ^{※2}	能 Qa=428.4kN	$\mathrm{Type5}^{\otimes_1}$							
$_{\mathrm{Type}}^{\mathrm{DP}}$			もを 面かか かかり かうちょう ひょう うちょう うちょう うちょう ひょう うちょう ひょう うちょう しょう うちょう しょう ちょう ちょう ちょう む ちょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	DP	DP CLT 支圧		(CLT 支圧降伏→)	鉄骨降伏	DP 終局耐力(線形) ^{※2}	を、 DP(SS400) 短期許容耐	Type6 ^{#1}		η;	ミルタルをう	トした面タッチなしの場合と同	司じ仕様		
		- 第 :	<u>,</u>					鉄骨降伏	DP短期耐力(線形) ^{※2}	7] pa=30.9kN/	Type7				Type5 の応用			
		耐火被覆 下部: 耐火被覆	なし	DP	DP			鉄骨降伏	DP 終局耐力(線形) ^{※2}	る (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Type8				Type6の応用			
	4 瑞 政 上	CLT を含め 全体を 耐火被覆	ц С	DP	DP CLT 支圧		- (CLT 支圧降伏→)	鉄骨降伏	DP 短期耐力(線形) ⁸⁴²	を	Type9	0	248812 D	■ 本 十 ●	$\begin{array}{l} \mathrm{BH}\text{-}440 \times 330 \times 12 \times 16 \\ \mathrm{Z}\text{=}2467 \mathrm{cm}^3 \\ \mathrm{RH}\text{-}440 \times 300 \times 11 \times 18 \\ \mathrm{Z}\text{=}2462 \mathrm{cm}^3 \end{array}$	鉄 幹 火	DP 接合部(24 本) 短期耐力 pa=30.9kN/本 Py=740.8kN	580
							(CLT 支圧降伏→)	鉄骨降伏	DP 終局耐力(線形) ^{※2}		Type10				Type9 の応用			
	- mitteret		なし	DP	DP			鉄骨降伏	DP 短期耐力(線形) ^{#2} *** ** = = = + ************************	<u>-</u>	Type7				Type5の応用 m 2.5.4.m			
	3階建て 21下	耐火被覆不要			đ		←升燈出牟山1つ	鉄肯降伏 発卓略伏	DP 終局耐力(澱形) ^{ma} DD 絔超耐力(澱形) ^{ma}		Type8 Tyme9				Type6の応用 Trmeqの広田			
	5		\$P ()	DP	Dr AT#∏		CLI 大日座い - CTF 井田阪伊山	男人 月 (中 L/A APA JBL 175 4 JA	LJLE 752.991103 / J VUPK/17/ LDLD 06 日元4 / 66日元7 第9	- -	Typez m	_			山小小小小山 山小小小小山			

表 3.3-7 CLT 耐力壁と鉄骨はりを併用した構想形式一覧

第3章-16

、「CLT文品 ※1 森道形式は回しためるが、ホックタウイトに置い、「CLT文品 ※2.2.政任語に対して、DPの回原販力または終め組分を出いて必要未致を詳ป

3.4 事前解析

3.4.1 解析概要

実大静的加力実験の性能予測を目的として、有限要素解析による静的増分解析を実施した。本解析は、モ デルの特性に設計値を用いており、後述の事後解析における設計値を用いた解析結果は本解析によるもの である。図 3.4・1 に解析モデルを示す。CLT 壁は線材弾性要素とし、上下端に CLT 壁幅と同じ長さを有す る剛体を設けた。鉄骨はりは線材要素とし、弾塑性特性はバイリニア型とした。

テンション材タイプの CLT 壁-鉄骨はり、およびドリフトピンタイプの CLT 壁-モルタル、CLT 壁-鉄骨 はりとの接触位置における支圧挙動を模擬するためにバネ要素を設け、CLT の圧縮強度で降伏するバイリ ニア特性を与えた。また、せん断接合部を模擬したバネを接合部軸心位置に設け、バイリニア型とした。

テンション材はバイリニア型の引張バネでモデル化した。また、テンション材タイプの両端の集成材は 線材弾性要素でモデル化し、鉄骨はり要素との接合はピン接合とした。ドリフトピンタイプでは、引張接合 部を模擬したバネを接合部軸心位置に設け、バイリニア特性を与えた。なお、解析は SNAP.Ver.7 を用い た。

図 3.4-1 解析モデル概要

表 3.4-1 に解析モデルの特性値を示す。鉄骨はりの降伏強度は公称値の 1.1 倍とし、CLT 壁の材料特性

は基準強度、基準せん断弾性係数と強度等級から算定したヤング係数とした。CLT 壁の支圧挙動を模擬し た圧縮バネの支圧剛性は、文献 3-2)の値とし、圧縮強度は基準強度とした。ドリフトピン接合部を模擬し たバネの剛性は、文献 3-4)に基づき算出したドリフトピン一本あたりの剛性にドリフトピン本数を乗じて 決定した。一方、降伏耐力は、前述の式 3.3-15 で算出したドリフトピン一本あたりの短期耐力にドリフト ピン本数を乗じて算出した。テンション材を模擬した引張バネの軸剛性は、以下の式で算出した。ただし、 テンション材のモデル長さと実際の長さが異なることによる剛性増大は考慮していない。

$$K_{TD} = \frac{E \times A}{L}$$
 3.4-1

ここで、Eはヤング係数、Aは有効断面積、Lは解析における引張バネの長さである。

文献 3-5) での、鉄骨造の接合部パネルが早期に降伏しても剛性低下はさほど大きくなく、耐力上昇も十分であるとの記載から、鉄骨はりのせん断降伏は考慮しないモデル設定とした。ただし、鉄骨はりのせん断剛性は考慮している。

	S	Steel beam	ı	Cl	LT		CLT-Stee	el beam joint		Tension	material
	Young's	Shear	Yield	Young's	Shear	Compre	ssion	Shear spr	ing	Young's	Yield
	modulus	modulus	strength	modulus	modulus	sprii	ng	Tensile sp	ring	modulus	strength
Specimen			Flanca			Stiffnagg	Strongth	Stiffnoor	Yield		
type			Flange			Summess	Suengui	Summess	strength		
	Ε	G	1.1×F [*]	Ε	G	k _c	F_c	k	p_y	Ε	$1.1 \times F^{\times}$
	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ³	N/mm ²	kN/mm・本	kN/本	N/mm ²	N/mm ²
Tension material	205000	70000	250	6420	500	15.6	14.9	20.2	22.0	205000	259
Drift-pin	203000	/9000	239	0420	300	13.0	14.8	29.5	52.9	-	-

表 3.4-1 解析モデルの特性値

KF=235N/mm²

3.4.2 解析結果

図 3.4-2、3.4-3 に解析における各試験体の層せん断力・層間変形関係と降伏時の応力状態を示す。グラフ 中の BY、TY はそれぞれ鉄骨はりの曲げ降伏 (Bending Yield)、テンション材の引張降伏 (Tensile Yield) をあらわす。

テンション材タイプでは、CLT 壁の直下または直上で鉄骨はりが曲げ降伏することで剛性が低下した。 No.1-テンションロッドでは、テンション材が先行降伏し、片側のはりに作用するモーメントが減少してい くため、全体荷重の増加割合が小さくなった。

一方、ドリフトピンタイプでは、いずれの試験体も鉄骨はりが曲げ降伏した。ドリフトピン本数の少ない No.5-片側モルタルあり-16DPの初期剛性がほかの試験体よりもわずかに低くなった。また、No.3とNo.5 では、モルタルあり側の最大耐力が高くなり、モルタルなし側の約1.1倍となった。これはモルタルあり側 に支圧挙動を模擬した圧縮バネを配置したことで剛性が大きくなり、モルタルなし側よりも大きな力が作 用したためである。

3.5 まとめ

文献調査は、日本建築学会大会論文を中心に行った。鉄骨架構に CLT 耐力壁を挿入する研究は一定数あったが、CLT パネル工法において鉄骨はりを用いた研究は少なかった。各試験結果は鉄骨はりなどへの接合方法により異なるが、変形角 1/100rad における CLT 壁の面内せん断応力度 τ は約 0.5N/mm²~ 3.0N/mm²であることが確認された。

本研究では、既往研究での結果を踏まえ、CLT の優れた面内せん断性能を十分に発揮させることのできる構造を目指し、目標性能を終局時の CLT 壁負担せん断応力度 $\tau_u \ge 1.5$ N/mm²に設定した。

試験体の試設計では、目標性能を満たすことのできる鉄骨はり断面と CLT 壁断面の最適な組み合わせを 検討し、終局時に τ = 2.0N/mm²発揮されるような断面の組み合わせとした。接合部については、必要性能 に対して十分な耐力を有するように設計した。

また、実大静的加力実験の性能予測を目的として、有限要素解析による静的増分解析を実施し、各試験体の予想耐力、破壊モードを把握した。

参考文献

3-1) 公益財団法人日本住宅・木材技術センター: 2016 年公布・施行 CLT 関連告示等解説書 増補版 第1版2刷、2019.3

3-2) 公益財団法人日本住宅・木材技術センター: 2016 年版 CLT を用いた建築物の設計施工マニュアル、 2016.10

3-3) 日本建築学会:木質構造設計規準・同解説-許容応力度・許容耐力設計法-、2013.10

3-4) 中島昌一、三木徳人、秋山信彦、荒木康弘:鋼板挿入ドリフトピン接合部の最大耐力、降伏耐力および初期剛性の推定と実験による検証、日本建築学会構造系論文集、第86巻、第783号、pp.793-803、2021.5

第4章 実験による性能把握

4.1 検討の目的

引張接合部に、テンション材を用いる試験体と鋼板挿入型ドリフトピン接合を用いる試験体の実大静的 加力実験を実施し、構造性能を把握することを本章の目的とする。また、実大静的加力実験の試験体を構成 する要素を取り出した要素実験を実施し、構成要素の材料特性、接合部特性を把握する。さらに、実験結果 の挙動追跡を目的に、実大静的加力実験と要素実験の結果を参照しつつ解析モデルを構築し、解析結果と 実験結果の整合性を確認する。

4.2 要素実験

4.2.1 ドリフトピン接合部実験

4.2.1.1 検討の目的

鉄骨梁の塑性化を保証するため、単位接合部の性能から接合部全体の性能の予測可能性を探るため、CLT パネル端部接合部の性能を検証するために、CLTの支圧実験、単位接合部の正負載荷実験、CLTパネル端 部の接合部の回転実験を実施した。

4. 2. 1. 2 CLT の支圧実験

単位接合部の降伏耐力を計算する際に必要となる CLT の支圧強度を求めることを目的として、支圧実験 を実施した。図 4.2.1.2-1 に示すような試験体に、単調圧縮力を加えた。パラメータを表 4.2.1.2-1 に示す。 最外層の繊維方向が加力方向に平行するものと直交するものの 2 種類、各 6 体ずつ試験を実施した。圧縮 荷重をドリフトピンの投影面積で除した値を圧縮応力度とした。試験体を設置した面に対するクロスヘッ ドの変位を圧縮変位とした。図 4.2.2-2 に圧縮応力度と変位の関係を示す。表 4.2.1.2-2、4.2.1.2-3 に特性 値を示す。

図 4.2.1.2-1 試験の様子

表 4.2.1.2-1 試験体パラメータ

試験体名	材料	加力方向に対する最	試験体寸法	試験体数
		外層の繊維方向		
0°	S09-5-7	平行	240mm×240mm×210mm	6
90°	ヒノキ CLT	直交	(半円切欠き径 20mm)	

図 4.2.1.2-2 支圧試験の荷重変位関係 青線:荷重変位関係、緑線:AIJ 規準の支圧強度(層構成に応じて平均したもの)

表 4 2 1 2-2	 0 度方向の試験結果
1 T. 4. I. 4 4	

試験体名	o _{max} [N/mm ²]	δ_{\max} [mm]	<i>k</i> [N/mm ³]	σ _y [N/mm ²]	δ _y [mm]
No.1	44.2	13.2	17.8	40.0	3.2
No.2	47.6	11.8	16.5	41.8	3.2
No.3	42.1	12.5	21.0	40.6	2.9
No.4	42.2	11.0	30.0	41.4	2.3
No.5	40.4	16.4	18.3	38.0	3.0
No.6	44.2	14.2	26.5	41.8	2.6
平均值	43.5	13.2	21.7	40.6	2.9
標準偏差	2.5	1.9	5.4	1.5	0.4
変動係数	6%	15%	25%	4%	12%

omax:最大応力度

δmax:最大応力度時の変位

k: omaxの 40%と 10%の点を結んだ直線

*o*y: 5% offset 法による降伏応力度

δ_y:降伏応力度時の変位

試験体名	$\sigma_{ m max} [m N/mm^2]$	$\delta_{\rm max}$ [mm]	<i>k</i> [N/mm ³]	$\sigma_y [N/mm^2]$	δ _y [mm]
No.1	34.4	10.1	21.6	28.5	2.2
No.2	45.0	11.6	22.5	31.9	2.4
No.3	45.5	10.7	29.1	34.7	2.2
No.4	41.6	15.4	17.2	29.0	2.7
No.5	36.2	14.2	11.7	31.5	3.7
No.6	41.1	11.2	23.0	32.1	2.4
平均值	40.6	12.2	20.8	31.3	2.6
標準偏差	4.5	2.1	5.9	2.3	0.6
変動係数	11%	17%	28%	7%	22%

表 4.2.1.2-3 90 度方向の試験結果

omax:最大応力度

δmax:最大応力度時の変位

k: omaxの40%と10%の点を結んだ直線

*o*y: 5% offset 法による降伏応力度

*δ*_y:降伏応力度時の変位

得られた特性値より、以下の式より、ラミナの支圧強度を求めた。

$$\sigma_{e,0,CLT} = \frac{5}{7}\sigma_{e0} + \frac{2}{7}\sigma_{e90} \qquad (1)$$

$$\sigma_{e,90,CLT} = \frac{2}{7}\sigma_{e0} + \frac{5}{7}\sigma_{e90} \qquad (2)$$

ここで a_{e,0,CLT}: CLT 強軸方向の支圧強度 (N/mm²)、
 a_{e,90,CLT}: CLT 弱軸方向の支圧強度 (N/mm²)、
 a_{e0}: 繊維に平行する方向のラミナの支圧強度 (N/mm²)、
 a_{e90}: 繊維に直交する方向のラミナの支圧強度 (N/mm²)、

実験で得られた oy より

 $\sigma_{e0,CLT} = 40.6 \text{ N/mm}^2$ $\sigma_{e90,CLT} = 31.3 \text{ N/mm}^2$

を式(1),(2)に代入し、以下のラミナの支圧強度を得た。

 $\sigma_{e0} = 46.4 \text{ N/mm}^2$

 $\sigma_{e90} = 26.1 \text{ N/mm}^2$

4. 2. 1. 3 単位接合部実験

ドリフトピン1本を用いた接合部試験の耐力・剛性を得ることをお目的として、単位接合部の正負交番 繰り返し載荷を実施した。

表 4.2.1.3-1 に示す通り、試験体はヒノキ CLTS90-5-7(210mm 厚)、挿入鋼板(SS400、PL16)、ドリフ トピン(φ20 L205)1本で構成される。ドリフトピンの端距離・縁距離は 6d (d はドリフトピン径 20mm) とした。パラメータは、CLT の繊維方向(強軸・弱軸)とドリフトピンの鋼種(SS400、SNR490B)とし て、4 種類各 3 体ずつ、計 12 体試験した。

載荷サイクルは、降伏変位 δ y (=約 1.6mm)の±1/2、1、2、4、6、8、12、16 倍とし、1 体は1 回繰り 返し、2 体は3回繰り返しとした。それぞれの目標変位を図 4.2.1.3-2 に示す。引張力および、鋼板と CLT の相対変位を計測した。

図 4.2.1.3-1 試験装置

第4章-3

試験体名	CLT・ 挿入鋼板	ドリフトピン	加力方向に対す る最外層の繊維 方向	試験体寸法	試験体数
SS400-0	S90-5-7	SS400	平行	240mm××210mm	3
SS400-90	ヒノキ CLT	φ20 L205	直交	×600mm	うち
SNR490-0	(210mm 厚)	SNR490B	平行	- 先穴 20mm	-1回繰り返し 1
SNR490-90	SS400	φ20 L205	直交	- スリット 18mm	-3回繰り返し 2
	PL16				

表 4.2.1.3-1 試験体パラメータ

図 4.2.1.3-2 載荷履歴

4. 2. 1. 4 単位接合部実験 実験結果

図 4.2.1.4-1 および図 4.2.1.4-2 に荷重変位関係を示す。表 4.2.1.4-1、表 4.2.1.4-2、表 4.2.1.4-3、表 4.2.1.4-4 に得られた特性値を示す。1回繰り返しでは、いずれの試験体でも 16 δ y の 1 回目の載荷の途中で、スリットが開く破壊が生じた。3回繰り返しでは、SS400 では 8 δ y もしくは 12 δ y、SNR490 では 12 δ y の繰り返しの途中でドリフトピンの破断が生じ、荷重が低下した。

(c) SS400-0-3

図 4.2.1.4-1 荷重変位関係 1

(c) SNR490-0-3

試験体名	Pmax [kN]	δmax [mm]	K [kN/mm]	Py [kN]	δy [mm]
No.1	98.2	28.6	59.5	68.8	2.1
No.2	94.3	13.1	76.0	78.7	2.0
No.3	88.3	20.4	76.7	70.7	2.0
平均	93.6	20.7	70.7	72.7	2.0
標準偏差	5.0	7.7	9.7	5.3	0.1
分散	5%	37%	14%	7%	4%

表 4.2.1.4-1 SS400-0 特性值

表 4.2.1.4-2 SS400-90 特性値

試験体名	Pmax [kN]	δmax [mm]	K [kN/mm]	Py [kN]	δy [mm]
No.1	91.7	34.9	62.2	68.6	2.1
No.2	80.4	12.1	45.1	69.4	2.6
No.3	86.7	14.0	80.6	76.0	2.0
平均	86.3	20.3	62.6	71.3	2.2
標準偏差	5.7	12.6	17.8	4.1	0.3
分散	7%	62%	28%	6%	14%

表 4.2.1.4-3 SNR490-0 特性值

試験体名	Pmax [kN]	δmax [mm]	K [kN/mm]	Py [kN]	δy [mm]
No.1	101.5	37.5	97.4	68.5	1.7
No.2	92.4	17.8	61.9	74.7	2.2
No.3	89.9	13.9	45.0	71.7	2.6
平均	94.6	23.1	68.1	71.6	2.2
標準偏差	6.1	12.7	26.8	3.1	0.4
分散	6%	55%	39%	4%	20%

表 4.2.1.4-4 SNR490-90 特性值

試験体名	Pmax [kN]	δmax [mm]	K [kN/mm]	Py [kN]	δy [mm]
No.1	99.7	44.3	67.2	72.8	2.1
No.2	89.4	9.6	60.9	72.9	2.2
No.3	86.7	17.4	43.2	71.7	2.7
平均	91.9	23.8	57.1	72.4	2.3
標準偏差	6.9	18.2	12.5	0.7	0.3
分散	7%	77%	22%	1%	13%

灰線:1回繰り返し、青線:3回繰り返し、赤線:計算値(素材実験平均値に基づく)

図 4.2.1.4-3 に荷重変位関係の包絡線を青線と灰色線で、剛性・耐力の計算値を赤線で示す。計算には、 支圧試験および、ドリフトピンの引張試験から得られた支圧剛性、支圧強度、引張強度の平均値を用いてい る。

4. 2. 1. 5 接合部実験

今回の架構実験で使用した接合部性能を確認するために、CLT パネル端部接合部にモーメント、線弾力 を与える実験を実施した。表 4.2.1.5-1 に示す通り、接合部のドリフトピン配置・本数・鋼種、CLT パネル 寸法、鋼板寸法等は、架構実験と同様の仕様とした。図 4.2.1.5-1、図 4.2.1.5-2 に試験装置セットアップを 示す。計測方法も架構試験と同様とした。

試験体名	CLT ·	せん断接合部	引張接合部	試験体寸法	試験体
	挿入鋼板				数
n16	S09-5-7	SS400 φ20	ドリフトピン	240mm×1500mm	1
	ヒノキ CLT	L205 14本	SNR490 φ20 L205 14 本	×2000mm	
	(210mm 厚)		ボルト 強度区分 4.8 2本	- 先穴 20mm	
n24	SS400		ドリフトピン	- スリット 18mm	
	PL16		SNR490 φ20 L205 21 本		
			ボルト強度区分 4.8 3本		

表 4.2.1.5-1 パラメータ

図 4.2.1.5-1 試験装置

(a) 表

(b) 裏

4. 2. 1. 6 接合部実験 実験結果

図 4.2.1.6-1 に得られた曲げモーメント、接合部回転角関係を示す。また、図 4.2.1.6-2、図 4.2.1.6-3 に 試験後の破壊の様子を示す。試験体 n16 は、1CLT パネルのせん断破壊で荷重が低下した。試験体 n24 は、 引張接合部周辺のせん断破壊が生じ、変形が増大した後、CLT パネルのせん断破壊が生じた。

図 4.2.1.5-2 試験装置セットアップ

(a) n16

(b) n24図 4.2.1.6-1 モーメント変形角関係

(a) CLT のせん断破壊の様子(側面)

(c)ドリフトピンの様子

せん断接合部の挿入鋼板

 CLT のせん断破壊の様子(下面)
 CLT のせ、

 図 4.2.1.6-2
 試験後の様子(n16)

(b) CLT のせん断破壊の様子(上面)

(d) 引張接合部の挿入鋼板

長孔側面の変形の様子

CLT のせん断破壊の様子(下面)様子(n16)

(a) CLT のせん断破壊の様子

(c) 試験後の CLT の破壊

(e) せん断接合部の挿入鋼板

(g) 試験体の様子

(b) CLT の接合部周辺の様子

(d) ドリフトピンの様子

(f) せん断接合部の挿入鋼板

(h) CLT のせん断破壊の様子(下面) 図 4.2.1.6-3 破壊の様子

(b) n16

(e) n24

図 4.2.1.6-4 荷重変位関係の包絡線 青線:包絡線、赤線:計算値(素材実験平均値に基づく) 緑線:計算値(規基準値に基づく) 青線:計算値(単位接合部試験値に基づく)

図 4.2.1.6-4 に実験で得られた包絡線と各計算値の比較を示す。なお、ここで記載した計算値には、本数の増加による単位接合部性能の低減等は考慮していない。

4.2.2 モルタル圧縮試験

(1)試験の目的

CLT 脚部に充填したモルタルの圧縮性能を把握する。

(2)試験概要

試験は、JIS A 1108:2018 コンクリートの圧縮強度試験方法に準拠し、実大構面実験の各試験体実験日の当日に実施した。供試体作成日は 2021 年 10 月 19 日である。

(3)試験結果

表 4.2.2-1 にモルタル圧縮試験結果一覧を示す。写真 4.2.2-1(1)、(2)に試験後の供試体の様子を示す。

構面実験	構面実験試験体名		No.3-片側モルタルあり-24DP		No.5	-片側モル:	タルあり-1	6DP	
C	-	1-1	1-2	1-3	平均值	2-1	2-2	2-3	平均值
直径	[mm]	49.88	49.87	49.95	-	49.92	49.90	49.86	-
高さ	[mm]	98.58	98.76	98.58	-	98.18	98.97	98.58	-
断面積	[mm²]	1953	1952	1958	-	1956	1954	1952	-
最大荷重	[kN]	138.0	152.0	148.0	-	151.7	152.2	149.7	-
圧縮力	[N/mm ²]	70.7	77.9	75.6	74.7	77.5	77.9	76.7	77.4
試験	白		2021/	11/15			2021/2	11/17	

表 4.2.2-1 試験結果一覧

(1) No.3・片側モルタルあり・24DP(2) No.5・片側モルタルあり・16DP写真 4.2.2・1モルタル圧縮試験

4.2.3 ドリフトピン鋼材引張試験

(1)試験の目的

ドリフトピンに使用した丸鋼の材料強度を求め、鋼板挿入ドリフトピン接合におけるドリフトピンの性 能を把握する。

(2)試験概要

試験体は、径 ϕ =20mm、長さ1000mmの丸鋼で、引張接合部に使用した鋼材はSN490、せん断接合部 に使用した鋼材はSS400で、それぞれ3体試験を実施した。試験体中央部2カ所にひずみゲージを貼り付 けた。

(3)試験方法

写真 4.2.3-1 に試験体の設置状況を示す。加力は単調載荷とし、試験体が破断するまで加力した。

写真 4.2.3-1 試験体の設置状況

(4)試験結果

試験時の応力ひずみ曲線を図 4.2.3-1 に示す。なお、SNR-1 を除く全ての試験体で、最大荷重に達する前にひずみゲージの剝がれが確認された。

表 4.2.3-1 に試験結果を示す。降伏応力度 σ_y については、SNR490 材は降伏棚より、SS400 材は 0.2% オフセット法により算出した。算出方法は以下のとおりである。

①包絡線上の 0.1 σ_{max} と 0.4 σ_{max} を結ぶ第 I 直線を引く

②第 I 直線をドリフトピン長さの 0.2%だけ平行移動した第 II 直線を引く

③第Ⅱ直線と包絡線との交点を降伏応力度 σy とする

また、ヤング係数 E については $0.1\sigma_{max}$ $\geq 0.4\sigma_{max}$ を結ぶ直線の傾きとした。

	弐段仕々	降伏点	ヤング係数	引張強度	最大荷重	断面積	伸び率
	武殿 14 石	[N/mm ²]	[N/mm ²]	[N/mm ²]	[kN]	[mm ²]	[%]
	SNR-1	341.6	216757	545.6	171.4	314.2	21.3
己语拉入如	SNR-2	350.5	216350	542.1	170.3	314.2	21.3
	SNR-3	352.7	216943	543.6	170.8	314.2	21.7
	平均值	348.3	216683	543.8	170.8	314.2	21.4
	SS-1	482.5	217011	551.3	173.2	314.2	5.0
せん断接合部	SS-2	482.9	218390	564.8	177.4	314.2	4.6
	SS-3	482.6	217116	550.1	172.8	314.2	5.2
	平均值	482.7	217506	555.4	174.5	314.2	4.9

表 4.2.3-1 試験結果一覧(平行部の径 φ=20mm)

4.3 静的加力実験

4.3.1 実験概要

4.3.1.1 試験体

試験体の概要を図 4.3-1 に示す。テンション材タイプおよびドリフトピンタイプ共に、鉄骨はりのスパン は 6000mm、CLT は S90-5-7 (ヒノキ)、幅 1500mm、厚さ 210mm、せん断接合部は鋼板挿入ドリフトピ ン接合(鋼板厚さ 16mm、ドリフトピン径 φ 20 (SS400) 14本)で構成した点は共通である。せん断接合 部の挿入鋼板のドリフトピン孔は加力直交方向(CLT 外層ラミナの繊維方向)に長孔とし、せん断接合部 で鉛直方向の引張力を生じないようにした。さらに、鉄骨はりには補強用スチフナーを溶接し、鉄骨はりフ ランジで CLT 壁からの圧縮力による局部曲げ変形が生じないようにした。

テンション材タイプは、高さ 2900mm の CLT 壁の上下と BH-340×225×9×16 (SN400B) の鉄骨は りを前述の鋼板挿入ドリフトピンせん断接合とし、CLT 壁の両側に配置した引張力を負担するテンション 材を、上下鉄骨はりに溶接したガセットプレートと M22 高力ボルト (F10T) で留め付けた。テンション材 タイプは、テンションロッド (ターンバックル付きフルブレース、M33、ABR400) を片側 2 本用いる試験 体と、フラットバー (PL9×200×2850、SS400) を片側 2 枚用いる試験体の 2 仕様とした。また、鉄骨は りの両端には実建物の鉛直荷重を負担する柱を想定した E95-F270 の対象異等級構成集成材 (断面 210mm ×210mm) を配置し、その両端は上下鉄骨はりに溶接したガセットプレートと鋼板挿入型ドリフトピン接 合 (鋼板厚さ 16mm、ドリフトピン径 φ 20 (SS400) 6 本) とし、軸力に対して降伏しない柱断面と接合部 性能とした。なお、集成材柱のドリフトピン接合部にはドリフトピンの曲げ変形に伴うスリットの割裂を 防止するために、M20 ボルト (強度区分 4.8) を開き止めとして用いた。

ドリフトピンタイプは、3.3 における十字型試験体の CLT-鉄骨はり接合部を抜き出したような形状とす るために、BH-440×330×12×16 (SN400B)の鉄骨はりの上下に高さ 2000mm の CLT 壁を配置し、前 述の鋼板挿入ドリフトピンせん断接合とした。引張接合部は鋼板挿入ドリフトピン接合 (鋼板厚さ 16mm、 ドリフトピン径 φ 20 (SNR490))とした。挿入鋼板は鉄骨はりフランジと溶接した。また、スリットの割 裂防止のために、M20 ボルト (強度区分 4.8)を開き止めとして用いた。

テンション材タ	イプ	ドリフトピンタイプ			
6000mm (集成村) (上工) (上工) (上工) (上工) (注) (上工) (注) (上工) (注) (注) (注) (注) (注) (注) (注) (注	^{秋村} CLT テンション村 強 フラットバー	0000mm 007 0000mm 007 007 007 007	DP 24本 发骨はり と接触 DP 24本 飲骨	DP 16本、 モルタル ア ロクマ 16本 数骨	
No.1	No.2	No.3	No.4	No.5	

図 4.3-1 試験体イメージー覧

試験体パラメータを表 4.3-1、表 4.3-2 に示す。テンション材タイプは、テンション材の種類をパラメー タとし、テンションロッドを用いテンション材先行降伏型とした No.1 と、フラットバーを用い鉄骨はり先 行降伏型とした No.2 の 2 仕様であり、崩壊系が異なる際の構造性能を確認することを意図している。

ドリフトピンタイプは、想定する耐火仕様により CLT-鉄骨はり間の仕様が異なるため、CLT 壁端部に生 じる圧縮力の伝達方法も異なる。そこで、圧縮力の伝達方法の違いによる構造性能の確認を行うために、鉄 骨はりフランジ - CLT 壁間に無収縮モルタルを充填する仕様(No.3, 5)、ロックウール等の耐火材を充填 することを想定し鉄骨はりフランジ - CLT 壁間に隙間をあけた仕様(No.3、5)、さらに、鉄骨はりフラン ジと CLT が面タッチする仕様(No.4)を用意した。

また、鉄骨はりの終局曲げ耐力に対する鋼板挿入ドリフトピン接合部の引張耐力を、短期耐力(No.3, 4)または終局耐力(No.5)で設計した仕様を用意した。図 4.3-2~図 4.3-6 に各試験体の製作図を、図 4.3-7~図 4.3-11 に各試験体図を示す。

試験体名	CLT	鉄骨はり	テンション材	破壊モード
N- 1	S90-5-7 (ヒノキ)		テンションロッド	テンション材
NO. 1	幅 1500mm	$BH\!-\!340\!\times\!225\!\times\!9\!\times\!16$	(M33、ABR400)	先行降伏
N O	厚さ 210mm	(SN400B)	フラットバー	鉄骨はり
NO. 2	高さ 2900mm		$(PL9 \times 200 \times 2850, SS400)$	先行降伏

表 4.3-1 テンション材タイプの試験体パラメータ

表 4.3-2 ドリフトピンタイプの試験体パラメータ

試験体名	CLT	鉄骨はり	CLT-鉄骨はり間	引張接合部仕様	
No. 2	上側モルタルあり		94 ★ (短期副士)		
NO. 3	S90-5-7(ヒノキ)		下側モルタルなし	24年44(应为1017))	
No. 4	幅 1500mm、厚さ 210mm	$DH = 440 \times 330 \times 12 \times 10$	両側面タッチあり	24本(短期耐力)	
N- E	高さ 2000mm	(31400b)	上側モルタルあり	16 末 (約日副力)	
No. 5			下側モルタルなし	16 平(於同时刀)	

図 4.3-2 No.1-テンションロッド 製作図

図 4.3-3 No.2-フラットバー 製作図

図 4.3-4 No.3-片側モルタルあり-24DP 製作図

図 4.3-5 No.4-面タッチあり-24DP 製作図

図 4.3-6 No.5-片側モルタルあり-16DP 製作図

図 4.3-8 No.2-フラットバー試験体図

図 4.3-10 No.4-面タッチあり-24DP 試験体図

図 4.3-11 No.5-片側モルタルあり-16DP 試験体図

4.3.1.2 施工上の注意点

フラットバーの試験体の施工上の注意点を以下に記す。本実験における鉄骨はりにはフランジの局部曲 げ変形を防ぐために写真 4.3-1 のように、補強用のスチフナーを溶接している。これらの補強用スチフナー が短い間隔で一定数溶接されているため、当初より溶接ひずみにより鉄骨はりが変形していた。その結果、 フラットバーを接合する際にフラットバー端部の孔とガセットプレートのボルト孔位置が一致せず、写真 4.3-2 のようにチェーンブロックで鉄骨はり間の距離をかなり縮めたうえでフラットバーを取り付けた。以 上より、設計時に鉄骨はりフランジに生じる溶接ひずみの影響を十分に考慮し、①鉄骨はりとスチフナー はウェブのみ溶接する、②フラットバーの穴開け加工を現場で行う、③フラットバーの穴径を大きくして 施工誤差を吸収する等の対応を検討する必要がある。

写真 4.3-1 補強用スチフナー

写真 4.3-2 フラットバー試験体組立の様子

4.3.2 実験方法

4.3.2.1 加力装置

テンション材タイプの試験体セットアップ図を図 4.3-12 に、ドリフトピンタイプの試験体セットアップ 図を図 4.3-13 に示す。テンション材タイプ試験体は、下はり両端をピン治具および偏心除去板を介して反 力床に固定した。また、上はりおよび下はりに面外拘束治具を取り付け、試験体の面外変形を拘束した。

ドリフトピンタイプ試験体は、はり両端をピン治具および偏心除去版を介して反力床に固定した。また、 はりウェブに面外拘束治具を取り付け、試験体の面外変形を拘束した。

加力方法について、テンション材タイプの試験体は、上はり右面に溶接した鋼板に接続した油圧ジャッキ(容量 1000kN、ストローク 1000mm)で加力した。一方、ドリフトピンタイプの試験体は、想定建物の反曲点高さ(CLT 壁高の中央であると仮定)である鉄骨はり芯から上下 1670mm の位置を油圧ジャッキ2 台でそれぞれ正負逆方向に加力した。

図 4.3-13 ドリフトピンタイプセットアップ図

4.3.2.2 加力計画

図 4.3-12 と図 4.3-13 に示す方向を各加力ジャッキの正、負として、制御変形角 R が 1/300、1/200、1/150、1/100、1/75、1/50rad のスケジュールで正負交番の 3 回繰り返し加力とした。その後、1/30、1/20rad の正負交番加力を 1 回行い、1/15rad を目安として 1 方向に載荷した。図 4.3-14 に加力スケジュールを示す。

(b) ドリフトピンタイプ図 4.3-14 加力スケジュール

4.3.2.3 計測計画

各試験体タイプの計測計画を図 4.3-15~図 4.3-18 に示す。また、表 4.3-3 テンション材タイプの変位計 チャンネルリスト~表 4.3-6 ドリフトピンタイプのひずみゲージチャンネルリストにチャンネルリストを 示す。

図 4.3-15 テンション材タイプ 変位計測位置

CH No.	測定機器	計測位置	CH No.	測定機器	計測位置
0		水平荷重1	24	CDP25	
1		水平変位1	25	CDP25	膵囲でけり独特の声亦伝
2	DP500	膵菌にはれず正応位	26	CDP25	壁脚ちはり祀対距但変位
3	DP500	堂頃 5 はり小牛麦位	27	CDP25	
4	CDP50		28	SDP100	OLT パラル創め亦伝
5	CDP50		29	SDP100	CLIハイル料の変位
6	CDP50	S はり壁頭-CLT 相対鉛直変位	30	SDP100	OLT パラル(外古亦伝
7	CDP50		31	SDP100	CLIバイル距直変位
8	CDP50		32	CDP100	偏心版-ピン相対水平変位
9	CDP50		33	CDP25	偏心版-ピン相対鉛直変位
10	CDP50		34	CDP100	偏心版-ピン相対水平変位
11	CDP50	S はり壁脚-CLT 相対鉛直変位	35	CDP25	偏心版-ピン相対鉛直変位
12	CDP50		36	CDP25	クレビス-ベース PL
13	CDP50		37	CDP25	相対鉛直変位
14	CDP50	S はり壁頭-せん断接合部	38	SDP100	偏心版-ベース PL ズレ
15	CDP50	相対水平変位	39	CDP100	反力床-偏心版ズレ
16	CDP25	c け h 拧 丽_ 生 式 打 扣 另 扒 古 亦 位	40	CDP100	偏心版-ベース PL ズレ
17	CDP25	3 はり仕頃 果成的伯利如直发位	41	SDP100	反力床-偏心版ズレ
18	CDP25	c け h 拧脚_ 作 式 打 扣 対 朳 古 亦 位			
19	CDP25	3 はり忙砕 業成的伯利如直変位			
20	CDP25	、 けり			
21	CDP25	3は911頃 来成初相対如但変位			
22	CDP25	、 けり			
23	CDP25	3はり11月1年成初1日初町国変世			

表 4.3-3 テンション材タイプの変位計チャンネルリスト

図 4.3-16 テンション材タイプ ひずみ計測位置

CH No.	測定機器	計測位置	CH No.	測定機器	計測位置
50	FLA3-11-5LJCT		99	0.47 = 07100	
51	FLA3-11-5LJCT		100	FRA3-11-5LJBT	
52	FLA3-11-5LJCT		101	, , , , , , , , , , , , , , , , , , ,	
53	FLA3-11-5LJCT		102		
54	FLA3-11-5LJCT		103	FRA3-11-5LJBT	壁脚Sはりせん断ひずみ
55	FLA3-11-5LJCT	壁頭Sはり上ノフシシ	104		
56	FLA3-11-5LJCT		105		
57	FLA3-11-5LJCT		106	FRA3-11-5LJBT	
58	FLA3-11-5LJCT		107		
59	FLA3-11-5LJCT		108	FLA3-11-5LJCT	
60	FLA3-11-5LJCT		109	FLA3-11-5LJCT	セテンジョン林
61	FLA3-11-5LJCT		110	FLA3-11-5LJCT	圧ノンション材
62	FLA3-11-5LJCT		111	FLA3-11-5LJCT	
63	FLA3-11-5LJCT		112	FLA3-11-5LJCT	
64	FLA3-11-5LJCT	辟雨らけり下フランジ	113	FLA3-11-5LJCT	七テンション林
65	FLA3-11-5LJCT	重項しなり「ノノママ	114	FLA3-11-5LJCT	
66	FLA3-11-5LJCT		115	FLA3-11-5LJCT	
67	FLA3-11-5LJCT		116	PFL-20-11-18LT	
68	FLA3-11-5LJCT		117	PFL-20-11-18LT	左集成材曲げ
69	FLA3-11-5LJCT		118	PFL-20-11-18LT	
70	FLA3-11-5LJCT		119	PFL-20-11-18LT	
71	FLA3-11-5LJCT		120	PFL-20-11-18LT	
72	FLA3-11-5LJCT		121	PFL-20-11-18LT	右集成材曲げ
73	FLA3-11-5LJCT		122	PFL-20-11-18LT	
74	FLA3-11-5LJCT	壁脚 S はり上フランジ	123	PFL-20-11-18LT	
75	FLA3-11-5LJCT		124	PFL-20-11-18LT	
76	FLA3-11-5LJCT		125	PFL-20-11-18LT	
77	FLA3-11-5LJCT		126	PFL-20-11-18LT	
78	FLA3-11-5LJCT		127	PFL-20-11-18LT	
79	FLA3-11-5LJCT		128	PFL-20-11-18LT	
80	FLA3-11-5LJCI		129	PFL-20-11-18L1	壁頭 CLT 軸力
81	FLA3-11-5LJCI		130	PFL-20-11-18L1	
82	FLA3-II-5LJUI		131	PFL-20-11-18L1	
83	FLAS-II-SLJUI		132	PFL-20-11-18L1	
04	FLAS-11-SLJUI	壁脚Sはり下フランジ	100	PFL-20-11-18LT	
00 86	FLAS-11-SLJCI		134	PFL-20-11-18LT	
87	FLAS II SLJUI		130	PFI -20 11 10L1	
88	FLAS II SLJUI		130	PFI -20 11 10L1	
89	FLA3-11-51 ICT		137	PFI -20-11-18I T	
90	TENO II OEJOI		139	PFI -20-11-18I T	
91	FRA3-11-51 IBT		140	PFI -20-11-18LT	
92	11010 11 02,01		141	PFL-20-11-18LT	
93	1		142	PFL-20-11-18LT	壁脚 CLT 軸力
94	FRA3-11-5LIBT	壁頭Sはりせん断ひずみ	143	PFL-20-11-18LT	
95			144	PFL-20-11-18LT	
96			145	PFL-20-11-18LT	
97	FRA3-11-5L_IBT		146	PFL-20-11-18LT	
98	1		147	PFL-20-11-18LT	
			148	PFL-20-11-18LT	
			149	PFL-20-11-18LT	ULI 脚部側面いすみ

表 4.3-4 テンション材タイプのひずみゲージチャンネルリスト

図 4.3-17 ドリフトピンタイプ 変位計測位置

表 4.3-5	トリフトビンタイフの変位計チャンネルリスト	

-

CH No.	測定機器	計測位置	CH No.	測定機器	計測位置
0		水平荷重1	22	CDP50	膀脚_]].罪按合如扣封水亚亦位
1		水平変位 1	23	CDP50	壁脚
2		水平荷重2	水平荷重 2 24 C	CDP50	壁頭引張接合部相対水平変位
3		水平変位 2	25	CDP50	
4	DP1000	加力点水平変位	26	CDP50	
5	DP500		27	CDP50	ULI-也ん例按合部相对水平爱位
6	DP1000		28	CDP25	ピン支点水平変位
7	DP500		29	CDP25	ピン支点鉛直変位
8	CDP50		30	CDP25	ピン支点水平変位
9	CDP50	0 注 10 统 44 40 古亦 15	31	CDP25	ピン支点鉛直変位
10	CDP50	5はり絶対 距但変位	32	CDP25	S はり中央絶対水平変位
11	CDP50		33	CDP25	Sはり中央絶対鉛直変位
12	CDP100		34	CDP50	
13	SDP100		35	CDP50	5はり壁脚-CLI 相対水平変位
14	CDP50	S はり壁頭-CLT 相対鉛直変位	36	CDP50	
15	SDP100		37	CDP50	5 はり壁頭-CLI 相対小平変位
16	CDP100	1	38	CDP50M	
17	CDP100	-	39	CDP50M	ハイルノーン料め変位
18	SDP100		40	CDP25	いろれび いた立本佐
19	CDP50	S はり壁脚-CLT 相対鉛直変位	41	CDP25	ハイルノーン小平変位
20	SDP100		42	CDP25	いうれい いい声亦た
21	CDP100		43	CDP25	ハイルノーン鉛直変位
			200	CDP25	床−偏心版水平変位
			201	CDP25	偏心版-支点固定治具水平変位
			202	CDP25	床−偏心版鉛直変位
			203	CDP25	偏心版-支点固定治具鉛直変位
			204	CDP25	床−偏心版水平変位
			205	CDP25	偏心版-支点固定治具水平変位
			206	CDP25	床−偏心版鉛直変位
			207	CDP25	偏心版-支点固定治具鉛直変位
			208	SDP100	床-ジャッキ固定治具水平変位
			209	SDP100	床-ジャッキ固定治具水平変位

図 4.3-18 ドリフトピンタイプ ひずみ計測位置

CH No.	測定機器	計測位置	CH No.	測定機器	計測位置
50	FLA3-11-5LJCT	S はり上フランジ	89	PFL-20-11-18LT	
51	FLA3-11-5LJCT		90	PFL-20-11-18LT	
52	FLA3-11-5LJCT		91	PFL-20-11-18LT	
53	FLA3-11-5LJCT		92	PFL-20-11-18LT	
54	FLA3-11-5LJCT				
55	FLA3-11-5LJCT				時間のすます
56	FLA3-11-5LJCT		95	PFL-20-11-18LT	空内ULI軸刀
57	FLA3-11-5LJCT		96	PFL-20-11-18LT	
58	FLA3-11-5LJCT		97	PFL-20-11-18LT	
59	FLA3-11-5LJCT		98	PFL-20-11-18LT	
60	FLA3-11-5LJCT				
61	FLA3-11-5LJCT	くけり下フランジ			
62	FLA3-11-5LJCT	3129 17777	101	PFL-20-11-18LT	
63	FLA3-11-5LJCT		102	PFL-20-11-18LT	
64	FLA3-11-5LJCT		103	PFL-20-11-18LT	
65	FLA3-11-5LJCT		104	PFL-20-11-18LT	
66					
67	FRA3-11-5LJBT				辟雨 CI T 軸力
68			107	PFL-20-11-18LT	型項CLI 轴刀
69			108	PFL-20-11-18LT	
70	FRA3-11-5LJBT	S はりせん断ひずみ	109	PFL-20-11-18LT	
71			110	PFL-20-11-18LT	
72					
73	FRA3-11-5LJBT				
74			113	PFL-20-11-18LT	
75	FLA3-11-5LJCT		114	PFL-20-11-18LT	
76	FLA3-11-5LJCT		115	PFL-20-11-18LT	
77	FLA3-11-5LJCT	壁脚挿入鋼板	116	PFL-20-11-18LT	
78	FLA3-11-5LJCT		117	PFL-20-11-18LT	
79	FLA3-11-5LJCT		118	PFL-20-11-18LT	
80	FLA3-11-5LJCT		119	PFL-20-11-18LT	
81	FLA3-11-5LJCT		120	PFL-20-11-18LT	CLTTトポス
82	FLA3-11-5LJCT		121	PFL-20-11-18LT	
83	FLA3-11-5LJCT		122	PFL-20-11-18LT	
84	FLA3-11-5LJCT		123	PFL-20-11-18LT	
85	FLA3-11-5LJCT	壁頭挿入鋼板	124	PFL-20-11-18LT	
86	FLA3-11-5LJCT		125	PFL-20-11-18LT	
87	FLA3-11-5LJCT		126	PFL-20-11-18LT	
88	FLA3-11-5LJCT		127	PFL-20-11-18LT	
			128	PFL-20-11-18LT	

表 4.3-6 ドリフトピンタイプのひずみゲージチャンネルリスト

4.3.3 実験結果

4.3.3.1 データ処理方法

(1)すべての実験結果について、盛替えや破壊性状の確認のためアクチュエータを一旦停止した際に生じる 荷重低下のデータは省くこととする。

(2)水平変位·層間変形

(2)-1 試験体 No.1、No.2 において、全体の水平変位δ(mm)は図 4.3-16 の計測位置を用いて次のように求めた値とする。また、層間変形 R も以下のように求める。ここで、水平変位の正負については、右頭ジャッキ引き側を正とする。

(2)-2 試験体 No.3 において、上下それぞれの水平変位 δ_{\pm} 、 δ_{\mp} (mm)は図 4.3-17 の計測位置を用いて次の ように求めた値とする。また、層間変形 R も以下のように求める。ここで、水平変位の正負については、 上ジャッキ引き側、下ジャッキ押し側を正とする。

H:加力点間の距離=3340(mm)

図 4.3-17 No.3 変位計位置概要図

※1:治具のすべりの影響を考慮し、以下に示す方法を用いて各水平変位を補正した。式中の a、b、 θ₁、 θ₂、Hについては図 4.3-19 水平変位補正方法中に記載する。

ここで、H(=H₁=H₂):鉄骨はりフランジ面と加力点間の距離=1450(mm)

b:設置時の変位計ワイヤー引き出し長さ=500(mm)

とする。図より、

$$#Cn' = H\sin\theta_1, \ a = b + #Cn, \ \theta_2 = \tan^{-1}\left(\frac{b}{H}\right) \qquad (n = 1,3,4,6)$$

余弦定理より、

$$a^{2} = H^{2} + (H^{2} + b^{2}) - 2H\sqrt{H^{2} + b^{2}\cos(\theta_{1} \pm \theta_{2})}$$

$$\cos(\theta_{1} \pm \theta_{2}) = \frac{2H^{2} + b^{2} - (b + \#Cn)^{2}}{2H\sqrt{H^{2} + b^{2}}}$$

$$\theta_{1} \pm \theta_{2} = \cos^{-1}\left(\frac{2H^{2} + b^{2} - (b + \#Cn)^{2}}{2H\sqrt{H^{2} + b^{2}}}\right)$$

$$\theta_{1} = \cos^{-1}\left(\frac{2H^{2} + b^{2} - (b + \#Cn)^{2}}{2H\sqrt{H^{2} + b^{2}}}\right) \mp \theta_{2}$$

$$H_{1} = \frac{b}{\theta_{2}}$$

 $H = H_1 = H_2$

図 4.3-19 水平変位補正方法

(2)-3 試験体 No.4 において、上下それぞれの水平変位 δ_{\pm} 、 δ_{\mp} (mm)は図 4.3-20 の計測位置を用いて次の ように求めた値とする。また、層間変形 R も以下のように求める。

ここで、#C4'~#C7':補正後*2の加力点水平変位

H:加力点間の距離=3340(mm)

※2:補正方法は、試験体 No.3 と同様のため省略する。

(2)-4 試験体 No.5 において、上下それぞれの水平変位 δ_{\pm} 、 δ_{\mp} (mm)は図 4.3-21 の計測位置を用いて次の ように求めた値とする。また、層間変形 R も以下のように求める。

$$\delta_{\mathrm{T}} = \frac{-\#\mathrm{C6}^{\circ} + \#\mathrm{C3}^{\circ}}{2} , \ R_{\mathrm{T}} = \frac{\delta}{H/2}$$
$$\delta_{\mathrm{L}} = \frac{\#\mathrm{C4}^{\circ} - \#\mathrm{C1}^{\circ}}{2} , \ R_{\mathrm{L}} = \frac{\delta}{H/2}$$

ここで、#C6', #C4': 補正後**3の加力点水平変位

図 4.3-20 No.4 変位計位置概要図

#C3', #C1': 補正後*3のジャッキ水平変位

H:加力点間の距離=3340(mm)

※3:試験体 No.5 では、治具の補強を行ったため、大きなすべりやθの影響が少ないことから、以下に示 す方法で各水平変位を補正した。

(3)集成材柱せん断力・軸力

試験体No.1、No.2において、集成材柱のせん断力および軸力を、柱に設置したひずみゲージの実験値よ り算出する。実験値は、モーメントによるひずみと軸力によるひずみの和となっているため、それぞれ以 下のように求める。

C116 C117

C118 C119

図 4.3-22 集成材ひずみゲージ位置

ひずみゲージ

C120 C121

C122

σ₁₁₆: #C116の位置の応力度 (N/mm²)

$$\sigma_{116} = \#C116 \times 10^{-6} \times E$$

ここで、E:集成材(E95-210×210)ヤング係数=9500(N/mm²) 同様に $\sigma_{117} \sim \sigma_{123}$ を求める。

M₁₁₆:#C116の位置に作用するモーメント (kNm)

$$M_{116} = \frac{(-\sigma_{116} + \sigma_{117})}{2} \times Z \times 10^{-6}, \ M_{118} = \frac{(\sigma_{118} - \sigma_{119})}{2} \times Z \times 10^{-6}$$

ここで、Z:集成材断面係数=1543500(mm³) 同様に*M*₁₂₀、*M*₁₂₂を求める。

$$Q_{\pm \pm} = \frac{M_{116} + M_{118}}{H'}, \ Q_{\pm} = \frac{M_{120} + M_{122}}{H'}$$

ここで、H': ひずみゲージ間の距離=1970(mm) N₁₁₆: #C116の位置に作用する軸力 (kN)

$$N_{116} = \frac{(\sigma_{116} + \sigma_{117})}{2} \times A \times 10^{-3}$$

ここで、A:集成材断面積=44100(mm²)

同様にN₁₁₈、N₁₂₀、N₁₂₂を求める。

$$N_{\pm t \pm} = \frac{N_{116} + N_{118}}{2}, \ N_{\pm t \pm} = \frac{N_{120} + N_{122}}{2}$$

(4)CLTせん断力・せん断応力度

全体の荷重より集成材柱のせん断力を引いてCLT負担せん断力とする。

$$Q_{CLT} = Q - (Q_{\pm t \pm} + Q_{\pm t \pm})$$

ここで、*Q_{CLT}*: CLTが負担するせん断力

0:全体水平荷重

Q_#: 柱が負担するせん断力

さらに、CLT負担せん断力をCLTの断面積で除してせん断応力度とする。

$$\tau = \frac{Q_{CLT}}{A_{CLT}}$$

ここで、 τ : CLT負担せん断応力度

A_{CLT}: CLT断面積=315000(mm²)

(5)鉄骨はりのモーメント

(5)-1 試験体No.1、No.2において、鉄骨はりのモーメントを、はりに設置したひずみゲージの実験値より 算出する。

ε₅₀: #C50の位置のひずみ

$$\varepsilon_{50} = \frac{(\#C50 - \#C60)}{2}$$

同様に $\varepsilon_{51} \sim \varepsilon_{59}$ 、 $\varepsilon_{70} \sim \varepsilon_{79}$ を求める。

 $M_{50} = \varepsilon_{50} \times E \times 10^{-6} \times Z \times 10^{-6}$

ここで、*M*₅₀: #C50の位置に作用するモーメント (kN・m) E:鉄骨ヤング係数=205000(N/mm²) Z:鉄骨断面係数=1241318 (mm³)

(5)-2 試験体No.3~No.5においても同様に、鉄骨はりのモーメントをはりに設置したひずみゲージの実験 値より算出する。

$$\varepsilon_{50} = \frac{(\#C50 - \#C58)}{2}$$
同様に $\varepsilon_{51} \sim \varepsilon_{57}$ を求める。
 $M_{50} = \varepsilon_{50} \times E \times 10^{-6} \times Z \times 10^{-6}$
ここで、E:鉄骨ヤング係数=205000(N/mm²)
Z:鉄骨断面係数=2467051 (mm³) 図 4.3-24 十字型鉄骨はり

ひずみゲージ位置

(6)CLT端部の圧縮応力度分布

同様に $\varepsilon_{51} \sim \varepsilon_{57}$ を求める。

各試験体において、CLT端部の圧縮応力度をCLTに設置したひずみゲージの実験値より算出する。 σ_n : #Cnの位置のひずみ

$$\sigma_n = \#Cn \times 10^{-6} \times E$$

ここで、E: CLTヤング係数=6420(N/mm²)

(7)CLT圧縮力合力

(7)-1 試験体No.1、No.2において、各端部の応力度分布より圧縮力の合力を算出する。

$$C_{\underline{\pounds}\underline{\flat}} = \left(\sigma_{124} + \frac{(\sigma_{124} + \sigma_{125})}{2} + \frac{(\sigma_{125} + \sigma_{126})}{2} + \frac{(\sigma_{126} + \sigma_{127})}{2} + \frac{(\sigma_{127} + \sigma_{128})}{2} + \frac{(\sigma_{128} + \sigma_{129})}{2}\right) \times a \times t \times 10^{-3}$$
ここで、 $C_{\underline{\pounds}\underline{\flat}}$: CLT た上端部の圧縮力 (kN)
 $a: ひずみゲージ間隔 = 62.5 (mm)$
 $t: CLT 厚 さ = 210 (mm)$
同様に $C_{\underline{\delta}\underline{\intercal}} \\ c_{124\sim129}$

図 4.3-25 I型 CLT 端部ひずみゲージ位置

(7)-2 試験体No.3、No.4において、各端部の応力度分布より圧縮力の合力を算出する。

$$C_{\underline{L}\underline{d}} \mathcal{F} = \left(\left(\left(\frac{(\sigma_{95} + \sigma_{96})}{2} + \frac{(\sigma_{96} + \sigma_{97})}{2} \right) \times b_1 \right) + \left(\frac{(\sigma_{97} + \sigma_{98})}{2} \times b_2 \right) + (\sigma_{98} \times b_3) \right) \times t \times 10^{-3}$$
ここで、 $C_{\underline{L}\underline{d}}\mathcal{F}$: 上側CLTの右下端部の圧縮力 (kN)
 $b_1 : ひずみゲージ間隔 = 120 (mm)$
 $b_2 : ひずみゲージ間隔 = 40 (mm)$
 $t : CLT厚 = 210 (mm)$
同様に $C_{\underline{r}\underline{d}\underline{L}}$ を求める。

(7)-3 試験体No.5において、各端部の応力度分布より圧縮力の合力を算出する。

$$C_{\perp \neq \tau} = \left(\left(\left(\frac{(\sigma_{95} + \sigma_{96})}{2} + \frac{(\sigma_{96} + \sigma_{97})}{2} + \frac{(\sigma_{97} + \sigma_{98})}{2} \right) \times c_1 \right) + (\sigma_{98} \times c_2) \right) \times t \times 10^{-3}$$

ここで、C _{*L* _{*L* _{*L* _{*L T*}: 上側CLTの右下端部の圧縮力 (kN)}}}

*c*₁:ひずみゲージ間隔=120(mm)

c₂:ひずみゲージ間隔=50(mm)

t:CLT厚さ=210(mm)

同様に*C_{下左上}*を求める。

(8)テンション材の引張力

試験体No.1、No.2において、テンション材の引張力をテンション材に設置したひずみゲージの実験値に より算出する。

σ₁₀₈: #C108の位置の応力度 (N/mm²)

$$\sigma_{108} = \frac{(\#C108 + \#C109)}{2} \times 10^{-6} \times E$$

ここで、E:テンション材ヤング係数=205000(N/mm²)

同様に σ_{110} 、 σ_{112} 、 σ_{114} を求める。

T_左: 左側テンション材に作用する軸力

$$T_{\neq} = (\sigma_{108} + \sigma_{110}) \times A \times 10^{-3}$$

ここで、A:テンションロッド(M33)断面積=723(mm²)、フラットバー(PL9×200)断面積=1800(mm²) 同様にT_右を求める。

(9)鉄骨はりのパネルゾーンのせん断変形

試験体No.3~No.5において、鉄骨はりパネルゾーンのせん断変形角を鉄骨はりに設置した変位計の実験

値により算出する。 $\Delta d_s = \frac{(\#C38-\#C39)}{2} - \frac{(\#C40+\#C41)}{2} \times cosR - \frac{(\#C4.3+\#C43)}{2} \times sinR$

$$\Delta h_s = \frac{\Delta d_s}{\cos R}, \quad \gamma_s = \frac{\Delta h_s}{I_v}, \quad \cos R = \frac{I_h}{\sqrt{I_h^2 + I_v^2}}, \quad \sin R = \frac{I_v}{\sqrt{I_h^2 + I_v^2}}$$

ここで、Δds:鉄骨はりパネルゾーンのせん断変形対角方向の変位(mm Δh_s:鉄骨はりパネルゾーンのせん断水平変位 (mm) γ_s:鉄骨はりパネルゾーンのせん断変形角 (rad) *I*_n:鉄骨はり高さ=440(mm) I_h : 鉄骨はりパネルゾーンの幅=1500(mm) 図 4.3-28 パネルゾーン変位計

また、パネルゾーンのせん断応力度を鉄骨はりに設置したひずみゲージの実験値により算出する。

 $\gamma = \sqrt{2 \times ((\#C69 - \#C70)^2 + (\#C70 - \#C71)^2)}$ C69 上 C70 C71 ここで、γ:3軸ゲージより求めた鉄骨はりパネルゾーンのせん断ひずみ C69~71 🔇 $\tau_{\rm s} = G \times \gamma \times 10^{-6}$ ここで、*τ_s*:鉄骨はりパネルゾーンのせん断応力度 (N/mm²) 下 G: せん断弾性係数=79000(N/mm²) 図 4.3-29 パネルゾーン (10)DP-挿入鋼板の応力度 ひずみゲージ位置

試験体No.3、No.5において、DP引張接合部の応力度を挿入鋼板に設置したひずみゲージの実験値により 算出する。 C75~77 $C79{\sim}81$

 σ_{FET} : 上側左下DP接合部の応力度 (N/mm²)

$$\sigma_{上左下} = \frac{(\#C75 + \#C77)}{2} \times 10^{-6} \times E$$

ング係数=205000(N/mm²) 図 4.3-30 DP 引張接合部

ひずみゲージ位置

同様に $\sigma_{L \leftarrow T}$ 、 $\sigma_{T \leftarrow L}$ 、 $\sigma_{T \leftarrow L}$ を求める。

ここで、E:挿入鋼板ヤ

4.3.3.2 荷重変形関係と破壊性状

各試験体の荷重変形関係と損傷状況を示す。荷重変形関係上には各部材の降伏点をプロットした。鉄骨はりはミルシートに記載の値、テンションロッドは 1.1×F(F=235N/mm²)を用いて降伏点を算出した。

(1) No.1-テンションロッド

図 4.3-31 No.1-テンションロッド 履歴曲線 (1)に荷重変形関係を、図 4.3-31 (2)に CLT せん断応力度 変形関係を、写真 4.3-3(1)~(6)に試験体の損傷状況を示す。図 4.3-31 No.1-テンションロッド履歴曲線 (2)には、目標性能である τ=1.5N/mm² を点線で示した。

試験体は、R=1/75rad の加力サイクルにて右側ロッド上部ガセットプレートの面外変形(写真(2))、鉄 骨はりウェブ表面に黒皮剝離(写真(3))が見られたため、せん断降伏したと考えられる。R=1/50rad の加 カサイクルではテンションロッドの黒皮剝離(写真(4))が見られたため、引張降伏したと考えられる。次 いで、R=1/30rad の加力サイクルにて CLT 端部の圧縮破壊が見られた。R=1/20rad の加力サイクルにて下 はりが曲がって CLT が持ち上がり、CLT の破壊が進行した(写真(5))。R=1/15rad まで変形する間にパネ ルゾーンの鉄骨はりの変形が見られたが、荷重は緩やかに増加し続けた。履歴特性はスリップ型であった。

(2) CLT せん断応力度変形関係図 4.3-31 No.1-テンションロッド 履歴曲線

(1) 最大変形時 試験体全体

(3) -1/75rad 鉄骨はりウェブの黒皮剥離

(2) 1/75rad ガセットプレートの面外変形

(4) -1/50rad テンションロッドの黒皮剥離

(5) 1/20rad CLT 端部の圧縮破壊 写真 4.3-3 No.1-テンションロッド 損傷状況

(6) 1/15rad 脚部の変形

(2) No.2-フラットバー

図 4.3-32(1)に荷重変形関係を、図 4.3-32(2)に CLT せん断応力度変形関係を、写真 4.3-4(1)~(6)に試験 体の損傷状況を示す。

R=1/50rad までは試験体に損傷は見られなかった。R=1/50rad に下はりウェブ表面の黒皮剥離が見られたため(写真(2))、せん断降伏したと考えられる。R=1/30rad に CLT 壁端部が圧縮力により変形し丸みを帯びていた(写真(3))。R=1/20rad にて CLT 壁右下側端部の圧壊が見られた(写真(4))。その後、R=1/15radで一方向加力したが、その間に荷重は緩やかに増加し続けた。履歴性状は、1/50rad まではスリップ型であったが、1/30rad 以降では紡錘型の履歴となった。これは、鉄骨はりの曲げ降伏の影響と考えられる。

(1) 最大変形時 試験体全体

(3) -1/30rad CLT 端部の圧縮破壊

(5) 1/15rad 脚部の変形 写直 4 3-4

(2) -1/50rad 鉄骨はりウェブの黒皮剥離

(4) 1/20rad CLT 端部の圧縮破壊

申部の変形 (6)解体後 CLT 端部の破壊写真 4.3-4 No.2-フラットバー 損傷状況

(3) テンション材タイプの各特性値まとめ

各試験体の層せん断力・層間変形関係の包絡線を完全弾塑性置換にすることで各特性値を算出し、表 4.3-7に一覧で示す。 τ_{max} はどちらの試験体でも 2.0N/mm²程度まで上昇したが、テンション材の降伏を許容する No.1-テンションロッドに対して、降伏を許容しない No.2-フラットバーの Q_{CLTmax}は 1.1 倍程度であり、大きな差は見られなかった。これはテンションロッドの降伏後のひずみ硬化により、耐力が上昇したためと考えられる。また、保有水平耐力時の CLT 負担せん断応力度は τ_u =1.8~1.9N/mm²となり、目標性能 τ_u = \geq 1.5N/mm²を満たすことができた。さらに、1/200rad 時の CLT 負担せん断応力度は $\tau_{1/200}$ =0.36~0.43N/mm²となり、従来の CLT パネル工法の約 2 倍の性能となった。

		No.1-テンションロッド	No.2-フラットバー
QCLTmax	kN	610.0	675.9
τ_{max}	N/mm ²	1.9	2.1
δ_{max}	mm	215.1	216.0
δ_{u}	mm	216.9	216.6
$\mathbf{P}_{\mathbf{y}}$	kN	411.4	437.6
δ_y	mm	50.4	49.9
$\mathbf{P}_{\mathbf{u}}$	kN	552.5	594.9
$ au_{ m u}$	N/mm ²	1.8	1.9
Κ	kN/mm	8.2	8.8
$\delta_{\rm v}$	mm	67.7	67.8
μ		3.20	3.19
\mathbf{Ds}		0.43	0.43
P_y		411.4	437.6
P_u *0.2/Ds		256.9	276.2
$2/3P_{max}$		406.6	450.6
P(1/150rad)		184.5	164.9
Pa	kN	184.5	164.9
(参考)壁倍率		62.8	56.1
τ1/200	N/mm ²	0.43	0.36

表 4.3-7 各特性値の比較

(4) No.3-片側モルタルあり-24DP

図 4.3-33(1)~(4)に履歴曲線を、写真 4.3-5(1)~(6)に試験体の損傷状況を示す。

R=1/75rad にてはりウェブ表面の黒皮剥離が見られたため、せん断降伏したと考えられる。R=1/50rad に鉄骨はり表面の黒皮のしわが顕著となったため(写真(2))、せん断降伏によるせん断変形が進行したと考 えられる。R=1/20rad にて鉄骨はりフランジの局部座屈が見られ(写真(4))、R=1/15rad まで加力する間に 顕著となった(写真(5)(6))。なお、変形角が大きくなるにつれて、モルタルのひび割れが顕著になり割裂が 生じたが(写真(3))、CLT 壁端部の圧縮力を伝達する部分の破壊ではないため、試験体全体の構造性能には 影響していないと考えられる。

(1) 最大変形時 試験体全体

(3) 1/30rad モルタルの割裂

(2) 1/50rad 鉄骨はりウェブの黒皮剥離

(4) 1/20rad 鉄骨はりの局部座屈

(5) 1/15rad 鉄骨はりの局部座屈 写真 4.3-5 No.3-片側モルタルあり-24DP 損傷状況

(6) 1/15rad 鉄骨はりの局部座屈

(5) No.4-面タッチあり-24DP

図 4.3-34(1)~(4)に履歴曲線を、写真 4.3-6(1)~(6)に試験体の損傷状況を示す。

R=1/75rad にて鉄骨はりウェブ表面の黒皮剥離が見られたため(写真(2))、せん断降伏したと考えられる。R=1/50rad にて CLT 壁端部の浮き上がりが見られた。R=1/30rad にて鉄骨はり補強用スチフナー外側での曲げ変形が見られた(写真(3))。R=1/20rad にて CLT 壁に圧縮破壊のもめが見られ(写真(4))、鉄骨はりの曲げ変形が顕著となった。さらに、鉄骨はりフランジの局部座屈も見られた(写真(5))。

(1) 最大変形時 試験体全体

(3) 1/30rad 鉄骨はりの曲げ変形

(2) 1/75rad 鉄骨はりウェブの黒皮剥離

(4) 1/20rad CLT パネルのもめ

(5) 1/20rad 鉄骨はりの局部座屈 写真 4.3-6 No.4-面タッチあり-24DP 損傷状況

(6) 1/15rad 鉄骨はりの局部座屈

(6) No.5-片側モルタルあり-16DP

図 4.3-35(1)~(4)に履歴曲線を、写真 4.3-7(1)~(6)に試験体の損傷状況を示す。

R=1/75rad に鉄骨はりウェブ表面の黒皮剥離が見られたため(写真(2))、せん断降伏したと考えられる。 R=1/20rad にて鉄骨はりの曲げ変形が見られ(写真(4))、R=1/15rad まで加力する間に顕著となった。さら に、鉄骨はりフランジの局部座屈も観察された(写真(5)(6))。なお、変形角が大きくなるにつれて、モルタ ルのひび割れが顕著になり割裂が生じたが(写真(3))、CLT 壁端部の圧縮力を伝達する部分の破壊ではな いため、試験体全体の構造性能には影響していないと考えられる。

図 4.3-35 No.5-片側モルタルあり-16DP 履歴曲線

(1) 最大変形時 試験体全体

(3) 1/30rad モルタルの割裂

(5) 1/15rad 鉄骨はりの局部座屈 写真 4.3-7 No.5-片側モルタルあり-16DP 損傷状況

(2) 1/75rad 鉄骨はりウェブ表面のひび割れ

(4) 1/20rad 鉄骨はりの曲げ変形

(6) 1/15rad 鉄骨はりの局部座屈

(7) ドリフトピンタイプの各特性値まとめ

各試験体の層せん断力・層間変形関係の包絡線を完全弾塑性置換することで各特性値を算出し、表 4.3-8 に一覧で示す。 τ_{max} はいずれの試験体でも 2.4N/mm²程度まで上昇し、性能に大きな違いはみられなかった。これは各試験体の最大耐力は鉄骨はりの曲げ降伏により決定していること、ドリフトピン本数の違いによる影響が小さかったことが要因として考えられる。一方で、初期剛性 *K*については、No.4-面タッチあり・24DP が最も大きくなった。これは No.4 では鉄骨はりと面タッチしていることで、ほかの試験体よりも相対的に拘束度が強くなったためと考えられる。また、保有水平耐力時の CLT 負担せん断応力度は $\tau_{u}=2.1\sim2.4$ N/mm²となり、目標性能 $\tau_{u}\geq 1.5$ N/mm²を満たすことができた。さらに、1/200rad 時の CLT 負担せん断応力度は $\tau_{1/200}=0.73\sim0.88$ N/mm²となり、従来の CLT パネル工法の約 4 倍の性能となった。

		No.3- 片側モルタルあり-		No.4-面タッチあり-		No.5- 片側モルタルあり-					
		$24\mathrm{DP}$		$24\mathrm{DP}$		16DP					
		下	上			下	上				
		(モルタル	(モルタル	下	上	(モルタル	(モルタル				
		なし)	あり)			なし)	あり)				
$\mathbf{Q}_{\mathrm{CLTmax}}$	kN	762.2	760.5	760.7	753.4	743.7	835.6				
τ_{max}	N/mm ²	2.4	2.4	2.4	2.4	2.4	2.7				
δ_{max}	mm	81.5	76.4	106.3	77.3	77.8	102.4				
δ_{u}	mm	121.2	106.5	150.0	144.4	96.0	104.6				
$\mathbf{P}_{\mathbf{y}}$	kN	540.6	503.9	504.8	497.9	481.6	544.5				
δ_{y}	mm	19.4	18.1	16.7	15.8	18.0	18.1				
\mathbf{P}_{u}	kN	710.7	691.7	697.1	666.6	681.7	770.2				
$ au_{\mathrm{u}}$	N/mm ²	2.3	2.2	2.2	2.1	2.2	2.4				
К	kN/mm	27.9	27.9	30.2	31.6	26.8	30.1				
$\delta_{\rm v}$	mm	25.5	24.8	23.1	21.1	25.4	25.6				
μ		4.76	4.39	6.49	6.84	3.78	4.08				
P_y		540.6	503.8	504.8	497.9	481.6	544.5				
Pu*0.2/Ds		414.7	380.9	482.7	474.7	349.2	412.4				
$2/3P_{max}$		508.2	507.0	507.1	502.3	495.8	557.0				
P(1/150rad)		334.1	327.9	346.1	359.5	319.1	357.6				
Pa		334.1	327.9	346.1	359.5	319.1	357.6				
(参考)壁倍率		113.6	111.5	117.7	122.3	108.5	121.6				
τ1/200	N/mm ²	0.74	0.77	0.87	0.88	0.73	0.83				

表 4.3-8 各特性値の比較

4.3.3.3 曲げモーメント分布

各試験体について制御変形角が 1/200、1/100、1/50、1/30rad 時の曲げモーメント図を示す。それぞれの 曲げモーメントは鉄骨はり上下フランジに取り付けたひずみゲージ、集成材柱に取り付けたひずみゲージ より 4.3.3.1 の方法で算出した。

(1) テンション材タイプ

凡例を図 4.3·36 に示す。それぞれの計測位置での曲げモーメントを算出し、直線でつないだ。はりについてはピン支点まで直線を延長した。また、はりの終局モーメント M_u (=394.6kNm)を超えている場合はその値を()で示した。 M_u は以下のように算出した。

$$M_{\mu} = \sigma_{\nu} \times Z_{\mu}$$

ここで、 σ_v : ミルシートに記載の降伏点=286(N/mm²)

 Z_p : 塑性断面係数=1379844(mm³)

加えて、水平力、集成材柱・CLTの負担せん断力、集成材柱・引張材の軸力を示す。

図 4.3-36 テンション材タイプ 凡例

図 4.3-37 図 4.3-38 に No.1 と No.2 の曲げモーメント図を示す。どちらの試験体も上下の鉄骨はりの曲 げモーメント分布が概ね一致しているため、反曲点の位置は壁中央付近と考えられる。

第4章-55

(2) ドリフトピンタイプ

凡例を図 4.3·39 に示す。青字はモーメントの値、黒字は水平方向の力の値を示している。水平力による 曲げモーメントをそれぞれの計測位置で算出し、直線でつないだ。はり端部については、ピン支点まで直線 を延長した。ここで、各層間変形角は上側ジャッキにおける値である。また、はりの終局モーメント*M_u*(= 750.2kNm)を超えている場合はその値を()で示した。*M_u*は以下のように算出した。

$$M_u = \sigma_y \times Z_p$$

ここで、 σ_y :ミルシートに記載の降伏点=274(N/mm²)
 Z_p :塑性断面係数=2738112 (mm³)

図 4.3-39 ドリフトピンタイプ 凡例

図 4.3-40~図 4.3-41 に No.3~No.5 の曲げモーメント図を示す。

1/50rad

1/30rad

図 4.3-40 No.3-片側モルタルあり-24DP モーメント図

1/200rad

図 4.3-41 No.4-面タッチあり-24DP モーメント図

第4章 - 57

1/100rad

1/30rad

図 4.3-42 No.5-片側モルタルあり-16DP モーメント図

4. 3. 3. 4 CLT 圧縮応力度分布

各試験体について制御変形角が 1/200、1/100、1/50、1/30rad 時の CLT 端部の圧縮応力度分布及び各部 での圧縮応力度-層間変形角関係を示す。それぞれの圧縮応力度は CLT ひずみゲージより算出した。図 4.3-43 に示す CLT ひずみゲージより圧縮応力度及びその圧縮合力 C を 4.3.3.1 の方法で算出した。

図 4.3-43 CLT 端部ひずみゲージ位置概要図

図 4.3-44~図 4.3-53 に CLT 端部の圧縮応力度分布及び各部での圧縮応力度 – 層間変形角関係を示す。また、圧縮合力 C も併せて示す。圧縮応力度 – 層間変形角関係の点線は CLT の圧縮基準強度 Fc=14.78N/mm²である。

テンション材タイプの No.1、No.2 では圧縮基準強度を上回り、σ_c=40N/mm²程度まで圧縮応力度が上 昇した。これは基準強度の約 2.7 倍の性能であり、解析で実験結果の再現を試みる際には、基準強度をその まま用いるのではなく、実験結果から算出される強度をふまえて、適切に材料特性を判断することが必要 である。

一方、ドリフトピンタイプの圧縮応力度は、圧縮基準強度以下となった。これより、圧縮力が CLT-モル タル間または CLT-鉄骨はり間の面タッチとともに、ドリフトピンを介して伝えられていることが推察され る。 (1) No.1-テンションロッド

第4章-60

(2) No.2-フラットバー

図 4.3-47 No.2-フラットバー 圧縮応力度 – 層間変形角関係

(3) No.3-片側モルタルあり-24DP

1/50rad

1/30rad

図 4.3-48 No.3-片側モルタルあり-24DP CLT 端部圧縮応力度

上側右下

(4) No.4-面タッチあり-24DP

1/50rad

1/30rad

下側左上 図 4 3-51 No 4-面々ッチ

上側右下

図 4.3-51 No.4-面タッチあり-24DP 圧縮応力度 - 層間変形角関係

(5) No.5-片側モルタルあり-16DP

図 4.3-52 No.5-片側モルタルあり-16DP CLT 端部圧縮応力度

図 4.3-53 No.5-片側モルタルあり-16DP 圧縮応力度-層間変形角関係

4.3.3.5 テンション材応力

テンション材タイプの試験体について、テンション材の軸力-層間変形角関係および引張応力度-ステップ関係を示す。引張応力度-ステップ関係には、降伏応力度 1.1×F(F=235N/mm²)も併せて示す。テンション材の軸力および応力度は図 4.3-54 に示すひずみゲージから 4.3.3.1 の方法で算出した。

図 4.3-54 テンション材ひずみゲージ位置

図 4.3-55~図 4.3-58 に各試験体のテンション材の軸力-層間変形角関係および引張応力度-ステップ関係を示す。No.1-テンションロッドでは降伏応力度を上回り、No.2-フラットバーでは降伏応力度未満となり、試験体設計時に想定した破壊モードとなった。

また、テンションロッドにはほとんど引張力のみ作用しているのに対し、フラットバーには 1/50rad 以降に負の軸力、すなわち圧縮力がかかっている。これは、No.2 で 1/50rad 時に鉄骨はりが曲げ降伏した後に残留変形が生じ、フラットバーが圧縮されたためと考えられる。この影響により、前述のように、No.2-フラットバーでは、やや膨らみのある履歴特性になったと推察できる。No.1 のテンションロッドは細く、 圧縮力を負担できない形状であったためフラットバーのような挙動とはならなかったと考えられる。

(1) No.1-テンションロッド

右側

図 4.3-56 テンションロッド 引張応力度-ステップ関係

(2) No.2-フラットバー

左側

右側

図 4.3-58 フラットバー 引張応力度-ステップ関係

4. 3. 3. 6 鉄骨はりパネルゾーンのせん断変形

ドリフトピンタイプの試験体について、鉄骨はりのパネルゾーン(図 4.3-59)におけるせん断変形について検討する。せん断応力度およびせん断変形角は 4.3.3.1 の方法で算出した。

図 4.3-59 ドリフトピンタイプ パネルゾーン位置

図 4.3-60~図 4.3-62 にせん断応力度-せん断変形角関係およびせん断応力度-層間変形角関係を示す。 図中には、短期許容せん断応力度 $\tau_w = \sigma_y/\sqrt{3}$ (σ_y : ミルシートに記載の降伏点)も併せて示す。

実験結果より、いずれの試験体も層間変形角 1/75rad 付近でせん断応力度が許容せん断応力度を上回り、 せん断降伏したと考えられる。 (1) No.3-片側モルタルあり-24DP

(2) No.4-面タッチあり-24DP

図 4.3-61 No.4-面タッチあり-24DP パネルゾーンのせん断変形

⁽³⁾ No.5-片側モルタルあり-16DP

せん断応力度-せん断変形角関係 せん断応力度-層間変形角 図 4.3-62 No.5-片側モルタルあり-16DP パネルゾーンのせん断変形

4.3.3.7 CLT ロッキング変形

CLT のロッキング変形に伴う CLT 端部の沈み込みや浮き上がりを確認するため、図 4.3-63 に示す変位 計から制御変形角が±1/200、±1/100、±1/50、±1/30rad 時の CLT 端部の鉛直変位分布を示す。鉛直変 位は CLT 壁の浮き上がりを正、沈み込みを負で表している。

テンション材タイプ

ドリフトピンタイプ

図 4.3-63 CLT 脚部変位計位置概要図

図 4.3-64~図 4.3-68 に各試験体の CLT の鉛直変位を示す。鉛直変位は、CLT 壁の浮き上がりを正で、沈 み込みを負で表している。

テンション材タイプの No.1、No.2 で比較すると、CLT 壁の浮き上がりは No.1 の方が大きいが、沈み込 みは No.2 の方が大きい。また、回転中心については、CLT 壁端部から No.1 では 150mm 付近、No.2 では 375mm 付近に位置している。これらは、テンションロッドよりフラットバーの方が CLT 壁の鉄骨はりへ の拘束力が大きいためと考えられる。

ドリフトピンタイプでは、No.3、No.5 はともにモルタルのない側がある側に比べ沈み込みが大きい結果 となった。No.4 では、鉛直変位は上下、左右ともに対称となっている。また、回転中心については、No.3、 No.5 の上側(モルタル側)では CLT 壁端部から 625mm 付近、No.3、No.5 の下側および No.4 では CLT 壁中央付近に位置している。

(1) No.1-テンションロッド

下 (#C9~13)

図 4.3-64 No.1-テンションロッド CLT 端部の鉛直変位分布

(2) No.2-フラットバー

下 (#C9~13)

図 4.3-65 No.2-フラットバー CLT 端部の鉛直変位分布

(3) No.3-片側モルタルあり-24DP

図 4.3-66 No.3-片側モルタルあり-24DP CLT 端部の鉛直変位分布

下側上 (#C17~21)

図 4.3-67 No.4-面タッチあり-24DP CLT 端部の鉛直変位分布

(5) No.5-片側モルタルあり-16DP

下側上(#C17~21) モルタルなし

図 4.3-68 No.5-片側モルタルあり-16DP CLT 端部の鉛直変位分布

4.3.3.8 せん断接合部水平変形

せん断接合部の挙動を確認するため、せん断接合部の水平変位を検討する。図 4.3-69~図 4.3-73 に各試 験体のせん断接合部の水平変位を示す。図中には、せん断接合部の終局耐力 Puも併せて示す。せん断接合 部の終局耐力 P_u が終局の CLT 壁負担せん断力 Q_u を上回るように設計しており、ドリフトピン ϕ 20(SS400) 1本あたりの終局耐力 pu=46.3kN/本にドリフトピン本数(=14本)を乗じて算出したせん断接合部の終局 耐力は Pu=648.2kN である。なお、ドリフトピンの終局強度比は 1.0 とした。

テンション材タイプの No.1、No.2 では、CLT 壁の負担せん断力がせん断接合部の終局耐力 P_u以下とな った。一方で、ドリフトピンタイプの No.3~No.5 では、CLT 壁の負担せん断力がせん断接合部の終局耐力 を上回った。これは、鉄骨はりが降伏後もひずみ硬化の影響で耐力上昇したこと、せん断接合部のみならず 引張接合部もせん断力を負担し、設計時のせん断耐力以上の性能が発揮されたことが要因として考えられ る。

なお、試験体 No.4 では、最大荷重時以降の変位が大きな値となっているが、これは最大荷重時に変位計 が外れたためである。

CLT 壁負担せん断力-接合部水平変位

P_u=648.2kN

ŀ

1000

800

600

400

接合部水平変位一全体水平変位

全体荷重-接合部水平変位

接合部水平変位-全体水平変位

全体荷重-接合部水平変位

図 4.3-72 No.4-面タッチあり-24DP せん断接合部水平変形

接合部水平変位一全体水平変位

4.3.3.9 ドリフトピン引張接合部

ドリフトピンタイプの各試験体の CLT 壁負担せん断力 Qから、引張接合部に作用した鉛直力 Vを概算 し、設計値と比較する。鉛直力 Vは以下の式で表される。ここで、h/2 は加力芯からはり芯位置までの距 離、jは接合部中心間距離である(図 4.3 -74 参照)。

$$V = \frac{Q \times h/2}{j}$$
 4.3.3.9-1

図 4.3-75 に各試験体の上式により算出した鉛直力 Vと接合部中心位置における鉛直変位との関係を示 す。図中には、引張接合部の設計値である短期耐力 P_a と終局耐力 P_u も併せて示す。引張接合部は鉄骨は りに全塑性モーメントが生じた際の鉛直力に対して、ドリフトピン ϕ 20 (SNR490) 一本あたりの短期耐力 p_a (No.3、No.4) または終局耐力 p_u (No.5) で設計している。なお、 p_u/p_a は 1.5 とした。引張接合部の短 期耐力 P_a と終局耐力 P_u はそれぞれドリフトピンー本あたりの短期耐力 $p_a=32.9$ kN/本または終局耐力 $p_u=49.4$ kN/本にドリフトピン本数を乗じて算出した。また、横軸の鉛直変位は、鉄骨はり・CLT 壁の鉛直変 位を計測していた変位計の計測値を直線補完し、接合部中心位置での鉛直変位を算出した。短期耐力 p_a で 設計した No.3 と No.4 では鉛直力の最大値が短期耐力 P_a と終局耐力 P_u の間に収まった。一方で、終局耐 力で設計した No.5 では鉛直力の最大値が終局耐力 P_u を上回った。これは CLT 壁やドリフトピンの材料特 性が設計値よりも高かったこと、ドリフトピンの終局強度比が設計値 (=1.0) よりも大きかったことが要因 として考えられる。

図 4.3 -74 引張接合部に作用する鉛直力

(a) No.3-片側モルタルあり-24DP

(b) No.4-面タッチあり-24DP

(c) No.5-片側モルタルあり-16DP 図 4.3-75 引張接合部に作用した鉛直力と鉛直変位の関係

参考値として、表 4.3・9 に設計値と実験結果の比較を示す。*Vmax* は前述の接合部に作用した鉛直力の最 大値で、*Ktest* は前述の鉛直力・鉛直変位関係から算出した剛性の平均値である。なお、No.4 の下側右上は極 端に剛性が大きくなったため、上側左下の剛性を表に示す。また、*Kdesign* は設計値として用いたドリフトピ ン一本あたりの剛性 *k*=29.3kN/mm にドリフトピン本数を乗じて算出した値である。各試験体の鉄骨はり の全塑性モーメントに対する接合部耐力に対して、鉛直力の最大値は 1.4 倍となった。また、剛性について は、No.4 のみ設計値を上回ったものの、No.3、No.5 については設計値を下回ったが、おおよそ設計値と同 等の性能となった。

<u>Curring</u>	P_a	P_u	V _{max}	V _{max} /P _a	V_{max}/P_u	K_{design}	K _{test}	K_{test}/K_{design}
specifien	kN	kN	kN			kN/mm	kN/mm	
No.3	790.4	1185.6	1104	1.4	-	703.2	568.8	0.81
No.4	790.4	1185.6	1094	1.4	-	703.2	740.2	1.05
No.5	526.9	790.4	1163	-	1.4	468.8	466.1	0.99

表 4.3-9 設計値と実験値との比較

4.3.3.10 DP-挿入鋼板-鉄骨はり 力の伝達の違い

試験体 No.3、No.5 について、ドリフトピン接合部における応力の伝達方法を確認するため、図 4.3-76~ 図 4.3・77 に挿入鋼板の引張応力度と全体水平変位との関係を示す。挿入鋼板の引張応力度は 4.3.3.1 の方 法で算出した。図中には、降伏応力度 1.1×F (F=235N/mm²)を示す。図中の応力度が正の場合は挿入鋼 板に引張力が、負の場合は圧縮力が作用していることを意味する。

試験体 No.3、No.5 ともに、モルタルがある側の挿入鋼板の引張応力度が小さく、モルタルによる応力負 担が大きいことがわかる。また、モルタルがない側では降伏値を上回り、降伏したと考えられる。

モルタルあり側の挿入鋼板に作用した圧縮力は、モルタルなし側よりも小さく、CLT・モルタル間の面タ ッチによって圧縮力が伝達されていたと推察できる。

800

上側 (モルタルあり)

モルタルなし (左) 600 モルタルなし (右) 400 _____ 1.1×F 200 (F=235) 応力度(N/mm²) 0 -200 -400 -600 -800 -1000 -1200 -150 150-100 -50 50100 0 全体変位(mm)

下側(モルタルなし)

図 4.3-76 No.3-片側モルタルあり-24DP 挿入鋼板引張応力度 – 変形関係

上側(モルタルあり)

図 4.3-77 No.5-片側モルタルあり-16DP 挿入鋼板引張応力度-変形関係

4.3.4 構造特性係数 D_sの検討

本項では、実大静加力実験結果を基に、各試験体の構造特性係数 D_s について検討する。鉄骨造では $D_s=0.25\sim0.35$ であり、一方で CLT パネル工法においては、耐力壁の長さに応じて D_s が定義 $4\cdot1$ されてお り、 $D_s=0.40\sim0.55$ である。また、本実験での各試験体の構造特性係数 D_s を評価することは今後、CLT 耐 力壁と鉄骨はりとの併用構造を普及させるためにも重要である。

そこで、本項では塑性率μを用いた方法と累積塑性変形倍率 ηを用いた方法、さらに、参考値として減衰 を考慮した方法のそれぞれで *D*sを評価し、各試験体の適切な *D*sを求めることを目的とする。また、テン ション材タイプとドリフトピンタイプの *D*sを比較し、両タイプの性能の適切な評価を試みる。

4.3.4.1 等価粘性減衰定数

本実験結果のせん断力(Q)・層間変形(δ)関係から以下の式より等価粘性減衰定数 heqを求められる。

$$h_{eq} = \frac{1}{4\pi} \cdot \frac{\Delta W}{W_{eq}} \tag{4.3.4-1}$$

$$W_{eq} = \frac{1}{2}k_e a^2$$
 4.3.4-2

ここで、

△W:履歴ループの1サイクルの面積(図 4.3.4-1 参照)

Weg:等価ポテンシャルエネルギー(図 4.3.4-1 参照)

各試験体の特定変形角時の履歴ループをそれぞれ抽出し、上式より等価粘性減衰定数 heqを評価した。 これにより、各試験体の減衰を考慮して性能を評価することができる。

図 4.3.4-2 に層間変形角と等価粘性減衰定数 h_{eq} との関係を示す。テンション材タイプの No.1、No.2 では 1/50rad 以降の等価粘性減衰定数が h_{eq} =0.06~0.21 となったが、ドリフトピンタイプの No.3、No.4、No.5 では h_{eq} =0.19~0.52 となり、ドリフトピンタイプの試験体の方が大きくなった。これは、テンション 材タイプではスリップ型の履歴特性であったのに対して、ドリフトピンタイプでは紡錘型に近い履歴特性 であったことに起因すると考えられる。

図 4.3.4-1 等価粘性減衰定数の求め方

である。

図 4.3.4-2 等価粘性減衰定数 *h_{eq}*と層間変形角 *R* との関係

4.3.4.2 塑性率を用いた Dsの評価手法(方法①)

CLT の設計・施工マニュアルに準じた方法によると、構造特性係数 D_s は以下の式で表される。ここで、 μ は塑性率であり、各試験体のせん断力(Q)・層間変形(δ)関係の包絡線から履歴面積 Wに等価な完全 バイリニアを定義することで算定できる(図 4.3.4-3 参照)。

$$D_s = \frac{1}{\sqrt{2\mu - 1}}$$
 4.3.4-3

$$\mu = \frac{\delta_u}{\delta_y} = \frac{Q \cdot \delta_u}{2(Q \cdot \delta_u - W)}$$

$$4.3.4-4$$

図 4.3.4-3 面積等価な完全バイリニアと塑性率μの関係

4.3.4.3 累積塑性変形倍率を用いた Dsの評価手法(方法②)

方法①では、各試験体の履歴特性を反映することは難しいが、履歴特性を反映した構造特性係数 *D*_sの 評価も重要であると考えられる。そこで、鉄骨造建築物の耐震性を評価する際に広く用いられている方法 として、文献 4-2)を参考にしつつ、累積塑性変形倍率 *n*を用いた方法(方法②)により、*D*_sの評価を試 みた。累積塑性変形倍率 *n*は履歴吸収エネルギーあるいはそれを弾性ひずみエネルギーの 2 倍の量で無次 元化した指標で、完全弾塑性型の復元力特性の場合は、図 4.3.4-4 (a)のようになる。また、繰り返し履 歴と最大塑性率 *µ*の関係は図 4.3.4-4 (b)に示すようになり、累積塑性変形倍率 *n*は以下の式であらわさ れる。テンション材タイプはスリップ型、ドリフトピンタイプは完全弾塑性型の式より累積塑性変形倍率 *n*を算出することとした。

$$\eta = 2(\mu - 1)$$
 (スリップ型、テンション材タイプ) 4.3.4-5

$$\eta = 4(\mu - 1)$$
 (完全弾塑性型、ドリフトピンタイプ) 4.3.4-6

上記の累積塑性変形倍率 ηを用いて構造特性係数 Dsを求める式は以下のようになる。

$$D_s = \frac{1}{\sqrt{2\eta + 1}}$$
 4.3.4-7

4.3.4.4 塑性率と等価粘性減衰定数を用いた Dsの評価手法(方法③)

文献 4-3) を参考にし、塑性率 μと等価粘性減衰定数 heqの効果を考慮した方法(方法③)により、Dsの評価を試みた。

塑性率µと等価粘性減衰定数 heqの効果を考慮し、以下の式により算定した。

$$D_{s} = \frac{F_{h}}{\sqrt{2\mu - 1}}$$

$$F_{h} = \frac{1.5}{1 + 10h_{eq}}$$
4.3.4-9

ここで、µは塑性率であり、最大荷重時の変形角を含む履歴曲線に対して、方法①と同様の手法で算出することができる。

4.3.4.5 Dsの算定結果

Туре	S	pecimen	Ductility factor μ	$D_s(Method \mathbb{O})$	$D_s(Method@)$	Ductility factor μ	heq	$D_s(Method ③)$
Tension		No.1	3.20	0.43	0.32	3.15	0.16	0.25
material	No.2		3.19	0.43	0.32	2.29	0.21	0.25
N	No 2	Mortar	4.29	0.36	0.19	3.00	0.42	0.13
	N0.5	No mortar	4.76	0.34	0.18	3.27	0.49	0.11
D.'0. '	NT 4	Upper	6.84	0.28	0.15	2.92	0.52	0.11
Drift-pin	N0.4	Lower	6.49	0.29	0.14	4.63	0.32	0.12
	N 5	Mortar	4.08	0.37	0.21	3.99	0.37	0.12
	No.5	No mortar	3.78	0.39	0.20	3.04	0.39	0.14

表 4.3-10 構造特性係数 D_sの算定結果

表 4.3-10 に 3 つの方法による D_s の算定結果を一覧で示す。方法①と方法②における塑性率 μ は履歴曲 線の包絡線を完全弾塑性置換して算出した値とし、一方で、方法③における塑性率 μ 、等価粘性減衰定数 h_{eq} は最大荷重時の変形角を含むサイクルにおいて算定したものである。方法①による結果についてみて みると、テンション材タイプの No.1,2 は従来の CLT パネル工法と同等の D_s となり、ドリフトピンタイ プの No.3~5 は従来の CLT パネル工法より低い D_s となった。次いで、方法②による結果についてみてみ ると、テンション材タイプの No.1,2 は従来の CLT パネル工法よりやや低い D_s となり、ドリフトピンタ イプの No.3~5 は鉄骨ラーメン構造の D_s より低い結果となった。一方、参考値として算出した方法③によ る結果についてみてみると、テンション材タイプの No.3~5 は鉄骨ラーメン構造の D_s モア国る結果となった。

図 4.3.4-5 塑性率μと等価粘性減衰定数 h_{eq}との関係

図 4.3.4-6 層間変形角 Rと塑性率 µとの関係

図 4.3.4-7 方法③における層間変形角 Rと Dsとの関係

図 4.3.4-5 に塑性率 μ と等価粘性減衰定数 h_{eq} との関係を、図 4.3.4-6 に層間変形角 R と塑性率 μ との関係を、図 4.3.4-7 に方法③における層間変形角 R と D_s との関係を示す。図 4.3.4-5 より、塑性率 μ が増加 すると、等価粘性減衰定数 h_{eq} も増加する傾向がみられ、テンション材タイプよりもドリフトピンタイプ の増加率が高くなった。図 4.3.4-6 より、層間変形角が増加するとともに塑性率 μ も増加する傾向がみら れ、方法③においては、図 4.3.4-7 で示されるように、層間変形角が増加するとともに D_s が低下する結果 となった。テンション材タイプでは 1/30rad 以降の変形角で CLT パネル工法の D_s =0.40 を下回り、 1/20rad では鉄骨造と同等の D_s =0.25 となった。一方で、ドリフトピンタイプの No.3~5 では層間変形角 が 1/50rad を超えたところで、CLT パネル工法の D_s =0.40 を下回り、1/30rad 以降の変形角で鉄骨造と同 等の D_s =0.25 となった。

以上より、どちらの評価方法においても、ドリフトピンタイプの No.3~5 では、テンション材タイプの No.1,2 よりも *D*_sが低くなり、ドリフトピンタイプの方が変形性能の高い構造であるといえる。また、テ ンション材タイプは CLT パネル工法と、ドリフトピンタイプは鉄骨造と同等の変形性能を有すると考え られる。

4.3.5 はりのせん断力・CLTの圧縮合力

カのつり合いから求めた圧縮合力やせん断力と計測値とを比較し、各層間変形角での力の流れを把握す ることを目的とする。

(1) テンション材タイプ

凡例を図 4.3.5-1 に示す。計測した曲げモーメント・軸力・せん断力よりはりのせん断力・CLT の圧縮 合力を算出した。はり中央部のせん断力 Q_{dy} 、 Q_{dy} 、 Q_{dy} 、ひずみゲージから求めたパネルゾーンのモーメントの傾きより算出した。CLT の圧縮合力 C_{CLT} の算出方法は以下に示す。

実験結果(4.3.3.3 曲げモーメント分布)より、上下の鉄骨はりでモーメント分布が概ね一致していたことから、CLTの反曲点高さ比は0.5と仮定する。

$$M_{CLT} = Q_{CLT} \times \frac{h}{2} \tag{4.3-1}$$

偶力によるモーメントと CLT のモーメントのつり合いより

$$C_{CLT} \times j = 2 \times M_{CLT} \tag{4.3-2}$$

$$C_{CLT} = \frac{2 \times M_{CLT}}{j} = \frac{Q_{CLT} \times h}{j}$$

$$4.3-3$$

ここで、M_{CLT}: CLT 負担せん断力によって生じるモーメント

Q_{CLT}: CLT 負担せん断力

h:CLT 高さ=2900(mm)

j: CLT 上下の圧縮領域の合力の重心(中立軸から 2/3 の位置)間距離 No.1 では、中立軸が CLT 壁端部より 150mm の位置であるから

$$j_{No.1} = \left(150 \times \frac{2}{3}\right) \times 2 + (w - 150 \times 2) = 1400$$

No.2 では、中立軸が CLT 壁端部より 375mm の位置であるから

$$i_{No.2} = \left(375 \times \frac{2}{3}\right) \times 2 + (w - 375 \times 2) = 1250$$

ここで、w:CLT 幅=1500(mm)

また、図中の()で示した値は実験値より求められた値である。テンション材位置でのはりのモーメント については、実験値はテンション材のガセットプレートよりも外側に設置したひずみゲージの計測値であ るため、線形にひずみが変化すると仮定してガセットプレート位置でのひずみを求め算出した。さらに、パ ネルゾーン位置のモーメントの傾きより、せん断力を算出した。

図 4.3.5-2、図 4.3.5-3 に力のつり合いから求めたはりのせん断力・CLT の圧縮合力を、図 4.3.5-4 に 各変形角時の CLT 圧縮合力の計算値と実験値との比較を示す。ここでの実験値とは、4.3.3.4 CLT 圧縮 応力度分布で示したひずみゲージより求めた圧縮合力をいう。

No.1 では、1/75rad までは計算値と実験値が概ね一致しているが、それ以降は計算値が実験値を上回っている。一方 No.2 では、全ての変形角において計算値が実験値を上回っており、テンションロッドの値より大きくなっている。これは、実験ではひずみを計測することができない最端部での圧縮合力負担が大きかったためと推察される。また、テンション材の拘束力の違いによる CLT 回転中心位置の違いにより、計算値は No.2 が No.1 を上回った。

図 4.3.5-2 No.1-テンションロッド はりのせん断力・CLT の圧縮合力

図 4.3.5-3 No.2-フラットバー はりのせん断力・CLT の圧縮合力

図 4.3.5-4 テンション材タイプ CLT 圧縮合力 計算値と実験値の比較

(3) ドリフトピンタイプ

凡例を図 4.3.5-5 に示す。計測した曲げモーメント・軸力・せん断力よりはりのせん断力・CLT の圧縮 合力を算出した。はり中央部のせん断力*Q*_{はり}は、ひずみゲージから求めたパネルゾーンのモーメントの傾 きより算出した。CLT の圧縮合力*C_{CLT}*の算出方法は以下に示す。

$$M_{CLT \not=} = Q_{\not=} \times h \tag{4.3-4}$$

偶力によるモーメントと CLT のモーメントのつり合いより

$$C_{CLT \perp} \times j = M_{CLT \perp}$$
 4.3-5

$$C_{CLT \perp} = \frac{M_{CLT \perp}}{j} = \frac{Q_{\perp} \times h}{j}$$

$$4.3-6$$

同様にC_{CLT で}も求める。

ここで、M_{CLT 上}: CLT 負担せん断力によって生じるモーメント

 Q_{t} :上側ジャッキ水平力

h:加力点位置=1450(mm)

j: 圧縮領域の合力の重心(中立軸から 2/3 の位置)とドリフトピン引張接合部中心間の距離 ここで、ドリフトピ引張接合部中心は CLT 端部から 175mm である。

No.3、No.5の上側では、中立軸が CLT 壁端部より 625mm の位置であるから

$$j_{\pm \mu \beta \mu \delta \eta} = \left(\frac{w}{2} - 625\right) + 625 \times \frac{2}{3} + \left(\frac{w}{2} - 175\right) = 1116$$

No.3、No.5 の下側、No.4 では、中立軸が CLT 壁中央の位置であるから

$$j_{\pm \mu \beta \mu \dot{x} \downarrow} = \frac{w}{2} \times \frac{2}{3} + \left(\frac{w}{2} - 175\right) = 1075$$

ここで、w:CLT 幅=1500(mm)

また、図中の()で示した値は実験値より求められた値である。

図 4.3.5-5 ドリフトピンタイプ 凡例

図 4.3.5・6 図 4.3.5・8 に力のつり合いから求めたはりのせん断力・CLT の圧縮合力を、図 4.3.5・9 に各 変形角時の CLT 圧縮合力の計算値と実験値との比較を示す。ここでの実験値とは、4.3.3.4 CLT 圧縮応 力度分布で示したひずみゲージより求めた圧縮合力をいう。

いずれの試験体も計算値が実験値を大きく上回った。これは、4.3.3.4 にも示したとおり、CLT-モルタル 間または CLT-鉄骨はり間での面タッチとともに、ドリフトピンを介して鉄骨はりに圧縮力が伝達された ためと推察できる。また、はりのせん断力は No.3 で最大 580kN 程度、No.4、No.5 で最大 490kN 程度と なっており、フラットバー試験体でのはりのせん断力(最大 480kN)と同程度であった。

図 4.3.5-6 No.3-片側モルタルあり-24DP はりのせん断力・CLT の圧縮合力

図 4.3.5-8 No.5-片側モルタルあり-16DP はりのせん断力・CLT の圧縮合力

図 4.3.5-9 ドリフトピンタイプ CLT 圧縮合力 計算値と実験値の比較

4. 4 実験結果の解析による追跡

4.4.1 解析概要

実大静加力実験の挙動追跡を目的として、有限要素解析による静的増分解析を実施した。図 4.4-1、4.4-2 に解析モデルを示す。CLT 壁は線材弾性要素とし、上下端に CLT 壁幅と同じ長さを有する剛体を設けた。 鉄骨はりは線材要素とし、弾塑性特性はバイリニア型とした。ただし、実大静加力実験の挙動より、補強用 のスチフナーを溶接している区間の鉄骨はりでは塑性化が進んでいなかったと判断し、その区間の鉄骨は りは線材弾性要素でモデル化した。さらに、ドリフトピンタイプでは、補強用スチフナーの溶接区間に挿入 鋼板も溶接され断面性能が高くなっていると考え、その区間を剛体とした。

テンション材タイプの CLT 壁-鉄骨はり、およびドリフトピンタイプの CLT 壁-モルタル、CLT 壁-鉄骨 はりとの接触位置における支圧挙動を模擬するためにバネ要素を設け、圧縮強度で降伏するバイリニア特 性を与えた。また、せん断接合部を模擬した弾性バネを接合部軸心位置に設けた。

テンション材はバイリニア型の引張バネでモデル化した。また、テンション材タイプの両端の集成材は 線材弾性要素でモデル化し、鉄骨はり要素とはピン接合とした。ドリフトピンタイプでは、引張接合部を模 擬した弾性バネを接合部軸心位置に設けた。なお、解析は SNAP.Ver.7 を用いた。

図 4.4-1、4.4-2 の計測計画図中の各計測値を参照し、線材要素やバネ要素の特性を決定した。以下では、 各モデル要素の特性について詳述する。

表 4.4・1 に解析モデルの特性値を示す。鉄骨はりの降伏強度はミルシートの値とし、CLT 壁の材料特性 は基準強度、基準せん断弾性係数と強度等級から算定したヤング係数とした。ドリフトピン接合部を模擬 したバネの剛性は、文献 4・4)に基づき算出したドリフトピン一本あたりの剛性にドリフトピン本数を乗じ て決定した。CLT 壁の支圧挙動を模擬した圧縮バネの特性は、文献 4・5)の値を用い、各圧縮バネの負担面 積を乗じることで決定した。テンション材を模擬した引張バネの軸剛性は、以下の式で算出した。Eはヤン グ係数、Aは有効断面積、Lは解析における引張バネの長さである。

$$K_{TD} = \frac{E \times A}{L} \tag{4.4-1}$$

ただし、より精度よく実験結果を再現するために実大実験結果を参照し解析モデルの特性を決定した場合の値は、表 4.4-1 には示しておらず、以下に各要素の特性の算出方法とその特性値を記す。

		Steel bea	am		CLT		CLT joint				Tension	material
	Young's	Shear	Vield a	tranath	Young's	Shear	Compre	ession	Shear	Tensile	Young's	Yield
Specimen	modulus	modulus	i iciu s	sucingui	modulus	modulus	sprii	ng	spring	spring	modulus	strength
type			Flange	Web			Stiffness	Strength	Stiffness	Stiffness		
-SPC	Ε	G	σ_y	σ_y	Ε	G	k _c	σ_c	k_s	k_t	Ε	$F^{\mbox{\ensuremath{\mathbb K}}}$
	N/mm ²	N/mm ³	N/mm^2	kN/mm・本	kN/mm・本	N/mm ²	N/mm ²					
Tension material	205000	70000	286	170	6420	500	22.2	20.1	20.2	20.2	205000	235
Drift-pin	203000	/9000	274	172	0420	300	22.3	36.1	29.5	29.5	-	-

表 4.4-1 解析モデルの特性値

₩F=235N/mm²

第4章 -94

図 4.4-2 ドリフトピンタイプの解析モデル概要

⁽¹⁾鉄骨はり、テンション材の二次剛性

文献 4-6) では、鋼材の種類をパラメータとして鋼板のせん断試験を実施しており、鋼板の降伏後の二次 剛性について報告されている。そこで、文献 4-6) を参考に、本解析における鉄骨はり、テンション材の二 次剛性の剛性低下率を 0.015 とした。

(2) ドリフトピンタイプ(十字型試験体)のパネルゾーンのせん断性能

ドリフトピンタイプの試験体について、実験時には引張接合部もせん断抵抗していると考えられ、引張 接合部にも曲げモーメントが作用する(図 4.4・3 参照)。これにより、パネルゾーン(CLT 壁の直上または 直下)側に作用する曲げモーメントが減少し、せん断力も減少する。これら一連の現象を解析で再現するた めに、パネルゾーンでの曲げモーメントの減少によるせん断力の減少分をせん断耐力に割増して、解析モ デルを構築した。なお、 M_{pl} は鉄骨はりのパネルゾーンに貼り付けた 3 軸ひずみゲージから算出したせん断 応力度が降伏強度 (= $\sigma_{pl}\sqrt{3}$)に達したときの値とした。以下に、各試験体の割増係数を α で示す。ただし、 No.4・面タッチあり-24DP は試験体形状の都合上、挿入鋼板にひずみゲージを貼り付けられなかったため、 割増係数は設定しないこととした。

・No.3-片側モルタルあり-24DP:割増係数 α=1.36

・No.5-片側モルタルあり-16DP:割増係数 α=1.26

No.5 において、パネルゾーンに作用するせん断力 Q_{pz} が Q_y に達した時、

 $M_{s1}=578$ kNm, $M_{s2}=438$ kNm

 $2M_{pF}=160$ kNm(M_{s1} の約 26%)

図 4.4-3 ドリフトピンタイプのパネルゾーンのせん断耐力の割増方法

(3) 圧縮バネ: CLT 壁の支圧挙動

テンション材タイプの支圧挙動を模擬した圧縮バネの支圧剛性は文献 4-5)の値を用いた場合と、実大実験結果を参照しつつ決定した場合の解析を実施した。図 4.4-4 に実大実験結果より算出した圧縮応力度 σ_c ーCLT 壁端部の鉛直変位との関係を示す。縦軸の圧縮応力度 σ_c は図中の CLT 壁端部から 2 箇所のひずみ ゲージから算出したものである。横軸の鉛直変位は図中の変位計で計測した CLT 壁端部の鉛直変位である。 図 4.4-4 より算定した No.1-テンションロッドと No.2-フラットバーの支圧剛性 k_c はそれぞれ $k_c=15.4$ N/mm³、 $k_c=25.8$ N/mm³とした。一方、圧縮強度は文献 4-5)の値を用い、 $F_c=38.1$ N/mm²とした。

ドリフトピンタイプの圧縮バネの支圧剛性 keおよび圧縮強度 Feは文献 4-5)の値とした。

図 4.4-4 圧縮バネの支圧剛性算出方法

(4) せん断バネ: せん断接合部

せん断バネの剛性 K_sは文献 4-4)に基づき算出した値と、実大実験結果を参照して決定した値を用いた。 文献 4-4)に基づき算出した場合は、k=29.3kN/mm 本より、ドリフトピン本数を乗じて、初期剛性を算出 し、Ks=29.3×14=410kN/mm とした。一方、実大実験結果を参照した場合は、図 4.4-5 に示す CLT 壁負 担せん断力 QCLTとせん断接合部の水平変位との関係から算出した。No.1-テンションロッドと No.2-フラ ットバーのせん断バネの剛性 K_sを Ks=276.9kN/mm、Ks=599.4kN/mm とした。

ドリフトピンタイプでは、せん断接合部の水平変位がほとんどなかったため、文献 4-4)に基づき算出した値を用いた。

図 4.4-5 せん断バネの剛性算出方法

(5) テンションロッド

No.1 のテンションロッドの降伏耐力 P_y は実大実験結果を参照し、 P_y =420kN に設定した。図 4.4-6 にテンションロッドに貼り付けたひずみゲージから算出した引張力と層間変形との関係を示す。

図 4.4-6 テンションロッドの降伏耐力の算出方法

(6) テンション材剛性増大率 φ x

テンション材タイプのテンションロッドおよびフラットバーはガセットプレート(GPL)や鉄骨はりの はりせいの長さ分も解析ではモデル化している。そのため、ガセットプレートやはりせいの長さ分を差し

引いた有効長さと解析モデルでの長さの比率を剛性増大率 ϕx と定義し、解析においてテンションロッド とフラットバーを模擬した引張バネの剛性を増大させて、解析を実施した。表 4.4-2、4.4-3 に剛性増大率 ϕx の算出方法を示す。

モデル長さ	L	3240	mm
有効長さ	Lb	2060	mm
※GPL 長さ、	ターンバックル長さ、	鉄骨はりせ	いを差し引く
	GPL	195	mm
	ターンバックル	450	mm
	鉄骨はりせい	340	mm
剛性増大率	ϕ x	1.57	
	ЖL/Lb		

表 4.4-2 No.1-テンションロッドの剛性増大率の算出方法

表 4.4-3 No.2-フラットバーの剛性増大率の算出方法

モデル長さ	L	3240	mm
有効長さ	Lb	2410	mm
※GPL長さ、	鉄骨はりせいを差し引	<	
	GPL	245	mm
	鉄骨はりせい	340	mm
剛性増大率	$\phi \mathbf{x}$	1.34	
	₩L/Lb		

4.4.2 解析結果

4. 4. 2. 1 No.1-テンションロッド

表 4.4-4 に解析ケースを示す。各ケースでパラメータを変更している部分については赤字で示している。

	鉄骨はりの	の剛性低下率	圧縮	すバネ	せん断バネ		テンション材	
	曲げ性能	せん断性能	$k_c \text{ N/mm}^3$	$F_c \text{ N/mm}^2$	Ks kN/mm	$P_y \mathrm{kN}$	剛性低下率	φx
Case1	0.001	0.015	22.3	38.1	410	420	0.015	1.57
Case2	0.001	0.015	15.4	38.1	410	420	0.015	1.57
Case3	0.001	0.015	22.3	38.1	276.9	420	0.015	1.57
Case4	0.001	0.015	15.4	38.1	276.9	420	0.015	1.57

表 4.4-4 解析ケース

図 4.4-7 に試験体全体のせん断力・層間変形関係について解析結果と実験結果との比較と、終局時の応力 状態を示す。青の実線が設計値を用いた解析結果である。なお、実験結果は正加力側の包絡線を示す。グラ フ中の SY、BY、TY、CY はそれぞれ鉄骨はりのせん断降伏(Shear Yield)、鉄骨はりの曲げ降伏(Bending Yield)、テンション材の引張降伏(Tensile Yield)、CLT 壁端部の圧縮降伏(Compressive Yield)をあらわ す。すべての Case で解析の耐力が低くなった。これはテンションロッドが降伏したのち、片側の鉄骨はり に作用するモーメントが減少し、パネルゾーンに作用するせん断力が増加しなくなったことが一因である と考えられる。その結果、解析では鉄骨はりのせん断降伏が生じていない。テンションロッドの降伏後の二 次剛性を実験等により求めることができれば、より精度よく実験結果を再現できると考えられる。初期剛 性については、圧縮バネの支圧剛性を低くした Case2 では概ね実験結果と整合しているが、せん断バネの せん断層性を低くした Case3 では Case1 と同様に実験結果よりもやや初期剛性が高くなった。このことか ら、No.1-テンションロッドでは CLT 壁の支圧挙動を模擬した圧縮バネの性能の方が試験体全体の性能に 影響を及ぼしていると考えられる。

参考として、実験結果、設計値を用いた解析結果、事後解析結果における Pyと Puを比較する。実験結果 の Pyはいずれかの部材が降伏した点、Puは包絡線を完全弾塑性置換して算出した値とした。設計値を用い た解析結果および事後解析結果の Pyはいずれかの部材が降伏した点とし、事後解析結果の Puは鉄骨はり が曲げ降伏した点とした。表 4.4-5 に特性値を比較した結果を示す。Pyについてみると、設計値を用いた 解析結果よりも事後解析結果の方の再現精度が高くなっており、各部材の材料特性を適切に把握すること ができれば、精度よく実験結果を再現できることが示唆された。また、Puについては、事後解析において 90%程度の精度で再現できた。実験結果と事後解析結果に差異が生じたのは、前述のようにテンションロッ ドのひずみ硬化の影響が一因として考えられる。

		δ_y	R_y	P_y	Yielded	P_u	Ratio to	Ratio to
		mm	rad	kN	material	kN	$\text{Test}(P_y)$	$\text{Test}(P_u)$
Test		48.5	1/67	395.1	Tension rod	552.5	-	-
Analysis by Desig	gn value	44.6	1/73	321.0	Tension rod	-	0.81	-
	Case1	42.1	1/77	387.6	Tension rod	494.3	0.98	0.89
Post-Analysis	Case2	43.1	1/75	378.7	Tension rod	478.2	0.96	0.87
	Case3	43.0	1/75	387.5	Tension rod	482.1	0.98	0.87
	Case4	44.0	1/74	378.8	Tension rod	482.1	0.96	0.87

表 4.4-5 特性値の比較

4. 4. 2. 2 No.2-フラットバー

表 4.4-6 に解析ケースを示す。各ケースでパラメータを変更している部分については赤字で示している。

	鉄骨はりの	の剛性低下率	圧縮	バネ	せん断バネ	テンション材	鉄骨はり
	曲げ性能	せん断性能	$k_c \text{ N/mm}^3$	$F_c \text{ N/mm}^2$	Ks kN/mm	φx	線形領域 mm
Case1	0.001	0.015	22.3	38.1	410	1.34	400
Case2	0.001	0.015	25.8	38.1	599.4	1.34	400
Case3	0.001	0.015	25.8	30	599.4	1.34	400
Case4	0.001	0.015	25.8	30	599.4	1.34	300

表 4.4-6 解析ケース

図 4.4-8 に試験体全体のせん断力・層間変形関係について解析結果と実験結果との比較と、終局時の応力 状態を示す。青の実線が設計値を用いた解析結果である。いずれの Case でも解析結果の降伏点が高くなっ た。これは、CLT 壁の支圧挙動を模擬した圧縮バネの降伏点を実性能よりも高く設定していることが一因 として考えられる。実際に、実大実験時に圧縮破壊を観察した変形角において、CLT 壁に貼付したひずみ ゲージから算出した圧縮応力度は σ=30N/mm²程度であり、圧縮バネの性能よりも低かった。これはひず みゲージを CLT 壁端部から一定の距離の位置に貼り付けていた影響も考えられる。圧縮バネの降伏点を 30N/mm²とした Case3 では降伏点が実験結果よりも高いが、Case1、2 と比較すると実験結果に近い結果 となった。このことから、No.2・フラットバーでは CLT 壁の支圧挙動を模擬した圧縮バネの性能、特に降 伏点を適切に評価することが重要であることが示唆された。また、鉄骨はりの線形領域を短くした Case4 においては、パネルゾーン (CLT 壁の直上または直下)においてせん断降伏以外に曲げ降伏が生じており、 Case3 よりも実験結果に近くなった。これにより、実大実験において、ひずみゲージを貼り付けていない 箇所で鉄骨はりの降伏が生じていた可能性があることを示唆される。

参考として、実験結果、設計値を用いた解析結果、事後解析結果における *Py*と *Pu*を比較する。実験結果 の *Py*はいずれかの部材が降伏した点、*Pu*は包絡線を完全弾塑性置換して算出した値とした。設計値を用い た解析結果および事後解析結果の *Py*はいずれかの部材が降伏した点とし、事後解析結果の *Pu*は鉄骨はり が曲げ降伏した点とした。表 4.4-7 に特性値を比較した結果を示す。Case4 が最も精度よく、次いで Case3 で精度よく実験結果を再現できており、前述のように圧縮バネの性能を適切に評価することが重要と考え られる。

		δ_y	R_y	P_y	Yielded	P_u	Ratio to	Ratio to
		mm	rad	kN	material	kN	$\text{Test}(P_y)$	$\text{Test}(P_u)$
Test		63.7	1/51	512.9	Steel beam(Bending)	594.9	-	-
Analysis by Design value		77.8	1/42	486.5	Steel beam(Bending)	-	0.95	-
	Case1	56.3	1/58	548.4	Steel beam(Shear)	606.6	1.07	1.02
Dest Amelysis	Case2	55.0	1/59	550.2	Steel beam(Shear)	606.6	1.07	1.02
Post-Analysis	Case3	55.1	1/59	536.3	Steel beam(Shear)	592.5	1.05	1.00
	Case4	55.1	1/59	536.3	Steel beam(Shear)	563.7	1.05	0.95

表 4.4-7 特性値の比較

4. 4. 2. 3 No.3-片側モルタルあり-24DP

表 4.4-8 に解析ケースを示す。Case1 と Case2 での違いは、引張接合部の挿入鋼板に作用する曲げモー メントの影響を考慮し、パネルゾーンの降伏せん断耐力を割増しているかどうかである。

	鉄骨はりの	の剛性低下率	引張接合部
	曲げ性能	せん断性能	M_{pl}
Case1	0.001	0.015	×
Case2	0.001	0.015	0

表 4.4-8 解析ケース

図 4.4-9 に試験体全体のせん断力・層間変形関係について解析結果と実験結果との比較と、終局時の応力 状態を示す。青の実線が設計値を用いた解析結果である。Case2 のモルタルあり側の剛性がやや高いが、 概ね実験結果と整合した。最大耐力については、実験の方が高くなった。これは、鉄骨はりの曲げ降伏後の ひずみ硬化により耐力が上昇したことが一因として考えられる。

参考として、実験結果、設計値を用いた解析結果、事後解析結果における Pyと Puを比較する。実験結果 の Pyはいずれかの部材が降伏した点、Puは包絡線を完全弾塑性置換して算出した値とした。設計値を用い た解析結果および事後解析結果の Pyはいずれかの部材が降伏した点とし、事後解析結果の Puは鉄骨はり が曲げ降伏した点とした。表 4.4-9 に特性値を比較した結果を示す。事後解析結果も設計値を用いた解析も 実験結果と同程度の性能となった。これは、試験体の設計が鉄骨はりの性能で決まっており、鉄骨はりは基 準値に対して実際の材料特性のばらつきが小さいことが一因として考えられる。

			δ_y	R_y	P_y	Yielded	P_u	Ratio to	Ratio to
			mm	rad	kN	material	kN	$\operatorname{Test}(P_y)$	$\text{Test}(P_u)$
Test		Lower	27.1	1/62	622.5	Steel beam(Shear)	710.7	-	-
lest		Upper	27.5	1/61	612.6	Steel beam(Shear)	691.7	-	-
		Lower	20.7	1/81	528.3	Steel beam(Bending)	-	0.85	-
	n value	Upper	20.7	1/81	567.1	Steel beam(Bending)	-	0.93	-
	Casal	Lower	14.5	1/115	417.6	Steel beam(Shear)	606.7	0.67	0.85
Post-Analysis	Casel	Upper	14.5	1/115	451.0	Steel beam(Shear)	635.9	0.74	0.92
	Case2	Lower	19.7	1/85	567.4	Steel beam(Shear)	594.2	0.91	0.84
		Upper	19.7	1/85	612.8	Steel beam(Shear)	648.5	1.00	0.94

表 4.4-9 特性値の比較

4. 4. 2. 4 No.4-面タッチあり-24DP

表 4.4-10 に解析ケースを示す。No.4 では挿入鋼板にひずみゲージを貼ることができていないため、挿入 鋼板に作用する曲げモーメントの影響を考慮した Case の解析は実施していない。

表 4.4-10 解析ケース

	鉄骨はりの	の剛性低下率	引張接合部
	曲げ性能	せん断性能	M_{pl}
Case1	0.001	0.015	×

図 4.4-10 に試験体全体のせん断力・層間変形関係について解析結果と実験結果との比較と、終局時の応力 状態を示す。青の実線が設計値を用いた解析結果である。解析における二次剛性が実験よりも低くなった。 これは、前述のように引張接合部にもせん断力が作用し、曲げモーメントが生じていた影響が一因として 考えられる。

参考として、実験結果、設計値を用いた解析結果、事後解析結果における *Py*と *Pu*を比較する。実験結果 の *Py*はいずれかの部材が降伏した点、*Pu*は包絡線を完全弾塑性置換して算出した値とした。設計値を用い た解析結果および事後解析結果の *Py*はいずれかの部材が降伏した点とし、事後解析結果の *Pu*は鉄骨はり が曲げ降伏した点とした。表 4.4-11 に特性値を比較した結果を示す。No.3 と同様に、事後解析結果も設計 値を用いた解析も実験結果と同程度の性能となった。これは、試験体の設計が鉄骨はりの性能で決まって おり、鉄骨はりは基準値に対して実際の材料特性のばらつきが小さいことが一因として考えられる。

			-						
		δ_y	R_y	P_y	Yielded material	P_u	Ratio to $Test(P_y)$	Ratio to Test(P_u)	
			mm	rad		kN			kN
Test		Lower	22.2	1/75	567.2	Steel beam(Shear)	697.1	-	-
		Upper	22.3	1/75	565.1	Steel beam(Shear)	666.6	-	-
Analysis by Design value		Lower	21.2	1/79	574.8	Steel beam(Bending)	-	1.01	-
		Upper	21.2	1/79	574.8	Steel beam(Bending)	-	1.02	-
Post-Analysis	Case1	Lower	14.3	1/117	434.0	Steel beam(Shear)	621.4	0.77	0.89
		Upper	14.3	1/117	434.0	Steel beam(Shear)	621.4	0.77	0.93

表 4.4-11 特性値の比較

4. 4. 2. 5 No.5-片側モルタルあり-16DP

表 4.4-12 に解析ケースを示す。Case1 と Case2 での違いは、引張接合部の挿入鋼板に作用する曲げモー メントの影響を考慮し、パネルゾーンの降伏せん断耐力を割増しているかどうかである。

	鉄骨はりの	引張接合部	
	曲げ性能	せん断性能	M_{pl}
Case1	0.001	0.015	×
Case2	0.001	0.015	0

表 4.4-12 解析ケース

図 4.4-11 に試験体全体のせん断力・層間変形関係について解析結果と実験結果との比較と、終局時の応力 状態を示す。青の実線が設計値を用いた解析結果である。Case2 では解析の耐力がやや低いが、実験結果 と概ね整合した。耐力が低くなったのは、鉄骨はりの曲げ降伏後のひずみ硬化により耐力が上昇したこと が一因として考えられる。

参考として、実験結果、設計値を用いた解析結果、事後解析結果における Pyと Puを比較する。実験結果の Pyはいずれかの部材が降伏した点、Puは包絡線を完全弾塑性置換して算出した値とした。設計値を用いた解析結果および事後解析結果の Pyはいずれかの部材が降伏した点とし、事後解析結果の Puは鉄骨はりが曲げ降伏した点とした。表 4.4-13 に特性値を比較した結果を示す。No.3、No.4 と同様に、事後解析結果も設計値を用いた解析も実験結果と同程度の性能となった。これは、試験体の設計が鉄骨はりの性能で決まっており、鉄骨はりは基準値に対して実際の材料特性のばらつきが小さいことが一因として考えられる。

			δ_y	R_y	P_y	Yielded material	P_u	Ratio to $Test(P_y)$	Ratio to Test(P_u)
			mm	rad	kN		kN		
Test		Lower	23.3	1/72	562.9	Steel beam(Shear)	681.7	-	-
		Upper	24.2	1/69	631.3	Steel beam(Shear)	770.2	-	-
Analysis by Design value		Lower	21.6	1/77	519.3	Steel beam(Bending)	-	0.92	-
		Upper	21.6	1/77	578.1	Steel beam(Bending)	-	0.92	-
Post-Analysis	Case1	Lower	15.2	1/110	409.8	Steel beam(Shear)	597.3	0.73	0.88
		Upper	15.2	1/110	461.6	Steel beam(Shear)	645.1	0.73	0.84
	Case2	Lower	19.2	1/87	517.7	Steel beam(Shear)	579.7	0.92	0.85
		Upper	19.2	1/87	583.1	Steel beam(Shear)	663.0	0.92	0.86

表 4.4-13 特性値の比較

4.4.2.6 応力状態の比較

ここでは、各試験体の実験結果と解析結果において同程度の水平力が作用したときの応力状態を比較す る。実験結果においては 1/100rd 時の曲げモーメント図とし、そのときと同程度の水平力が作用した時の 解析における曲げモーメント図との比較を図 4.4-12、4.4-13 に示す。テンション材タイプの No.1、No.2 に ついては、Case4 の結果、ドリフトピンタイプの No.3、No.5 は Case2 の結果、No.4 については Case1 の 結果を示す。図中の単位を記載していない数値は曲げモーメントで、単位は kNm である。解析結果の曲げ モーメントは、実験でひずみゲージを取り付けた箇所と同じ位置における値である。

テンション材タイプでは、特にテンション材に作用する引張力を比較すると、実験結果に比べて解析結 果の方が大きくなった。これは、実験ではテンション材を留付けるガセットプレートやテンションロッド のターンバックル等にも引張力が作用することで、テンション材以外の部材にもひずみが生じていたため と考えられる。また、鉄骨はりの曲げモーメントをみてみると、実験結果と解析結果のどちらも下側のはり の曲げモーメントが上側はりの曲げモーメントよりも大きくなるという傾向が概ね一致した。

一方、ドリフトピンタイプでは、鉄骨はりに作用した曲げモーメントが実験結果と比較して、解析結果の 方が低くなった。これは解析モデルでは、加力点から鉄骨はり芯位置までの距離ではなく、加力点から CLT 壁の端までの距離が CLT 壁に作用する際のうでの長さとなり、うでの長さが短くなっているためと考えら れる。

図 4.4-12 テンション材タイプの応力状態の比較 単位[kNm]

4.4.3 まとめ

実大静加力実験の挙動追跡を目的として、有限要素解析による静的増分解析を実施した。解析モデルの 一部は、実大実験結果を参照し特性を決定した。いずれの試験体も実験結果より設計値を用いた解析結果 が低くなった。これは基準値(特に CLT)が実際の材料特性よりも低いためと考えられる。また、鉄骨は りや CLT の材料特性を適切に把握できれば、実験結果を精度よく追跡できることを確認した。しかし、解 析結果と実験結果の最大耐力でわずかに差異が生じた。これはテンション材の引張降伏後の二次剛性や鉄 骨はりの曲げ降伏後の二次剛性がひずみ硬化の影響により増大したことが一因として考えられ、これらの 影響を適切に評価することができれば、さらに精度よく実験結果を再現することができると推察できる。

4.5 まとめ

本章では、CLT 耐力壁と鉄骨はりとの併用構造の設計法の提案と妥当性の確認を目的に、実験的、解析 的な検証を行った。試験体は、CLT パネル工法から派生したテンション材を用いたタイプと、鉄骨ラーメ ン構造の柱部分を CLT 壁に置換し、CLT 壁と鉄骨はりをドリフトピン接合するタイプを用意し、試験に供 した。先行研究を参考に目標性能を設定し、CLT 壁と鉄骨はりの断面の組み合わせを検討した結果、CLT の曲げ性能およびせん断性能が基準強度に対して、それぞれ 80%、70%発揮されるような断面の組み合わ せとなった。本実験で得られた知見を以下に示す。

- すべての試験体で目標性能以上の耐力が得られ、CLT 壁が発揮したせん断性能は基準強度に対して約 70%となり、従来の CLT パネル工法と比較して、テンション材タイプで約2倍、ドリフトピンタイプ で約4倍となり、CLT パネル工法よりも壁量を減らすことのできる可能性が示唆された。
- テンション材タイプの性能に大きな違いはなく、これはテンション材の降伏後のひずみ硬化の影響で、 降伏後も性能が低下しなかったためと考えられる。
- 3) ドリフトピンタイプも性能に大きな違いはなかったが、これはすべての試験体で鉄骨はりの曲げ降伏により性能が決まっており、接合部設計を適切に行えば、全体崩壊形の構造が実現できる可能性が示唆された。
- 4) 構造特性係数 *D*sについては、テンション材タイプで *D*s=0.32 となり、従来の CLT パネル工法と同等 の性能となった。一方で、ドリフトピンタイプでは *D*s=0.20 となり、鉄骨造と同等の性能となった。

以上のことから、適切な断面の組み合わせと接合部を検討することで、CLTの性能を有効に活かすこと ができる構造を実現できる可能性が示唆され、提案した設計方法の妥当性を確認した。さらに、構造特性係 数もCLTパネル工法と同等以上となり、十分な変形性能を有する構造を実現できた。

また、実大静加力実験の挙動追跡を目的として、有限要素解析による静的増分解析を実施した。解析モデ ルの一部を、実大実験結果を参照し特性を決定した場合に解析結果と実験結果が概ね整合した。したがっ て、鉄骨はりや CLT の材料特性を適切に把握できれば、実験結果を精度よく追跡できることを確認した。 しかし、解析結果と実験結果の最大耐力でわずかに差異が生じた。これはテンション材の降伏後の二次剛 性や鉄骨はりの曲げ降伏後の二次剛性がひずみ硬化の影響により増大したことが一因として考えられ、こ れらの影響を適切に評価することができれば、さらに精度よく実験結果を再現することができると推察で きる。

参考文献

4-1) 公益財団法人日本住宅・木材技術センター: 2016 年版 CLT を用いた建築物の設計施工マニュアル、 2016.10

4-2) 青木博文:構造設計のプロ入門(鉄骨造建築編)、日本建築センター、2009.4

4-3) 全国官報販売協同組合: 2020 年版 建築物の構造関係技術基準解説書、2021.7

4・4) 中島昌一、三木徳人、秋山信彦、荒木康弘:鋼板挿入ドリフトピン接合部の最大耐力、降伏耐力および初期剛性の推定と実験による検証、日本建築学会構造系論文集、第86巻、第783号、pp.793-803、2021.5
4・5) 鉄骨床梁を併用した CLT パネル耐力壁等の開発 検討委員会 打ち合わせ資料、2021.7

4-6)高橋泰彦、品部祐児: せん断降伏型薄鋼板の復元力特性に関する実験的研究、日本建築学会構造系論 文集、第494号、pp.107-114、1997.4

第5章 モデル設計の解析

5. 1 モデル設計の解析

5. 1. 1 モデル設計1 4階建て共同住宅の構造解析と構造図

- (1) モデル設計1の解析条件
- ・試設計として検討する解析条件(X方向)
- Ds 算定時 : <u>TR 破断しない時点</u> 又は <u>層間変形角 1/50 rad 時</u>

→TRの有効伸び10%(=0.1×Lb)時に,

破断強度(=Fu×A)に達する時点

ここに, Lb: 有効長さ

Fu : 引張強さ

- A:断面積
- 保有水平耐力時:層間変形角 1/100 rad 時若しくは1階パネル曲げ破壊時
 - →鉄骨梁 端部降伏, CLT 壁 端部, TR の降伏は許容する
- せん断接合部 : <u>Ds 算定時応力</u>に対して<u>終局耐力 Pu</u>にて本数算定 (保証設計)

・試設計として検討する解析条件(Y方向)

- Ds 算定時 :告示第 611 号第八の規定より,<u>Ds=0.75</u>とする
- 保有水平耐力時:層間変形角 1/100 rad 時若しくは1階パネル曲げ破壊時
- せん断接合部 : <u>必要保有水平耐力時応力</u>に対して<u>終局耐力 Pu</u>にて本数算定 (保証設計としない)
- Y 方向は、耐力壁の量が多いいことから、増分解析結果から Ds を求めて保有耐力を設定した場合に、耐力 壁パネル上下のせん断接合部の設計が厳しくなりすぎるので、上記の解析条件としている。
- (2) モデル設計1の解析モデル概要
- ・使用プログラム:SNAP Ver.8 (株)構造システム
- ・床面 : 剛床(=床鉄骨フレーム+床ブレース)
- ・梁復元力特性 : バイリニア(剛性低減型)

モデル概要及びTR(テンション材)の復元力特性について以下に示す。

	壁パネル強度等級
4 階	\$90-5-5
3 階	\$90-5-5
2 階	S120-5-5
1 階	S120-5-5

表 5.1-1 CLT の強度等級

H-244x175 (SN400B) H-244x175 TR M27 (SN400B) (SNR400B) H-294x200 TR M33 (SN400B) (SNR400B) H-340x250 TR FB-100x16 (SN400B) (SN400B) H-340x250 TR FB-100x19 (SN400B) (SN490B) ここに Pu:破断耐力 = 引張強度×断面積 Py:降伏耐力 =基準強度×断面積 δy:降伏変位

δu:破断変位 =0.1×有効長さ

図 5.1-1 モデル設計1の解析モデル

符号	δy (mm)	δu (mm)	Py (kN)	Pu (kN)
4TR : M27	2.19	191	112.6	191.6
3TR : M33	1.98	173	169.9	289.2
2TR : FB-100x16	2.52	220	376.0	640.0
1TR : FB-100x19	3.33	210	617.5	931.0

表 5.1-2 TR (テンション材)の構成

(3) 解析結果まとめ

(1)1 次設計

		,		
階	Χ+	Х-	Y+	Y–
4F	1/500	1/498	1/3199	1/2962
3F	1/436	1/436	1/2638	1/2535
2F	1/473	1/473	1/2582	1/2484
1F	1/609	1/608	1/2484	1/2445

表 5.1-3 層間変形角 (rad)

X 方向 Y 方向共に 1/200 以下である。

各パネル及び接合部は、短期許容応力度以下を確認している。

② 2 次設計

•Ds 算定結果

図 5.1-4 Ds 算定時(X-)

上記より、Ds=0.52とする。

•Q-δ関係図

図 5.1-5 Q-δ関係図(X+)

図 5.1-6 Q-δ関係図(X-)

図 5.1-7 Q-δ関係図(Y+)

図 5.1-7 Q-δ関係図(Y-)

上記より,正加力は1階パネル曲げ破壊時点,負加力は層間変形角1/100 rad 時点を保有水平耐力とした。

・保有水平耐力の判定

方向	階	Ds	Fes	Qud(kN)	Qun(kN)	Qu(kN)	Qu/Qun	判定
X+	4	0.52	1.00	1,129.5	587.3	632.0	1.08	OK
	3	0.52	1.00	2,278.6	1,184.9	1,280.0	1.08	OK
	2	0.52	1.00	3,120.5	1,622.7	1,750.0	1.08	OK
	1	0.52	1.00	3,813.1	1,982.8	2,130.0	1.07	OK
	4	0.52	1.00	1,129.5	587.3	632.0	1.08	OK
	3	0.52	1.00	2,278.6	1,184.9	1,280.0	1.08	OK
	2	0.52	1.00	3,120.5	1,622.7	1,750.0	1.08	OK
	1	0.52	1.00	3,813.1	1,982.8	2,130.0	1.07	OK
Y+	4	0.75	1.00	1,129.5	847.1	1,890.0	2.23	OK
	3	0.75	1.00	2,278.6	1,708.9	3,810.0	2.23	OK
	2	0.75	1.00	3,120.5	2,340.4	5,220.0	2.23	OK
	1	0.75	1.00	3,813.1	2,859.8	6,380.0	2.23	OK
	4	0.75	1.00	1,129.5	847.1	1,960.0	2.31	OK
V-	3	0.75	1.00	2,278.6	1,708.9	3,960.0	2.32	OK
-	2	0.75	1.00	3,120.5	2,340.4	5,420.0	2.32	OK
	1	0.75	1.00	3,813.1	2,859.8	6,630.0	2.32	OK

表 5.1-4 保有水平耐力の判定

上記より, Qu/Qun≧1.0を満足していることを確認した。

5.1.2 モデル設計2 4階建て事務所の構造解析と構造図

- (1) モデル設計2の解析条件
- ・試設計として検討する設計法
- Ds 算定時 : <u>TR 破断しない時点</u>又は <u>層間変形角 1/50 rad 時</u> →TR の有効伸び 10%(=0.1×Lb)時に,

破断強度(=Fu×A)に達する時点

ここに, Lb: 有効長さ

Fu:引張強さ

```
A:断面積
```

- 保有水平耐力時:<u>1/75 rad 時</u>
 - →鉄骨梁 端部降伏, CLT 壁 端部の支圧降伏は許容する
- せん断接合部 : <u>Ds 算定時応力</u>に対して<u>終局耐力 Pu</u>にて本数算定

(保証設計)

- (2) モデル設計2のモデル概要
- ・使用プログラム:SNAP Ver.8 (株)構造システム
- ・床面 : 剛床(=床鉄骨フレーム+床ブレース)
- ・梁復元力特性 : バイリニア(剛性低減型)

モデル概要及び TR の復元力特性について以下に示す。

表 5.1-5 CLT の強度等級

	壁パネル強度等級
4 階	S90-5-7
3 階	S90-5-7
2 階	S90-5-7
1 階	S90-5-7

図 5.1-8 モデル設計2の解析モデル

図 5.1-9 せん断接合部と1 階鋼と基礎間の納まり

表 5.1-6 TR (テンション材)の構成

符号	δy (mm)	δu (mm)	Py (kN)	Pu (kN)
4TR : 2-FB-200x12	3.60	314	1128.0	1920. 0
3TR : 2-FB-200x12	3. 21	280	1128. 0	1920. 0
2TR : 2-FB-200x12	3. 21	280	1128.0	1920. 0
1TR : 2-FB-200x12	3. 21	280	1128.0	1920. 0

(3) 解析結果まとめ

① 1次設計

階 X+ X- Y+ 4F 1/581 1/623 1/511	Y-
4F 1/581 1/623 1/511	4 / 405
	1/435
3F 1/486 1/516 1/418	1/371
2F 1/411 1/433 1/369	1/337
1F 1/366 1/384 1/351	1/326

表 5.1-7 層間変形角 (rad)

X方向Y方向共に1/200以下である。

各パネル及び接合部は、短期許容応力度以下を確認している。

② 2次設計

・Ds 算定結果

図 5.1-10 Ds 算定時(X+)

図 5.1-11 Ds 算定時(X-)

上記より、X+加力時は Ds=0.68, X-加力時は Ds=0.66 とする。

図 5.1-12 Ds 算定時(Y+)

上記より、Y+加力時はDs=0.55, Y-加力時はDs=0.56とする。

•Q-δ関係図

図 5.1-14 Q-δ関係図(X+)

図 5.1-15 Q-δ関係図(X-)

上記より、層間変形角 1/75 rad 時点を保有水平耐力とした。

図 5.1-16 Q-δ関係図(Y+)

図 5.1-17 Q-δ関係図(Y-)

上記より、層間変形角 1/75 rad 時点を保有水平耐力とした。

・保有水平耐力の判定

表 5.1-8 保有水平耐力の判定

方向	階	Ds	Fes	Qud(kN)	Qun(kN)	Qu(kN)	Qu/Qun	判定
X+	4	0.68	1.00	1,385.2	942.0	1,050.0	1.11	OK
	3	0.68	1.00	2,702.6	1,837.7	2,060.0	1.12	OK
	2	0.68	1.00	3,629.5	2,468.1	2,760.0	1.12	OK
	1	0.68	1.00	4,249.7	2,889.8	3,230.0	1.12	OK
	4	0.66	1.00	1,385.2	914.3	1,090.0	1.19	OK
×-	3	0.66	1.00	2,702.6	1,783.7	2,130.0	1.19	OK
	2	0.66	1.00	3,629.5	2,395.5	2,860.0	1.19	OK
	1	0.66	1.00	4,249.7	2,804.8	3,350.0	1.19	OK
Y+	4	0.55	1.00	1,385.2	761.9	813.0	1.07	OK
	3	0.55	1.00	2,702.6	1,486.4	1,580.0	1.06	OK
	2	0.55	1.00	3,629.5	1,996.2	2,130.0	1.07	OK
	1	0.55	1.00	4,249.7	2,337.3	2,490.0	1.07	OK
	4	0.56	1.00	1,385.2	775.7	812.0	1.05	OK
	3	0.56	1.00	2,702.6	1,513.4	1,580.0	1.04	OK
	2	0.56	1.00	3,629.5	2,032.5	2,120.0	1.04	OK
	1	0.56	1.00	4,249.7	2,379.8	2,490.0	1.05	OK

上記より、Qu/Qun≧1.0を満足していることを確認した。

5. 2 モデル設計2の積算

5.2.1 モデル設計2の鉄骨床梁併用 CLT パネルエ法とRCラーメン構造との工事費比較

(1) モデル設計 2 と RC ラーメン構造の平面図比較

RC ラーメン構造の事務所ビルは、モデル設計2と床面積、階数を等しくして計画している。

軒高は、納まりの関係から RC ラーメン構造が 15.00m、モデル設計 2 が 15.43mとしており多少異なって りる。

図 5.2-2 RCラーメン構造の平面図

(2) 積算比較

モデル設計2の鉄骨床梁併用CLTパネル工法の工事費を100とした場合に、RC造事務所ビルの工事費は70程度であった。

RC造事務所ビルに対して約1.4倍の工事費となっていた。

図 5.2-3 の工事費比較から CLT パネル工法の工事費をコストアップさせている主な要因は、1 時間耐火仕様とするために木部を被覆するために用いる大量のせっこうボードの工事費、木造により構成する各階床組の工事費、および、耐力壁パネル上下に配置した鉄骨床梁の工事費が上げられる。

図 5.2-3 鉄骨床梁併用 CLT パネルエ法と RC ラーメン構造の工事費比較

また、CLT パネル工法がコストアップとなる要因としては、2019 年から比べて 2022 年の鋼材価格は、 およそ 1.25 倍なっており、想定できない高騰が生じていること。および、鉄骨工事と床、壁の木工事の単 価設定を行う場合に、工事実績からデータ化して設定された標準単価がないため、高めな設定としたこと が挙げられる。

工事実績に基ずく材工単価設定が行われ、かつ、鋼材の値が落ち着くことを条件として工事費を考慮すると、実際には、RC 造に比べて 1.2 倍~1.3 倍程度の工事費になると想定される。

5.3 まとめ

本事業において構造解析と実験で性能を確認した架構システムは、解析モデルが単純で CLT になじみの ない構造設計者でも設計しやすいものとなっている。比較的耐力壁の多い建物の場合は、モデル設計 1 を 参考とし、耐力壁が少なく大きな耐力を要求される建物には、モデル設計 2 を参考として設計をすること で、CLT パネル工法に不慣れであっても構造を成立させることができる架構システムとして展開可能なもの となっている。

本事業における試設計は、平28国交告第611号の第八の規定に従って計算を実施したが、本事業の実験 結果を反映した構造特性係数Dsなどの各種数値の採用ができれば、より合理性の高い設計法として確立で きる可能性があり、実験結果の採用に向けての取り組みを今後継続していくことが課題となる。

さらに、モデル設計は実施していないが、鉄骨梁と耐力壁パネルをドリフトピンで緊結し、モデル設計2 の耐力壁よりさらに高い耐力で設計できる架構システムを検証していることから、今後、建物としての試 設計を行い、解析モデルを確立することで実用に使用できる設計法として展開させる取り組みを行うこと が課題としてある。

上記の課題に対応できた段階で各タイプの架構システムの設計法を、マニュアルのような図書として作 成し公開すれば、意匠設計者、構造設計者が CLT を用いた建築物を設計しやすい環境が整備されことにな り、CLT の普及が進むことが期待できる。

工事費については、今後、実物件として本架構システムを用いた中層の建物が設計、施工されることで設計、施工に対する知見が集まり、本事業の試設計で採用した仕様とは異なるコストダウン可能な仕様や施工合理化の提案がされ、実際に施工されることで、時間とともにそれらの提案の中からスタンダードな仕様が収束していき、適正な施工単価となっていくことが想定される。その時点では、RC 造と比べて多少高い程度の工事費となると想定される。

第6章 耐火試験

6.1 目的

告示で示された1時間耐火の仕様の場合は、原則木材の壁、木材の床を使用することが求められている。 しかし、告示の1時間耐火の仕様としてどのような影響があるかを確認するために、品質性能試験を実施 した。告示に基づき外壁の評価をする上では、内壁側については試験する必要がないため、今回は外壁の仕 様のみでの試験とした。

6.2 試験概要

6.2.1 試験体

試験体の仕様を図 6.2.1-1、図 6.2.1-2 にて示す。CLT 壁パネルに厚さ 150mm を用いて、鉄骨梁を介 して上下に CLT 壁パネルを設置した。告示の 1 時間耐火の仕様として、外装部に ALC 厚さ 50mm、強 化せっこうボード厚さ 15mm で被覆した。

図 6.2.1-2 試験体概要図(詳細図)

第6章-2

6.2.2 実験方法

加熱試験は、(一財)建材試験センター中央試験場にて実施した。また試験方法については、(一財)建 材試験センターが定めた「防耐火性能試験・評価業務方法書」に基づいた試験とし、目標とする加熱時間 は、60分間(試験時間 240 分以上)とした。加熱面は屋外側である。

内部温度測定位置を図 6.2.2-1、加熱温度、裏面温度及び面外方向たわみ測定位置を図 6.2.2-2 に示す。

図 6.2.2-1 内部温度測定位置

凡 例
● 印 加熱温度測定位置(12点)
R1~R17 裏面温度測定位置
DG1~DG3 面外方向たわみ測定位置

図 6.2.2-2 加熱温度、裏面温度及び面外方向たわみ測定位置

6.3 試験結果

加熱温度測定結果を図 6.3-1~図 6.3-4 に示す。また試験状況の写真を写真 6.3-1~写真 6.3-5 に示す。 試験結果として、裏面温度の最高温度は、98℃となり、規定値 209℃を超えることはなかった。また試験 後の観察において、被覆材をはがし、内部の CLT の表面を確認したところ、CLT の炭化は認められなかっ た。

図 6.3-2 裏面温度測定結果

図 6.3-3 内部温度測定結果(参考)

図 6.3-4 面外方向たわみ測定結果(参考)

写真 6.3-1 試験前の裏面側(屋内側)の状況

写真 6.3-2 試験前の加熱側(屋外側)の状況

写真 6.3-3 試験後の裏面側(屋内側)の状況

写真 6.3-4 試験後の加熱側(屋外側)の状況

写真 6.3-5 試験後の試験体内部の状況

(屋外側より、ALC パネル、強化せっこうボード及びグラスウールを取り外した状況)

6.4 まとめ

告示で示された1時間耐火の仕様に鉄骨梁をいれた場合の影響を確認するために、品質性能試験を実施 した。

試験結果より、告示の1時間耐火の性能に鉄骨梁をいれたことによる性能の影響はないと確認できた。

第7章 まとめ

令和 3 年度は、前年度からの継続として集合住宅モデルプランを構造解析し構成している鉛直構面が成 立していること、及び、各部位の接合部設計が問題なく設計可能なことを確認するとともに、CLT パネル 耐力壁の構造性能をより有効に機能させることが必要となる事務所ビルモデルプランを設計し、構造解析 を実施し構造的の問題なく成立することを確認することにした。

また、事務所の鉛直構面の構成では、高耐力を実現するために CLT を 7 層 7 プライとしフラットバーに よるテンション材を用いているので、耐力壁の挙動が解析と整合するか確認の実験、および、さらに高い構 造性能を実現するための仕様の開発のためにドリフトピン接合による実験を実施することにした。なお、 このドリフトピンを用いた仕様は鉄骨ラーメン構造の鉄骨柱を CLT に置き換えた構造を想定しており、鉄 骨造に慣れた設計者であれば、容易に設計が可能となることを意図した。

これらの構造システムを用いて、住居系でない多用途な中層大規模建築物に対して合理的な設計方法を 情報発信することで、CLT パネル利用の拡大と CLT パネル工法の普及を図ることを主眼に置いている。ま たコストについてもたびたび指摘されるところであり、建築コストの検討も加えた。

検討の結果、現在の CLT パネル工法のルート1 やルート3 の試設計の壁耐力に対して、鉄骨ばりを用いることにより最大約4倍の性能とすることが可能であることを、実験的、さらには解析的にも明らかにした。これは CLT の高い性能を活かすものである。

なお、今後の課題もいくつかあり、普及促進を加速度的に図るためには以下の整理が必要と考えている。

- ・高耐力を有することを実験で確認しているドリフトピン接合による架構システムを用いた中層の設計例 を作成。
- ・構造解析と実験で性能を確認した架構システムは、CLT になじみのない構造設計者でも設計しやすいものであることから、この構造形式を普及させるための課題として以下の2つが課題となる。
- ① ドリフトピン接合を用いた鉄骨床梁を併用した CLT パネル工法建築物の設計手法の提案、設計に用いる Ds など各種数値の整備
- ② 鉄骨床梁を併用した CLT パネル工法建築物の設計手法の提案、設計に用いる Ds など各種数値の整備、設計汎用ソフトへの適用

①の解決により、技術力のあるゼネコンや設計事務所が個別建物に対応した多少の実験を追加し、市販 の数値解析ソフトによって設計が可能となると考えられる。さらに②によって、一般の構造者が設計しや すい環境を整備することができる。

第7章-1