CLT等新たな木質建築部材利用促進・定着委託事業 のうち国による開発

事業報告書

平成31年3月

一般社団法人 日本CLT協会

CLT等新たな木質建築部材利用促進・定着委託事業のうち国による開発

目次

第1章 事業概要 ······1
1.1 事業実施の目的・・・・・・・・・・・・・・・・・・・・・・1
1.2 事業内容・・・・・・
1.3 委員名簿・・・・・2
第2章 検討方針・・・・・3
2.1 現行規定と合理化検討方針 ・・・・・・・・・・・・・・・3
2.2 有開口耐力壁のモデルの設定 ・・・・・・・・・・・・・・4
2.3 水平加力試験方法の検討 ・・・・・・・・・・・・・・・・15
第3章 試験概要と試験結果と考察・・・・・・・・・・・・・・・・・・・・・・・・・・22
3.1 試験概要・・・・・・22
3.2 試験体図と接合金物 ・・・・・・・・・・・・・・・・・・・・26
3.3 試験体の設置要領・・・・・・・・・・・・・・・・・・・・・・34
3.4 水平加力試験結果と考察・・・・・・・・・・・・・・・・・・・・・・・42
3.5 供試CLTのせん断性能を参考で確認するための
4 点曲げ試験・・・・・・・・・・・・・・・・・・・・・・・・・・・.76
3.6 CLTの圧縮試験・・・・・・・・・・・・・・・・・・・・・・86
第4章 プログラムでの解析結果と柱脚金物耐力を考慮した断面検定・・・・100
4.1 プログラムによる解析結果とまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.2 柱脚金物終局耐力時の水平力による壁断面検定・・・・126
第5章 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・127

5.1	検討結果の考察・・・・・127
5.2	有開口耐力壁の設計法の提案・・・・・・・・・・128

資料1 委員会議事録

第1章 事業概要

1.1 事業実施の目的

CLTパネル工法建築物の耐力壁パネル・床パネル・屋根パネルに開口を設ける 場合は、CLTパネル工法技術基準告示で、パネルの剛性や耐力の低減について特 別な調査・研究結果に基づいて算出し、構造安全性を確認することが求められている。 現状、これに対応して公開されている設計法は適用できるケースが少なく、煩雑な 設計と高度な計算が必要で、設計者の大きな負担となっている。特に、壁に設備配 管用の小開口等を設ける場合において大きな課題となっている。

そこで、本事業において、告示で求められているパネルの剛性や耐力の低減につい ての特別な調査・研究として、実験や解析を実施し、小開口付パネルの適切かつ簡便 な設計法を開発することにより設計における負担を軽減し、CLTパネル工法建築物 の普及促進を図ることを目的とする。

1.2 事業内容

小開口を設けたCLTパネルの構造特性を、実験や解析によって把握し、剛性・耐 力に影響のない開口サイズ及び配置等を規定する。低減が必要となる条件及び計算と なった場合は合理化案を開発する。

① 小開口を設けたCLTパネルの実大水平加力試験

数種類の実大の小開口付CLTパネルの試験体を製作し、水平加力試験を行い耐力・剛性を把握する。

② 小開口を設けたCLTパネルの構造解析プログラムによるシミュレーション

プログラムによる構造(シェルモデル)解析を行い、構造安全性を確認する。

③ 試験及びシミュレーション結果に基づく計算合理化案の検討・開発

実験・シミュレーションにより小開口とCLTパネルの関係性において、耐力・ 剛性に関する規則性を検討し、結果を元に設計法を開発する。

④ CLT工法建築物関連書籍等による設計法の公開と各種CLT関連講習会時におけ る紹介

CLTを解説している書籍等に開発結果を掲載することで、一般に公開する。また、日本CLT協会によるCLT関連の講習会等でも紹介し、成果の普及を図る。

1.3 有開口耐力壁開発委員会委員名簿

(敬称略、順不同)

委員長	神谷 文夫	セイホク株式会社
委員	五十田 博	京都大学 教授
	植松 武是	北海学園大学教授
	荒木 康弘	国土交通省国土技術政策総合研究所
	野田 康信	国立研究開発法人 森林研究・整備機構 森林総合研究所
	鈴木 圭	公益財団法人 日本住宅木材・技術センター
	岡部 実	一般財団法人 ベターリビング
協力委員	梅森浩	大成建設株式会社
	大橋修	三井ホーム株式会社
	渡邊 須美樹	株式会社木構研
	車田 慎介	銘建工業株式会社
コンサル	中越隆道	中越建築設計事務所
	戸田 淳二	株式会社中央設計
行 政	福島純	林野庁 林政部木材産業課
事業主体	坂部 芳平	一般社団法人日本CLT協会
	河合 誠	一般社団法人日本CLT協会
	小玉 陽史	一般社団法人日本CLT協会
	伴勝彦	一般社団法人日本CLT協会

第2章 検討方針

2.1 現行規定と設計法の検討方針

CLTパネル工法の技術基準告示第 611 号では、開口について第十第2項第二において 規定しており、設けられる開口は、告示第 611 号第四床版第二号ハの矩形パネルに設ける 開口に該当することが定められている。以下に告示の該当部分を記載する。

「<u>第四床版第二号ハ</u> 形状が矩形であるものに開口部等を設けたもので、かつ、当該パ ネルの剛性及び耐力の低減について特別な調査又は研究の結果に基づき算出した上で構造 耐力上主要な部分として構造計算を行うもの」と規定している。

また、開口を設ける箇所と大きさは、第十構造計算(ルート1)第2項第二で以下の規定 としている。

「<u>第十構造計算(ルート1)第2項第二</u>耐力壁として設ける無開口壁パネル又は有開口 壁パネルの袖壁部分、垂れ壁部分若しくは腰壁部分に第四第二号ハに該当する開口部等を 設ける場合にあっては、当該開口部等の寸法は、24 センチメートル角以下であること。」

しかし、現行では、ルート1において上記の規定により耐力壁に開口部等を設けたもの で、第四床版第二号ハで規定する「特別な調査又は研究の結果に基づき算出した」開口を 設けた矩形の耐力壁パネル仕様は定められていない。

そのため第十のルート1の構造設計では、開口を有する耐力壁を設計できない状況にあ り、そのことは設計に際して大きな制約を生じさせている。

そこで有開口耐力壁の法的位置付けを、告示第 611 号第五壁等第二号と同様な扱いとす ることとした。

第五壁等第二号では、壁パネルを外層ラミナに長辺方向・短辺方向が平行な矩形パネル として規定しているが、2016年版告示解説書の逐条解説では、告示本文に記載していない 「特別な調査又は研究に該当する」場合として、パネル外周が外層ラミナに対し斜辺を有 していても設計できるとしている。

よって、有開口耐力壁においても、第十第2項第二の逐条解説に「特別な調査又は研究 として、実験による性能確認とそれに対応する理論的評価を行う」ことを追記することで、 これを根拠として、ルート1で設計可能とすることとした。

検討方法は、一般的に耐力壁に設けられる開口を調査し、大きさ、位置、数を特定した 有開口耐力壁モデルを設定し、水平加力試験、4点曲げせん断試験、材料試験による解析、 および、有限要素法によるシェルモデルによる検討、並びに、計算による断面検定を実施 し、ルート1の設計に用いても支障にない開口を有する耐力壁を特定し、設計法を作成す ることとした。

2.7.0LT耐力壁に設ける換気開口位置の検討
 2.45-1 0LT耐力壁に設ける換気開口位置の検討

同種類のレンジフードー永大産業デジタルカタログより

くパターン4で参考にした換気扇(レンジフード)について>

矩計図は4階建であるが、開口位置の検討において中間階は 階数に影響されない位置、寸法であることから 下記のように検討をおこなった。

2.2.2 有開口耐力壁のモデルの設定

有開口耐力壁のモデルは、開口部の実施設計に関する聞き取り内容を参考に実際に 設計される開口位置寸法を検討しモデルを設定した。

(1) Φ250+Φ125(キッチン換気スリーブおよび吸気スリーブを想定)

垂れ壁パネル、腰壁パネルの隅角部に生じる力が、直接開口部に影響しない 納まりを想定する。

◎中央配置 上の開口部は、不利な外端に近い350mm

(実際の設計寸法最小値360mm)で設定している。

(2) Φ125+Φ125(エアコン用スリーブおよび換気用スリーブを想定)

垂れ壁パネル、腰壁パネルの隅角部に生じる力が、直接開口部に影響しない

納まりを想定する。

◎左右配置(逆対象は位置は可)

(3) Φ100+Φ100(給湯器設置個所の周辺に設ける複数の小径スリーブを想定)

: 垂れ壁パネル、腰壁パネルの隅角部に生じる力が、直接開口部に影響しない 納まりを想定する。

◎中央配置

包含する開口で設定する。

有開口耐力壁の検討用モデルは、W2、W3、W4の3ケースに設定する。

モデル名W1は、無開口壁としている。

2.3 水平加力試験方法の検討

2.3.1 試験方法

- (1) ルート1で定められている壁パネルの許容せん断耐力の算定式、および、基準耐力
 Qaを用いて、ルート1で壁パネルが負担すると想定される最大水平力Pmaxを設定し、
 設定した荷重を試験体に作用させる。
- (2) 壁パネルには、実際の建物の壁で作用している軸力を考慮するために定軸力を 載荷する。軸力は、無開口の壁の長期許容支持力Nmaxとする。
- (3) 試験体の脚部接合部は、最大水平力Pmaxを加力した時点で終局耐力とならない脚部接合 金物とする。
- (4) 面内せん断耐力Qmax時点においては、耐力壁パネルの小開口周辺が損傷していないこと および、小開口周辺の歪が許容できると判断できる数値であることを確認する。
- (5) 上記4)を行うことで「実験による性能確認」とする。

2.3.2 ルート1で壁パネルが負担すると想定される最大水平力Pmaxの設定

(1)告示第611号第十第2項第四号で示されているルート1の基準式

Qa=3/H (Q0+1.5n) kN/m ここで、試験体高さH=3.0mより Qa= (Q0+1.5n) kN/mとなる。

2) ルート1で定めている基準耐力Qo

耐力壁の層数2以下用	$Q_0 =$	15	$k \mathrm{N/m}$
耐力壁の層数3用	$Q_0 =$	10	k N/m

(3) 階数ごとで最大となる許容せん断耐力Qa

1)2階建の場合の許容せん断耐力Qaの算定

左図より、nの最大数は、 n= 8 である。 よって、2層の許容せん断耐力は Qa=(15+1.5×8)= 27 kN/mとなる。

2)3階建の場合の許容せん断耐力Qaの算定

(4) 耐力壁のルート1における終局を考慮した場合に想定される最大水平力Pmaxの設定

3層のQaが2層と比較して大きいことから、下記の算定によりPmaxを設定する。

 $Pmax = 28 \times 3/2 \times 1.5 = 63 \qquad k N/m$

上記の式における1.5は、Pmaxを設定するためのPuを想定して設定した比率

(5) 水平加力サイクルの設定

Q a /2	28/2 =	14	k N
Q a		28	k N
Pmax		65	k N

0.8×水平最大加力値(試験の状況により、最大加力の状況を判断する。) 上記の数値を目安にジャッキのキャリブレーションを行うこととする。

2.3.3 水平加力試験における耐力壁の定荷重加力値の設定

(1) 無開口の壁の長期許容支持力Nmaxの設定

有効細長比λ=1	k• (A0/IC)) $^{0.5}$: 115.47	>100より
	Fc =	10.8 N/mm^2	圧縮基準強度
$Fk=~(3000/\lambda^{2})$	\cdot Fc=	2.43 N/mm^2	座屈基準強度

ルート1の計算では、長期負担軸力は許容支持力を超えない確認を行うことから 設計で許容される最大軸力を定載荷軸力と設定している。

2.3.4 壁脚部の接合方法の設定

(1) 壁脚部で生じる引抜き力Tmaxの算定と接合部の設計

上記の数値を超える場合は、U形金物のビス接合部が先行破壊すると想定される。

U形金物は、ビスSTS・C65により裏表各26本、計56本により壁パネルに緊結する。

(2) 水平力Pmaxを作用させた場合の壁脚部の曲げ応力に対する断面検定

 $Mmax = Pmax \times H = 65 \times 3.0 = 195$ k Nm

S60-3-3 Fb= 12.67 N/mm² Z= 90×1000²/6= 15000000 mm³ σ b = M/Z= 195×10⁶/15×10⁶= 13.0 N/mm² 12.67×1.5= 19.01 N/mm² 上記より、曲げ先行破壊は生じないと判断される。

(3) ルート1における許容せん断力Qaを負担した場合の壁脚部曲げ応力に対する断面検定

P a = 30 k N と設定する。 (2.3.2 (3) より) $Mmax = Pa \times H = 30 \times 3.0 = 90$ k Nm $\sigma b = M/Z = 90 \times 10^6/15 \times 10^6 = 6.0$ N/mm² < 2/3Fb=8.45N/mm² 上記より、曲げモーメントに対しては支障が生じないと判断される。

(4) 水平力Pmaxを作用させた場合の壁脚部引抜き力と曲げ応力に対する断面検定

金物に作用する引抜き力T=	= 65*3.0/1.0	=	195 k N	
鉛直軸力N=	-80/2	=	-40 k N	
生じ	る引張軸力Nm	max = T + N =	155 k N	
		壁長さの1/2を	と有効断面と設定す	-3.
$\sigma t = 155*10^{3}/(90*10^{3})$	000/2) =	3.44 N	$/\mathrm{mm}^2$	
σ b = M/Z = 195 $\times 10^6$	$^{3}/15 \times 10^{6} =$	13.0 N	$/\mathrm{mm}^2$	
σ b+ σ t 16.44 N/mm ²	<	12.67×1.5=	19.01 N/mm^2	
	上記より、破	坡壊は生じない	と想定される。	

(5)許容せん断耐力Qaを負担した場合の壁脚部引抜き力と曲げ応力に対する断面検定

金物に作用する引抜き力T = 30*3/1.0=90 k N鉛直軸力N =80/2=40 k N金物降伏耐力(79.6 k N*2本) =159.2 k N

79.6 k N = 325 (F) × 245 (A b e) × 1/1000 : A B R 490 M 20 の 降伏耐力 P y の値

負担する軸力T = 50 k N < 金物短期耐力2/3*159.2=106 k N 金物強度は支障はない。 引張力は直上だけではなく 壁長さの1/2が有効断面と設定し検討する。 $\sigma t = 50*10^{3}/(90*1000/2) = 1.11 \text{ N/mm}^2$ $\sigma b = M/Z = 90 \times 10^6/15 \times 10^6 = 6.0 \text{ N/mm}^2$ $\sigma b + \sigma t 7.11 \text{ N/mm}^2 < 2/3*12.67 = 8.45 \text{ N/mm}^2$ 試験体の断面では、先行破壊しないと想定される。

ビス直上の断面しか抵抗しない場合の検定

$$\sigma t = 50*10^{3}/(90*200) = 2.78 \text{ N/mm}^2$$

 $\sigma b = 6.0 \text{ N/mm}^2$
 $\sigma b + \sigma t 8.78 \text{ N/mm}^2 > 2/3*12.67 = 8.45 \text{ N/mm}^2$

上記より、引張力が、金物周辺のビスから接合しているラミナに直接作用した場合は、 ビス周辺から引張による損傷が生じる恐れがあるが、試験体の強度は基準値より高目なので 損傷しないと想定する。

試験体: S60-3-3 厚90mm 及び Mx60-5-5 厚150mm 樹種:すぎ

	面内方向 N/mm ²										
強度等級	Fc		Ft		Fb		Fs				
	強軸 弱軸	ᄚᆂᆂ	h ⊐++ ±+	22 뉴스	34 ##	ᇐᆂ	tmin=30mm				
		7虫 半田	외의 十四	799 半田	경정 半田	m=3	m=4	m=5	m=6	m=7	
S60-3-3	10.80	5.40	8.00	4.00	10.80	5.40	1.68	1.77	1.87	1.96	2.04
Mx60-5-5	8.10	4.68	6.00	3.45	8.10	4.68	2.02	2.13	2.25	2.35	2.45

	面外方向 N/mm ²						
没在笨奶	F	Ъ	Fs	β			
迅反守权	強軸	弱軸	共通	強軸	弱軸		
S60-3-3	12.67	0.48	0.9	1.385	4.505		
Mx60-5-5	10.37	1.97	0.9	1.256	2.308		

試験体壁パネルは、L=1000mm m=7とする。

ラミナ幅 120mmと設定する。

没在实现	面内	方向 N/I	mm²	面外方向 N/mm ²			
		Ξ	G	I	E	G	
迅反守极	強軸	弱軸	共通	強軸	弱軸	強軸	弱軸
S60-3-3	4000	2000	500	5777	222	45.40	125.0
Mx60-5-5	3000	1200	500	4728	624	29.67	19.5

外層ラミナの樹種	Fcv (N/mm²)
つが、アラスカイエローシダー、ベにまつ、ラジアタパイン、べいつが、もみ、とどまつ、えぞ まつ、べいもみ、スプルース、ロッジボールパイン、ポンデローサパイン、おうしゅうあかま つ、 <mark>すぎ</mark> 、べいすぎ及びジャックパイン	6.0

面内Fsは、下記式による。

min

fv,lam,0=2.70

fv,lam,90•(tnet/tgross)

 $(b \cdot nca/2 \cdot tgross) \cdot 1/(1/fv, tor \cdot (1-1/m^2)+2/fR \cdot (1/m-1/m_s^2))$

3.1試験概要

3.1.1 水平加力試験概要

- (1) 試験場富山県 株式会社ストローグ
- (2) 期間 2018年12月3日~7日

2018年12月10日~13日

(3) 試験体内訳

試験体数

試験体名称	開口状況	壁端部上下オ リジナルU形 金物補強	タイロッド方 式	クロスマーク 金物仕様
W0	無	1	-	_
W1	無	3	1	_
W2	上下2-Ф250中央	3	1	1
W3	上部 Ф 150 左右	3	1	_
W4	下2-Φ250中央	3	1	_
小計		13	4	1

総試験体数

```
18 体
```

(4) 加力方法

最大加力の設定

P d max=Qa $\times 3/2 \times 1.5 = (10+1.5 \times 12) \times 3/2 \times 1.5 = 63$ k N $\ddagger 9$

水平加力 P d max=65 k N と設定した。

②加力サイクル

(ジャッキは手動操作によるので目標値に近似で行うことを指示した。)

- 正負サイクル1 1/4 P d max ≒15 k N
- 正負サイクル2 1/2 P d max ≒30 k N
- 正負サイクル3 Pdmax ≒65kN

プシュオーバー0.8Pmaxまで

(目標は0.8Pmaxだが、試験体の状況で判断することとした。)

③定軸力

ジャッキ操作は手動のため、軸力は、N=80kNを保つように操作を指示した。

3.1.2 材料試験

各試験体の健全なラミナ部分から試験体を作成した。 圧縮試験を実施し試験体強度が、告示第1024号の基準耐力に対して どの様な関係であったかを確認する目的で試験を実施した。

- (1) 試験場北海道 北海学園大学
- (2) 期間 2018年12月中~2019年2月中
- (3) 試験体内訳

試験体名称	No	
W 71	2	
VV I	3	
	1	
W2	2	
	3	
	1	
W3	2	
	3	
WA	2	
W4	3	合計10体

(4) 加力方法

単調加力による。

破壊する最大荷重を加力し、最大荷重の7割程度に荷重が低下した時点で試験を 終了した。

3.1.3 4点曲げ試験概要

水平加力試験の試験体強度が、告示第1024号の基準耐力に対してどの様な 関係であったかを確認する目的で試験を実施した。

- (1) 試験場富山県 株式会社ストローグ
- (2) 期間 2019年2月26日
- (3) 試験体内訳
 - W1 無開口壁パネル

W4 中央付近にΦ250の開口を設けた壁パネル

(4) 加力方法

単調加力による。

試験体のせん断破壊が生じた時点、または、加力支点のめり込み破壊時点で 試験を終了した。

(5) 加力装置

3.2 試験体図

3.2.1 耐力壁試験体図

高力六角ボルトF10T M20 首下長さL=65mm 2×4=8本

治具取付けポルト F10T M20 首下90mm 合計4本

ビスSTS・C65 各9本 合計18本

1/5 壁水平移動拘束せん断金物BLST

エフランジ

トレランジ

3.3 試験体の設置要領

3.3.1 水平加力試験体設置要領

W1試験体 4隅リブ金物SR配置試験体セッティングおよび計測位置図 1/20

W2試験体 4隅リブ金物SR配置試験体セッティングおよび計測位置図 1/20 ^{開口は、φ260とする。}

W2試験体 クロスマーク金物仕様試験体セッティング図 1/20

W3試験体 4隅リブ金物SR配置試験体セッティングおよび計測位置図 1/20 ^{開口は、φ150とする。}

W4試験体 4隅リブ金物SR配置試験体セッティングおよび計測位置図 1/20

特記事項

- (1) W1、W2、W3、W4 各試験体のセッティングは、共通とする。
- (2) 引張金物は、試験体セッティング用として裏表各4本で留め付ける。
- 引張金物に取る付けたビスは、試験体セッティング後、加力前に取り外す。 (3) 引張金物に取る付けたビスは、試験体セッティング後、加力前に取り外す (4) 計測器位置は、「4隅SR取付け試験体セッティング図」と同様とする。

3.3.2 4点曲げ試験体設置要領

3.4 水平加力試験結果

- 3.4.1 荷重と変位
- (1) 試験体W1

試験体と試験体設置

写真4.1.1 加力前 表

写真4.1.3 加力後 表

写真4.1.2 加力前 裹

写真4.1.4 加力後 裹

写真4.1.4 正面左 裏からの撮影 Pmaxでは、金物のビスが降伏しCLT脚部端部が浮き、 金物ベースPLがボルトを支点として弓なりに変形した。 ②荷重-変位グラフ W1-No1~No4

δv, Pu	0.034	135.75
δu, Pu	0.045	135.75

δv, Pu	0.029	113.08
δu, Pu	0.041	113.08

No3

N03							
δv, Pu	0.021	104.10					
δu, Pu	0.031	104.10					

No4						
δv, Pu	0.018	108.34				
δu, Pu	0.048	108.34				

③各数値の算定とバイリニア

W1 みかけの変形角γ1

	Pmax	δmax	2/3 • Pmax	Ру	δу	Pu	δν	δu	K	μ
	k N	mm	k N	k N	mm	k N	mm	mm	kN/mm	
No1	135.30	0.045	90.20	81.62	0.020	135.75	0.034	0.045	4012.2	1.32
No2	129.05	0.040	86.03	69.47	0.018	113.08	0.029	0.041	3871.6	1.41
No3	114.30	0.030	76.20	69.69	0.014	104.10	0.021	0.031	4988.1	1.48
Ave	126.22	0.038	84.14	73.59	0.017	117.65	0.028	0.039	4290.6	1.40
sd	10. 787	0.007	7.191	6.95	0.003	16.312	0.007	0.007	608.1	0.080
cv	0.085	0.193	0.085	0.095	0.185	0.139	0.235	0.185	0.142	0.057
下限值	92.22	0.035	61.48	51.67	0.016	66.23	0.025	0.036	4004.2	1.37
No4 タ イロッド	122. 30	0.048	81.53	77.60	0.013	108.34	0. 018	0.048	6003.9	2.67

Pmax:最大荷重、δ_{max}:最大荷重時の変位

Py:降伏耐力、δy:降伏変位

Pu:終局耐力、δv:完全弾塑性モデルの降伏点変位、δu:終局変位

K:初期剛性、 μ :塑性率 $\mu = \delta u / \delta v$

Ave:平均值、sd:標準偏差、cv:変動係数 cv=sd/Ave、黄色枠:短期基準耐力

下限値: Pmax、2/3Pmax、Py、Pu・・信頼水準75%の95%下側許容限界値

K、δmax、δy、δv、δu、μ・・信頼水準75%の50%下側許容限界値

下限値=Ave・(1-k・cv)

k 95% = 3.152, k 50% = 0.471 (n=3)

完全弾塑性線 全体 みかけの変形角γ1 <u>δv,Pu</u> <u>δu,Pu</u>

・No1の荷重-変位グラフが異常のためPuのばらつきに影響しているか? 冶具へのセッティングが荷重を押し上げたことから

変更し加力した。

試験体W1-No1は

上部冶具をAにて水平維持のため固定し、回転を拘束していたため 浮上がりで生じる反力を負担してしまい 変形を抑制し水平荷重が増加していた。 Pmaxまでの加力においては 拘束を解除して上部治具の回転を許容し加力した。 サイクルごとの初期カーブを繋げると段差が生じた。

No2、NO3をもとにNo1を補正するのが妥当と考える。

(2)試験体W2

試験体と試験体設置

写真4.1.5 加力前表

写真4.1.6 加力前裏

写真4.1.7 加力後表

写真4.1.8 加力後裏

写真4.1.9 正面左 裏からの撮影 Pmaxでは、金物のビスが降伏しCLT脚部端部が浮き、 金物をビスで留めつけている壁の中央側ラミナに 縦方向で亀裂が生じていた。

②荷重-変位グラフ W2-No1~No5

No1		
δv, Pu	0.0189	101.42
δu, Pu	0.029	101.42

No2							
δv, Pu	0.0144	80.12					
δu, Pu	0.020	80.12					

No3		
δv, Pu	0.0247	120.35
δu, Pu	0.039	120.35

No4		
δv, Pu	0.0158	66.20
δu, Pu	0.046	66.20

No5		
δv,	Pu	0.0

δv, Pu	0.0150	108.45
δu, Pu	0.039	108.45

③各数値の算定とバイリニア

みかけの変形角γ2

	Pmax	δmax	2/3 • Pmax	Ру	δу	Pu	δv	δu	K	μ
	k N	mm	k N	k N	mm	k N	mm	mm	kN/mm	
No1	111.55	0.029	74.36	62.56	0.012	101.42	0.019	0.029	5360.6	1.54
No2	88.79	0.020	59.19	48.69	0.009	80.12	0.014	0.020	5568.7	1.40
No3	137.81	0.039	91.87	71.73	0.015	120.35	0.025	0.039	4873.3	1.58
Ave	112.71	0.029	75.14	60.99	0.012	100.63	0.019	0.029	5267.6	1.51
sd	24. 531	0.010	16.354	11.60	0.003	20.128	0.005	0.009	356.9	0.097
cv	0.218	0.330	0.218	0.190	0.255	0.200	0.267	0.322	0.068	0.064
下限值	35.39	0.025	23. 59	24.43	0.010	37.18	0.017	0.025	5099.4	1.46
W2-04クロス マーク	74. 78	0.05	49.85	52.33	0.013	66.20	0.016	0.046	4176.9	2.91
₩2-05タイ ¤ッド	118.30	0.04	78.86	73.99	0.010	108.45	0.015	0.039	7237.2	2.62

Pmax:最大荷重、δ_{max}:最大荷重時の変位、Py:降伏耐力、δy:降伏変位

下限値: Pmax、2/3Pmax、Py、Pu・・信頼水準75%の95%下側許容限界値

Pu:終局耐力、δv:完全弾塑性モデルの降伏点変位δu:終局変位

K:初期剛性、 μ :塑性率 $\mu = \delta u / \delta v$

Ave:平均值、sd:標準偏差、cv:変動係数 cv=sd/Ave、黄色枠:短期基準耐力

下限値=Ave・(1-k・cv)

K、δmax、δy、δv、δu、μ・・信頼水準75%の50%下側許容限界値 k95%=3.152、k50%=0.471 (n=3)

・No2のPuが小さく、ばらつきからPuはかなり低い結果になっている。

完全弾塑性線全体 見かけの変形角γ2

δv、Pu	0.0073	37.18
δu, Pu	0.025	37.18

Pu、δu下限 δn=Pu/K下限

写真4.1.10 側面左 U形金物ビス接合部の亀裂

N o 2は、金物のビス接合上部に70 k N程度の加力から 外層ラミナに亀裂が生じ荷重を増加させると内層ラミナはばはぎ部分が 分離し隙間が発生した。

加力荷重を上げていったが、試験体が表方向に傾き始めたので 加力を中止した。

No1、No3の結果が妥当であり、No2は異常終了となったと 考えている。

(3)試験体W3

試験体と試験体設置

写真4.1.11 加力前 表

写真4.1.12 加力前 裏

写真4.1.13 加力後 表

写真4.1.14 加力後 裏

写真4.1.15 正面左 裏からの撮影 Pmaxでは、金物のビスが降伏しCLT脚部端部が浮き、 金物ベースPLがボルトを支点として弓なりに変形した。

②荷重-変位グラフ W3-No1~No4

③各数値の算定とバイリニア

W3 見かけの変形角2

	Pmax	δmax	2/3 • Pmax	Ру	δу	Pu	δ ν	δu	К	μ
	k N	mm	k N	k N	mm	k N	mm	mm	kN/mm	
No1	111.30	0.043	74.20	56.81	0.012	100.28	0.022	0.044	4565.3	1.99
No2	60.77	0.015	40.52	29.90	0.004	53.66	0.007	0.017	7218.8	2.25
No3	115.55	0.056	77.03	62.63	0.015	102.62	0.024	0.057	4269.2	2.36
Ave	95.87	0.038	63.91	49.78	0.010	85.52	0.018	0.039	5351.1	2.20
sd	30.470	0.021	20.313	17.46	0.006	27.620	0.009	0.020	1624.22	0.193
cv	0.318	0.560	0.318	0.351	0.533	0.323	0.508	0.523	0.304	0.088
下限值	-0.17	0.028	-0.11	-5.26	0.008	-1.54	0.014	0.029	4586.1	2.11
₩3-0491 ¤ット`	127.80	0. 050	85.20	79.94	0.013	117.43	0.019	0.05	6346.1	2.73

※P関係のばらつき大きく下限値が得られず

 $Pmax:最大荷重、 \delta_{max}:最大荷重時の変位、Py:降伏耐力、 \deltay:降伏変位$

Pu:終局耐力、δv:完全弾塑性モデルの降伏点変位

 $\delta u: 終局変位、K: 初期剛性、 <math>\mu : 塑性率 \quad \mu = \delta u / \delta v$

Ave:平均值、sd:標準偏差、cv:変動係数 cv=sd/Ave、黄色枠:短期基準耐力

下限値: Pmax、2/3Pmax、Py、Pu・・信頼水準75%の95%下側許容限界値 下限値=Ave・(1-k・cv)

K、δmax、δy、δv、δu、μ・・信頼水準75%の50%下側許容限 k 95%=3.152、k50%=0.471 (n=3)

W3-No1とW3-No2の試験データ比較

試験体W3-No1

試験体W3−No2

写真4.1.16 側面左 U形金物ビス接合部の亀裂

W3-No2が異常終了した原因

60kN加力近辺で、金物のビス上部においてヨコ方向に 表裏の外層ラミナで亀裂が生じ、内層ラミナが破断した。 荷重が低下し始めたので加力を中止した。

(4)試験体W4

試験体と試験体設置

写真4.1.17 加力前 表

写真4.1.18 加力前 裏

写真4.1.19 加力後 表

写真4.1.20 加力後 裏

写真4.1.21 左側金物を裏面から撮影

Pmaxでは、金物のビスが降伏しCLT脚部端部が浮き、 金物に接する内端部ラミナが、ビスで拘束されている部分とそうでない部分で破断した。 W4-No1、W4-No2は、荷重の低い時点で金物上部ビス周囲でラミナに亀裂が生じた。

③各数値の算定とバイリニア

W4 見かけの変形角 γ2

	Pmax	δmax	2/3 • Pmax	Ру	δу	Pu	δν	δu	K	μ
	k N	mm	k N	k N	mm	k N	mm	mm	kN/mm	
No1	78.53	0.021	52.35	36.42	0.01	66.07	0.013	0.021	5143.9	1.63
No2	81.03	0.020	54.02	40.79	0.01	69.68	0.013	0.020	5434.5	1.58
No3	91.54	0.033	61.02	46.98	0.01	82.32	0.018	0.034	4619.8	1.89
Ave	83.70	0.025	55.80	41.39	0.01	72.69	0.014	0.025	5066.1	1.70
sd	6.901	0.007	4.601	5.31	0.002	8.532	0.003	0.008	412.9	0.168
cv	0.082	0.298	0.082	0.128	0.203	0.117	0.199	0.304	0.082	0.099
下限値	61.95	0.021	41.30	24.67	0.01	45.80	0.013	0.021	4871.6	1.62
₩4-No4タイ ¤ッド	127.80	0. 047	85.20	79.57	0.01	116.16	0.018	0.050	6298.5	2. 73

Pmax:最大荷重、δ_{max}:最大荷重時の変位、Py:降伏耐力、δy:降伏変位、

Pu:終局耐力、δv:完全弾塑性モデルの降伏点変位

 $\delta u: 終局変位、K: 初期剛性、 <math>\mu : 塑性率 \quad \mu = \delta u / \delta v$

Ave:平均值、sd:標準偏差、cv:変動係数 cv=sd/Ave、黄色枠:短期基準耐力

下限値: Pmax、2/3Pmax、Py、Pu・・信頼水準75%の95%下側許容限界値

K、δmax、δy、δv、δu、μ・・信頼水準75%の50%下側許容限界値

下限値=Ave・(1-k・cv)

k95%=3.152, k50%=0.471 (n=3)

完全弾塑性線全体	見かけの変形角γ2
----------	-----------

δv, Pu	0.009401	45.80
δu、Pu	0.02	45.80
	Pu、 δu下	限

δ v=Pu/K下限

写真4.1.22 左側金物を裏面から撮影

W4-No1、No2は、80kN程度の加力時点に 表裏外層ラミナ、内層ラミナの亀裂が生じ 荷重が低下した。

(5) 荷重と変位についてのまとめ

試験体	試	験体名称	Pmax	Рu	Ру	コメント
		No1	135.30	135.75	81.62	上部支点冶具の回転を拘束していたため、変位に対し荷重が大きく なっていた。途中解除し再加力した。
		No2	129. 05	113. 08	69. 47	正常終了
	W1	No3	114. 30	104. 10	69. 69	正常終了
無開口		タイロッドNo4	122. 30	108.34	77.60	タイロッド方式による試験は、試験体が金物接合部の降伏に伴い回転 し、ロッドは回転に合わせ傾斜した。ロッドによる拘束は不十分と なった。Pmax時点では、開口周辺に損傷は発生していない。
		No1	111. 55	101. 42	62. 56	正常終了、Pmax時点では、開口周辺に損傷は発生していない。
		No2	88.79	80.12	48.69	金物の上部ビス接合部が70kN程度で外層ラミナ亀裂、内層ラミナは ばはぎ部分離が生じ、試験体が面外に傾いたので、加力を中止した。
	W2	No3	137. 81	120. 35	71. 73	正常終了、Pmax時点では、開口周辺に損傷は発生していない。
		クロス金物No4	74. 78	66.2	52.33	クロスマーク金物仕様
2−Φ250		タイロッドNo5	118.30	108.45	73.99	タイロッド方式による試験は、試験体が金物接合部の降伏に伴い回転 し、ロッドは回転に合わせ傾斜した。ロッドによる拘束は不十分と なった。Pmax時点では、開口周辺に損傷は発生していない。
		No1	111. 30	100. 28	56.81	正常終了、Pmax時点では、開口周辺に損傷は発生していない。
••		No2	60.77	53.66	29.90	60 k N加力近辺で、金物のビス上部においてヨコ方向に表裏の外層ラ ミナで亀裂が生じ、内層ラミナが破断した。荷重が低下し始めたので 加力を中止した。
	W3	No3	115. 55	102.62	62. 63	正常終了、Pmax時点では、開口周辺に損傷は発生していない。
2-Ф150		タイロッドNo4	127.80	117.43	79.94	タイロッド方式による試験は、試験体が金物接合部の降伏に伴い回転 し、ロッドは回転に合わせ傾斜した。ロッドによる拘束は不十分と なった。Pmax時点では、開口周辺に損傷は発生していない。
		No1	78. 53	66. 07	36. 42	80kN程度の加力時点に表裏外層ラミナ、内層ラミナの亀裂が生じ荷 重が低下した。
•		No2	81. 03	69.68	40. 79	80kN程度の加力時点に表裏外層ラミナ、内層ラミナの亀裂が生じ荷 重が低下した。
	W4	No3	91. 54	82. 32	46. 98	
1-Φ250		タイロッドNo4	127.80	116.16	79. 57	タイロッド方式による試験は、試験体が金物接合部の降伏に伴い回転 し、ロッドは回転に合わせ傾斜した。ロッドによる拘束は不十分と なった。Pmax時点では、開口周辺に損傷は発生していない。

表のW1、W2、W3のPmaxと比較すると、W4のPmaxが3体とも低い結果となっている。W4は、他と比較して試験時の観察では 金物のビス接合部が荷重の低い時点でラミナに亀裂を生じさせていたことから、結果としてPmaxが低くなっている。 ラミナの強度のばらつきによるものと判断される。

目標 P maxは、65 k N であったことから試験結果は異常終了したW3-No2を除き、すべて目標 P max以上となった。 W2-No4のクロスマーク金物仕様における結果も、目標Pmax以上となっていた。

3.4.2 変位計タスキ計測によるひずみとせん断応力度

(1) 定荷重による試験結果の		の解析	W1、	W2、	W3、V	V4			S60-3-3	3 L=100	0mm Fs	=2.04N	′mm²		
W1		水平荷重	鉛直荷重	変位計 No	加力方 向	h	l	圧縮る	引張δ	圧縮 δ と 伸び δ の絶対 値の 平均∠	ひずみγ	せん断 弾性係 数G	せん断 応力度 σs =γ×G	真 <i>0</i>	D変形
		kN	kN			mm	mm	mm	mm	mm		N/mm²	N/mm ²	rad	分数1/d
	表	28.26	81.63	12•13		370	250	-0.232	0.175	0.204	0.0010	500	0.491		
	ş∞ų ≥ prant n <u>i</u> n bebet ≥ n ∞ φ ##	-28.01	83.50			370	250	-0.241	0.123	0.182	0.0009	500	0.439		
		56.77	83.13			370	250	-0.433	0.394	0.414	0.0020	500	0.998	0.0059	1/170
		-56.52	84.88			370	250	-0.481	0.269	0.375	0.0018	500	0.905	0.0047	1/214
	8	28.26	81.63	10•11		250	490	-0.087	-0.029	0.058	0.0003	500	0.130		
		-28.01	83.50		<	250	490	-0.036	0.087	0.062	0.0003	500	0.138		
		56.77	83.13			250	490	-0.275	-0.131	0.203	0.0009	500	0.456		
		-56.52	84.88			250	490	-0.044	0.195	0.120	0.0005	500	0.268		
	裹														
	<u>↓ m p m papap m 7 m papap m 7 m p</u>	28.26	81.63	14 • 15		1460	730	0.235	-0.460	0.348	0.0005	500	0.266		
		-28.01	83.50			1460	730	0.085	-0.765	0.425	0.0007	500	0.325		
	0	56.77	83.13			1460	730	0.810	-1.100	0.955	0.0015	500	0.731		
	MC 20 Labor MC 20 Labor MC 20 Labor ML 20 Liber ML 20	-56.52	84.88			1460	730	0.415	-1.420	0.918	0.0014	500	0.703		
		28.26	81.63	22 • 23		250	490	-0.368	0.254	0.311	0.0014	500	0.698		
		-28.01	83.50		\leftarrow	250	490	-0.304	0.101	0.203	0.0009	500	0.455		
		56.77	83.13			250	490	-0.744	0.522	0.633	0.0028	500	1.421		
		-56.52	84.88			250	490	-0.703	0.108	0.406	0.0018	500	0.910		

(1) 定荷重によろ試験結果の解析 W1 W2 W3 W4

図に示されている開口位置にタスキに変位計を配置し変形量を測定している。

以下の表に記載されているひずみγ覧とせん断応力度覧の数値は、無開口W1との比較のため参考値として算定している。 開口廻りの応力ではない。

W2	水平荷重	鉛直荷重	変位計 No	加力方 向	h	٤	圧縮δ	引張♂	圧縮δと 伸びδ の絶対 値の 平均⊿	ひずみγ	せん断 弾性係 数G	せん断 応力度 σs =γ×G	真0)変形
	kN	kN			mm	mm	mm	mm	mm		N/mm ²	N/mm ²	rad	分数1/d
表	28.01	80.25	12•13		370	250	-0.378	0.27	0.324	0.0016	500	0.782		
	-28.01	84.87		←	370	250	-0.343	0.218	0.281	0.0014	500	0.677		
RM 	56.02	83.87			370	250	-0.726	0.561	0.644	0.0031	500	1.553	0.0060	1/166
	-56.77	82.62			370	250	-0.722	0.508	0.615	0.003	500	1.484	0.0053	1/188
s <u>, 18181 </u>	28.01	80.25	10.11	\rightarrow	250	490	-0.036	0.146	0.091	0.0004	500	0.204		
	-28.01	84.87		←	250	490	-0.022	0.217	0.120	0.0005	500	0.268		
	56.02	83.87			250	490	-0.275	0.27	0.273	0.0012	500	0.612		
	-56.77	82.62			250	490	-0.19	0.361	0.276	0.0012	500	0.619		
裹														
	28.01	80.25	14•15		730	1460	0.020	-0.720	0.370	0.0006	500	0.283		
	-28.01	84.87			730	1460	-0.010	-0.865	0.438	0.0007	500	0.335		
	56.02	83.87			730	1460	0.505	-1.720	1.113	0.0017	500	0.852		
	-56.77	82.62			730	1460	0.480	-1.420	0.950	0.0015	500	0.727		
	28.01	80.25	22•23	\rightarrow	250	490	-0.469	0.167	0.318	0.0014	500	0.714		
	-28.01	84.87			250	490	-0.377	0.043	0.210	0.0009	500	0.472		
	56.02	83.87			250	490	-0.845	0.333	0.589	0.0026	500	1.322		
Masser La A	-56.77	82.62		←	250	490	-0.739	0.195	0.467	0.0021	500	1.049		

	水平荷重	鉛直荷重	変位計 No	加力方 向	h	Q	圧縮δ	引張δ	圧縮δと 伸びδ の絶対 値の 平均∠	ひずみγ	せん断 弾性係 数G	せん断 応力度 σs =γ×G	真 <i>0</i>	D変形
	kN	kN			mm	mm	mm	mm	mm		N/mm²	N/mm ²	rad	分数1/d
	28.26	79.12	12•13	\rightarrow	250	353	-0.189	0.182	0.186	0.0009	500	0.455		
	-28.51	79.87		<	250	353	-0.190	0.123	0.157	0.0008	500	0.384		
4 * 4 * 4	56.27	83.25			250	353	-0.378	0.343	0.361	0.0018	500	0.884	0.0065	1/153
	-56.77	81.87			250	353	-0.408	0.262	0.335	0.0016	500	0.821	0.0059	1/170
2 a	28.26	79.12	22•23		180	180	-0.130	0.029	0.080	0.0006	500	0.312		
	-28.51	79.87			180	180	-0.303	0.159	0.231	0.0018	500	0.907		
	56.27	83.25		\rightarrow	180	180	-0.348	0.166	0.257	0.0020	500	1.010		
	-56.77	81.87		<	180	180	-0.578	0.275	0.427	0.0034	500	1.675		
	28.26	79.12	10•11	\longrightarrow	250	490	-0.188	0.044	0.116	0.0005	500	0.260		
4. 10 . 4 . 10 . 4	-28.51	79.87		\leftarrow	250	490	0.058	0.072	0.065	0.0003	500	0.146		
	56.27	83.25		\rightarrow	250	490	-0.427	-0.036	0.232	0.0010	500	0.520		
	-56.77	81.87			250	490	0.022	0.260	0.141	0.0006	500	0.317		

裹

W3

表

28.26	79.12 14 • 15	\rightarrow	1460	730	-0.005	-0.845	0.425	0.0007	500	0.325
-28.51	79.87	\leftarrow	1460	730	-0.125	-0.800	0.463	0.0007	500	0.354
56.27	83.25	\longrightarrow	1460	730	0.440	-1.470	0.955	0.0015	500	0.731
-56.77	81.87	<	1460	730	0.380	-1.340	0.860	0.0013	500	0.659

	水平荷重	鉛直荷重	変位計 No	加力方 向	h	l	圧縮δ	引張 δ	圧縮δと 伸びδ の絶対 値の 平均∠	ひずみγ	せん断 弾性係 数G	せん断 応力度 σs =γ×G	真 <i>0</i> .)変形	
	kN	kN			mm	mm	mm	mm	mm		N/mm ²	N/mm ²	rad	分数1/d	
	28.01	82.00	12•13		370	250	-0.232	0.146	0.189	0.0009	500	0.456			
8.9 -	-28.51	79.62		<──	370	250	-0.182	0.087	0.135	0.0006	500	0.325			
	56.27	80.62			370	250	-0.458	0.379	0.419	0.0020	500	1.010	0.0073	1/137	
	-56.02	82.75			370	250	-0.459	0.16	0.310	0.0015	500	0.747	0.0057	1/174	
	28.01	82.00	10•11		250	490	-0.253	0.241	0.247	0.0011	500	0.555			
	-28.51	79.62		<──	250	490	-0.19	0.224	0.207	0.0009	500	0.464			
	56.27	80.62			250	490	-0.542	0.467	0.505	0.0023	500	1.133			
	-56.02	82.75			250	490	-0.474	0.448	0.461	0.0021	500	1.035			
	28.01	82.00	14•15		1460	730	0.205	-0.665	0.435	0.0007	500	0.333			

 1460	730	0.205	-0.665	0.435	0.0007	500	0.333
1460	730	0.140	-0.700	0.420	0.0006	500	0.322
 1460	730	0.820	-1.460	1.140	0.0017	500	0.873
 1460	730	0.550	-1.240	0.895	0.0014	500	0.685
	→ 1460 ↓ 1460 ↓ 1460 ↓ 1460	1460 730 1460 730 1460 730 1460 730 1460 730	1460 730 0.205 1460 730 0.140 1460 730 0.820 1460 730 0.550	→ 1460 730 0.205 -0.665 ↓ 1460 730 0.140 -0.700 → 1460 730 0.820 -1.460 ↓ 1460 730 0.550 -1.240	1460 730 0.205 -0.665 0.435 1460 730 0.140 -0.700 0.420 1460 730 0.820 -1.460 1.140 1460 730 0.550 -1.240 0.895	1460 730 0.205 -0.665 0.435 0.0007 1460 730 0.140 -0.700 0.420 0.0006 1460 730 0.820 -1.460 1.140 0.0017 1460 730 0.550 -1.240 0.895 0.0014	1460 730 0.205 -0.665 0.435 0.0007 500 1460 730 0.140 -0.700 0.420 0.0006 500 1460 730 0.820 -1.460 1.140 0.0017 500 1460 730 0.550 -1.240 0.895 0.0014 500

表

裹

(2) タイロッドによる試験結果の解析 W1、W2、W3、W4S60-3-3 L=1000mm Fs=2.04N/mm²

W1	水平荷重	鉛直荷重	変位計 No	加力方 向	h	Q	圧縮δ	引張δ	圧縮 δ と 伸び δ の絶対 値の 平均∠	ひずみγ	せん断 弾性係 数G	せん断 応力度 σs =γ×G	真 <i>0.</i>)変形
	kN	kN			mm	mm	mm	mm	mm		N/mm²	N/mm ²	rad	分数1/d
表	28.61	82.62	12•13	\rightarrow	370	250	-0.203	0.029	0.116	0.0006	500	0.280		
	-28.76	84.00		←	370	250	-0.248	0.065	0.157	0.0008	500	0.378		
<u>,</u>	56.77	81.75		\rightarrow	370	250	-0.305	0.168	0.237	0.0011	500	0.571	0.0030	1/332
	-56.77	85.25		←	370	250	-0.175	0.080	0.128	0.0006	500	0.308	0.0032	1/308
2 <u></u>	28.61	82.62	10•11	\rightarrow	250	490	-0.007	-0.137	0.072	0.0003	500	0.162		
8	-28.76	84.00			250	490	0.072	0.007	0.040	0.0002	500	0.089		
	56.77	81.75		\rightarrow	250	490	0.131	-0.311	0.221	0.001	500	0.496		
	-56.77	85.25			250	490	0.051	-0.306	0.179	0.0008	500	0.401		

裹

_

28.61	82.62 14.15		1460	730	-0.145	-0.555	0.350	0.0005	500	0.268
28.76	84.00		1460	730	-0.100	-0.560	0.330	0.0005	500	0.253
56.77	81.75		1460	730	-0.255	-1.400	0.828	0.0013	500	0.634
56.77	85.25		1460	730	-0.010	-0.890	0.450	0.0007	500	0.345
28.61	82.62 22-23		250	490	-0.217	0.072	0.145	0.0006	500	0.324
28.76	84.00	\leftarrow	250	490	-0.261	-0.029	0.145	0.0007	500	0.326
56.77	81.75		250	490	-0.383	0.072	0.228	0.001	500	0.511
56.77	85.25		250	490	-0.283	0.051	0.167	0.0007	500	0.375

	水平荷重	鉛直荷重	変位計 No	加力方 向	h	l	圧縮δ	引張δ	圧縮 δ と 伸び δ の絶対 値の 平均⊿	ひずみγ	せん断 弾性係 数G	せん断 応力度 σs =γ×G	真0	D変形
	kN	kN			mm	mm	mm	mm	mm		N/mm ²	N/mm ²	rad	分数1/d
	28.26	81.50	12•13		370	250	-0.283	0.095	0.189	0.0009	500	0.456		
(=7×ppr = r=r	-29.01	80.50		<	370	250	-0.241	0.174	0.208	0.001	500	0.501		
	56.77	79.50			370	250	-0.479	0.343	0.411	0.0020	500	0.992	0.0030	1/337
	-56.77	78.00			370	250	-0.452	0.414	0.433	0.0021	500	1.045	0.0032	1/309
-			10•11		250	490	-0.087	0.211	0.149	0.0007	500	0.335		
				<	250	490	-0.117	0.21	0.164	0.0007	500	0.367		
					250	490	-0.354	0.554	0.454	0.0020	500	1.019		
Ø					250	490	-0.168	0.665	0.417	0.0019	500	0.935		

表

W2

28.26	81.50 14.15		730	1460	-0.195	-0.930	0.563	0.0009	500	0.431
-29.01	80.50		730	1460	-0.255	-0.510	0.383	0.0006	500	0.293
56.77	79.50		730	1460	-0.270	-1.880	1.075	0.0016	500	0.823
-56.77	78.00	←	730	1460	-0.315	-1.245	0.780	0.0012	500	0.597
28.26	81.50 22-23		250	490	-0.426	0.109	0.268	0.0012	500	0.601
-29.01	80.50		250	490	-0.340	-0.036	0.188	0.0008	500	0.422
56.77	79.50		250	490	-0.816	0.080	0.448	0.0020	500	1.006
-56.77	78.00	<	250	490	-0.790	-0.007	0.399	0.0018	500	0.895

	##
T	×i × bibi ≈ <u>i</u> shiri ≈ i ×i
1	
-	
	1000

W3

水平荷重	鉛直荷重	変位計 No	加力方 向	h	Q	圧縮δ	引張δ	圧縮 δ と 伸び δ の絶対 値の 平均 △	ひずみγ	せん断 弾性係 数G	せん断 応力度 σs =γ×G	真0	D変形
kN	kN			mm	mm	mm	mm	mm		N/mm ²	N/mm ²	rad	分数1/d
28.01	81.00	12•13		250	353	-0.203	0.211	0.207	0.0010	500	0.507		
-28.01	78.13			250	353	-0.036	0.015	0.026	0.0001	500	0.062		
56.02	79.25			250	353	-0.334	0.401	0.368	0.0018	500	0.901	0.0033	1/301
-56.77	79.37		<	250	353	-0.175	0.167	0.171	0.0008	500	0.419	0.0036	1/281
28.01	81.00	22•23		180	180	-0.065	0.123	0.094	0.0007	500	0.369		
-28.01	78.13			180	180	-0.202	0.188	0.195	0.0015	500	0.766		
56.02	79.25			180	180	-0.145	0.310	0.228	0.0018	500	0.894		
-56.77	79.37			180	180	-0.303	0.377	0.340	0.0027	500	1.336		
28.01	81.00	10•11		250	490	-0.108	0.073	0.091	0.0004	500	0.203		
-28.01	78.13			250	490	0.044	0.202	0.123	0.0006	500	0.276		
56.02	79.25			250	490	-0.260	0.241	0.251	0.0011	500	0.562		
-56.77	79.37			250	490	-0.066	0.383	0.225	0.001	500	0.504		

裹

28.01	81.00 14.15	\longrightarrow	1460	730	-0.240	-0.785	0.513	0.0008	500	0.392
-28.01	78.13		1460	730	-0.325	-0.850	0.588	0.0009	500	0.450
56.02	79.25	\rightarrow	1460	730	-0.240	-1.695	0.968	0.0015	500	0.741
56.77	79.37		1460	730	-0.230	-1.565	0.898	0.0014	500	0.687

	水平荷重	鉛直荷重	変位計 No	加力方 向	h	l	圧縮δ	引張᠔	圧縮 δ と 伸び δ の絶対 値の 平均⊿	ひずみγ	せん断 弾性係 数G	せん断 応力度 σs =γ×G	真0	D変形
	kN	kN			mm	mm	mm	mm	mm		N/mm ²	N/mm ²	rad	分数1/d
	28.51	79.00	12•13	\longrightarrow	370	250	-0.102	0.095	0.099	0.0005	500	0.238		
	-28.51	78.62		←	370	250	-0.102	0.138	0.120	0.0006	500	0.290		
1	56.27	80.50		\longrightarrow	370	250	-0.196	0.182	0.189	0.0009	500	0.456	0.0031	1/322
	-56.77	80.87		←	370	250	-0.146	0.247	0.197	0.0009	500	0.474	0.0037	1/268
	28.51	79.00	10.11	\rightarrow	250	490	-0.188	0.277	0.233	0.0010	500	0.522		
	-28.51	78.62		←	250	490	-0.109	0.289	0.199	0.0009	500	0.447		
	56.27	80.50		\longrightarrow	250	490	-0.477	0.576	0.527	0.0024	500	1.182		
	-56.77	80.87		←	250	490	-0.408	0.549	0.479	0.0021	500	1.074		
_														

表

W4

 \bigcirc

28.51	79.00 14.15		1460	730	-0.370	-0.630	0.500	0.0008	500	0.383
-28.51	78.62		1460	730	-0.250	-1.090	0.670	0.001	500	0.513
56.27	80.50	\longrightarrow	1460	730	-0.325	-1.600	0.963	0.0015	500	0.737
56.77	80.87		1460	730	-0.665	-1.825	1.245	0.0019	500	0.953

(3) クロスマーク金物による試験結果の解析 W2

水平荷 鉛直荷 変位計 重 重 No 加力方向 h

W2

kN	kN			mm	mm	mm	mm	mm		N/mm^2	N/mm ²
28.01	177.25	12•13	\longrightarrow	370	250	-0.581	0.058	0.320	0.0015	500	0.771
-28.51	164.25			370	250	-0.569	0.109	0.339	0.0016	500	0.818
41.06	260.62		\longrightarrow	370	250	-0.879	0.139	0.509	0.0025	500	1.229
-41.76	245.12			370	250	-0.824	0.167	0.496	0.0024	500	1.196
64.52	254.25		\longrightarrow	370	250	-1.308	0.488	0.898	0.0043	500	2.168
28.01	177.25	10•11	\longrightarrow	250	490	-0.036	0.087	0.062	0.0003	500	0.138
-28.51	164.25			250	490	0.066	0.181	0.124	0.0006	500	0.277
41.06	260.62			250	490	-0.087	0.117	0.102	0.0005	500	0.229
-41.76	245.12			250	490	0.022	0.325	0.174	0.0008	500	0.390
64.52	254.25			250	490	-0.34	-0.102	0.221	0.001	500	0.496

l

圧縮δと

圧縮δ 引張δ

^{圧和 0 と} 伸びδ せん断 の絶対 ひずみγ 弾性係 値の 数G 平均<u>/</u>

せん断 応力度 σs =γ×G

真の変形

rad 分数1/d

1.229 0.0019 1/536

1.196 0.0027 1/368

28.01	177.25	14•15	\longrightarrow	730	1460	-0.510	-1.500	1.005	0.0015	500	0.770
-28.51	164.25			730	1460	-0.240	-1.060	0.650	0.001	500	0.498
41.06	260.62		\rightarrow	730	1460	-0.700	-2.395	1.548	0.0024	500	1.185
-41.76	245.12			730	1460	-0.310	-1.605	0.958	0.0015	500	0.733
64.52	254.25		\longrightarrow	730	1460	-0.460	-3.350	1.905	0.0029	500	1.459
28.01	177.25	22•23	\rightarrow	250	490	-0.570	0.029	0.300	0.0013	500	0.672
-28.51	164.25		←	250	490	-0.355	0.007	0.181	0.0008	500	0.406
41.06	260.62		\longrightarrow	250	490	-0.881	0.029	0.455	0.0020	500	1.022
-41.76	245.12		←	250	490	-0.536	-0.022	0.279	0.0013	500	0.626
64.52	254.25			250	490	-1.307	0.348	0.828	0.0037	500	1.858

65

(4) 水平加力試験の解析結果のまとめ

① 定荷重載荷試験結果まとめ

変位計タスキ計測の値からひずみ求めせん断応力度をG=500N/mm²として算定した。 無開口W1に対する参考値としてW2、W3、W4について、せん断応力度覧に数値を記載してた。

定荷重載荷タイプ

試	験体No		W1-	-No3	W2-No1		W3-No3		W4-No1	
加	力方向			I		1	Î	l	Î	Î
水平荷重	kN		28.26	-28.01	28.01	-28.01	28.26	-28.51	28.01	-28.51
鉛直荷重	kN		81.63	83.50	80.25	84.87	79.12	79.87	82.00	79.62
亦形	rad		-	-	-	-	-	-	-	-
変形 1/d			-	-	-	-	-	-	-	-
		10.11	0.130	0.138	0.204	0.268	0.260	0.146	I	-
サム新広力度	NI /mm²	12•13	0.491	0.439	0.782	0.677	I	-	0.456	0.325
せん断心刀度	度 N/mm ² -	14•15	0.266	0.325	0.283	0.335	0.325	0.354	0.333	0.322
		22-23	0.698	0.455	0.714	0.472	-	-	-	-

試	験体No		W1-	-No3	W2-	-No1	W3-	W3-No3		W4-No1	
加	力方向			ļ	1	ļ	Î	L	Ť	Î	
水平荷重	kN		56.77	-56.52	56.02	-56.77	56.27	-56.77	56.27	-56.02	
鉛直荷重	kN		83.13	84.88	83.87	82.62	83.25	81.87	80.62	82.75	
亦形	rad		0.0059	0.0047	0.006	0.0053	0.0065	0.0059	0.0073	0.0057	
支形	1/d		1/170	1/214	1/166	1/188	1/153	1/170	1/137	1/174	
		10-11	0.456	0.268	0.612	0.268	0.520	0.317	-	-	
せん断応力度	NI /2	12•13	0.998	0.905	1.553	1.484	I	-	1.010	0.747	
ビル町心刀皮	IN/ mm	14•15	0.731	0.703	0.852	0.727	0.731	0.659	0.873	0.685	
		22•23	1.421	0.910	1.322	1.049	I	-	-	-	

変位計タスキ測定箇所図

定荷重載荷タイプ

試	験体No		W3-	-No3	W4-	-No1
加	1力方向		1	Î	Î	ţ
水平荷重	kN		28.26	-28.51	28.01	-28.51
鉛直荷重	kN		79.12	79.87	82.00	79.62
र्याः ॥४	rad		-	-	-	-
支 10	1/d		-	-	I	-
		10-11	-	-	0.555	0.464
せん断応力度	N/mm ²	12•13	0.455	0.384	I	-
		22-23	0.312	0.907	-	-

試	験体No		W3-	-No3	W4-	-No1
加	力方向			l	•	I
水平荷重	kN		56.27	-56.77	56.27	-56.02
鉛直荷重	kN		83.25	81.87	80.62	82.75
亦形	rad		0.0065	0.0059	0.0073	0.0057
支形	1/d		1/153	1/170	1/137	1/174
		10-11	-	-	1.133	1.035
せん断応力度	N/mm^2	12•13	0.884	0.821	-	-
		22•23	1.010	1.675	-	-

② タイロッド試験結果まとめ

変位計タスキ測定箇所図

タイロッドタイプ

試	験体No		W1-	-No4	W2-	-No5	W3-	-No4	W4-	-No4
加	力方向			ļ	1	ļ	Î	l	Ť	Î
水平荷重	kN		28.61	-28.76	28.26	-29.01	28.01	-28.01	28.51	-28.51
鉛直荷重	kN		82.62	84.00	81.50	80.50	81.00	78.13	79.00	78.62
亦形	rad		-	-	-	-	-	-	-	-
支加	1/d		-	-	-	-	-	-	-	-
		10•11	0.162	0.089	0.335	0.367	0.203	0.276	-	-
サム新広力度	NI /2	12•13	0.280	0.378	0.456	0.501	I	-	0.238	0.290
ビル町心力度	N/mm	14•15	0.268	0.253	0.431	0.293	0.392	0.450	0.383	0.513
		22-23	0.324	0.326	0.601	0.422	-	-	-	-

試験体No W1		W1-	W1-No4 W2-No5		W3-No4		W4-No4			
加	力方向		\rightarrow	Î		Î	 	Î	1	-
水平荷重	kN		56.77	-56.77	56.77	-56.77	56.02	-56.77	56.27	-56.77
鉛直荷重	kN		81.75	85.25	79.50	78.00	79.25	79.37	80.50	80.87
亦叱	rad		0.003	0.0032	0.003	0.0032	0.0033	0.0036	0.0031	0.0037
 変形	1/d		1/332	1/308	1/337	1/309	1/301	1/281	1/322	1/268
		10•11	0.496	0.401	1.019	0.935	0.562	0.504	-	-
サイドウォー	N / 2	12•13	0.571	0.308	0.992	1.045	-	1	0.456	0.474
での町心力度	IN/ mm	14•15	0.634	0.345	0.823	0.597	0.741	0.687	0.737	0.953
		22•23	0.511	0.375	1.006	0.895	-	-	-	-

変位計タスキ測定箇所図

タイロッドタイプ

試	験体No		W3-	-No4	W4-	-No4
加	力方向		1	Î	Î	ţ
水平荷重	kN		28.01	-28.01	28.51	-28.51
鉛直荷重	kN		81.00	78.13	79.00	78.62
亦ᄣ	rad		-	-	-	-
支加	1/d		-	-	-	-
		10-11	-	-	0.522	0.447
せん断応力度	N/mm^2	12•13	0.507	0.507	-	-
		22-23	0.369	0.766	-	-

試	験体No		W3-	-No4	W4-	-No4
加	1力方向			ļ	1	Î
水平荷重	kN		56.02	-56.77	56.27	-56.77
鉛直荷重	kN		79.25	79.37	80.50	80.87
亦形	rad		0.0033	0.0036	0.0031	0.0037
支112	1/d		1/301	1/281	1/322	1/268
		10-11	-	-	1.182	1.074
せん断応力度	N/mm^2	12-13	0.901	0.419	-	-
		22•23	0.894	1.336	-	-

変位計タスキ測定箇所図

クロスマーク仕様タイプ

試	験体No		v	/2
加力方向			1	Î
水平荷重 kN			28.01	-28.51
鉛直荷重	重 kN 1			164.25
亦形	rad		-	-
支形	1/d		-	-
		10.11	0.138	0.277
せん断応力度	NI /2	12•13	0.771	0.818
せん町心力度	N/mm	14•15	0.770	0.498
		22•23	0.672	0.406

試験体No			N	/2
加力方向				ļ
水平荷重 kN			41.06	-41.76
鉛直荷重	kN		260.62	245.12
亦形	rad	rad		0.0027
支形	1/d		1/536	1/368
		10•11	0.229	0.390
サム新立力度	NI /2	12•13	1.229	1.196
せん町心力度	N/mm	14•15	1.185	0.733
		22-23	1.022	0.626

試	W	/2		
加力方向			1	—
水平荷重	kN	64.52	-	
鉛直荷重	kN		254.25	-
亦形	rad		I	-
支形	1/d		-	-
		10.11	0.496	-
せん断応力度	NI /mm²	12•13	2.168	-
ビル町心力度	IN/ mm	14•15	1.459	-
		22•23	1.858	-
- (5) 水平加力試験結果の考察
 - 1) 無開口壁W1と有開口壁W2のデータ解析
 - ① Pdmax=65kNを最大加力荷重と想定し、定荷重は、80kNと設定し試験を 実施したが、下記の荷重となっていた。

	水平荷重	鉛直荷重
W1	P d = 56.77 k N	N=83.13 k N
W2	P d = 56.02 k N	N=83. 87 k N
荷重に差が生じてレ	るが、データの比較	校においては大きな影響がない
と思われる。		

2 壁の変形

	W1	0.0059rad	1/170
	W2	0.0060rad	1/166
変形は、	同程度の値	重となっていることから	っ、ルート1でW2を
耐力壁と	して用いて	こも、支障は生じること	が無いと思われる。

③ 無開口壁W1のせん断応力度

せん断応力度は、壁の幅方向に等分布と仮定するとき τ_{w1} 等= (56.77×1000) / (90×1000) =0.63N/mm² 放物線分布と仮定するとき τ_{w1k} =1.5× (56.77×1000) / (90×1000) =0.95N/mm²

いずれも基準せん断応力度F s = 2.04N/mm₂以下であることが 確認される。

- ④ 計測したせん断ひずみ
 W1は、56.77kN、W4は、56.02kNの時点とする。
- W1 上部Φ250想定位置E 1=0.00200W2 上部Φ250位置E 2=0.00311 ε 2/ε1=1.556

W1 下部Φ250想定位置	E 1=	0.00091	
W2 下部Φ250位置	E 2=	0.00122 ε 2 /ε 1 =	1.342
W1 壁中央部	E 1=	0.00146	
W2 壁中央部	E 2=	0.00170 ε2/ε1=	1.166

⑤ 考察

無開口壁W1と比較した場合は、せん断ひずみは大きくなる 傾向がみられるが、最も大きな比となる上部開口 Φ 250の位置 において耐力壁として支障がないかを考えた場合に、せん断 応力度がひずみに比例すると仮定した場合、W1に対して約1.56倍が、 有開口壁W2のせん断応力度と想定されることから、次の値となる。 ・せん断応力度は、壁の幅方向に等分布と仮定するとき $\tau_{w2} = (56.77 \times 1000) / (90 \times 1000) \times 1.556 = 0.98 \text{N/mm}^2$ ・放物線分布と仮定するとき $\tau_{w2} = 1.5 \times (56.77 \times 1000) / (90 \times 1000) \times 1.556 = 1.48 \text{N/mm}^2$ 上記の数値は、共にせん断基準強度Fs = 2.04 N/mm²以下となって おり、かつ、Pd=56.02 k Nを超え脚部金物部分で破壊を生じて加力を 止めた最大加力P=111.54 k Nまでの間では、開口周辺にひび割れ など発生していないことから、ルート1では、W2を有開口耐力壁と して扱えると思われる。

- 2) 無開口壁W1と有開口壁W3のデータ解析
 - Pdmax=65kNを最大加力荷重と想定し、定荷重は、80kNと設定し 試験を実施したが、下記の荷重となっていた。

	水平荷重	鉛直荷重
W1	P d = 56.77 k N	N=83.13 k N
W3	P d = 56.27 k N	N=83. 25 k N
荷重に差が生じてレ	いるが、データの比較	校においては大きな影響がない
と思われる。		

72

	W1	0.0059rad	l	1/170		
	W3	0.0065rad	l	1/153		
	変形は、同程度の	の値となってい	いることから	ら、ルート	√1では	
	有開口耐力壁と	して扱えると見	思われる。			
3	計測したせん断び	ひずみ				
W1	上部 4 250 想定位	置	E 1=	0.00200		
W3	上部右 Ф 150 位置		€ 3R=	0.00202	ε 3R/ε 1	1.012
	上部左Φ150位置		E 3L=	0.00177	ε 3L/ε1:	0.886
W1	W2の下部Φ250熱	思定位置	E 1=	0.00091		
W3	W2の下部Φ250熱	想定位置	E 3=	0.00104	ε 3/ε 1=	1.140
W1	壁中央部		E 1=	0.00146		

W3 壁中央部E 3=0.00146 ε 3/ε1=1.000

④ 考察

無開口壁W1と比較した場合は、せん断ひずみは大きくなる 傾向がみられるが、最も大きな比となる下部開口Φ250の想定 位置において耐力壁として支障がないかを考えた場合に、せん断 応力度がひずみに比例すると仮定した場合、W1に対して約1.14倍が、 有開口壁W3のせん断応力度と想定されることから、次の値となる。

・せん断応力度は、壁の幅方向に等分布と仮定するとき

 $\tau_{w3\#} = (56.77 \times 1000) / (90 \times 1000) \times 1.14 = 0.72 \text{N/mm}^2$

・放物線分布と仮定するとき

 τ_{w3b} =1.5×(56.77×1000) / (90×1000) ×1.14=1.08N/mm² 上記の数値は、共にせん断基準強度Fs=2.04N/mm²以下となって おり、かつ、Pd=56.27kNを超え脚部金物部分で破壊を生じて加力を 止めた最大加力P=82.75kNまでの間では、開口周辺にひび割れ など発生していないことから、ルート1では、W3を有開口耐力壁と して扱えると思われる。

- 3) 無開口壁W1と有開口壁W4のデータ解析
 - Pdmax=65kNを最大加力荷重と想定し、定荷重は、80kNと設定し試験を 実施したが、下記の荷重となっていた。

	水平荷重	鉛直荷重
W1	P d =56.77 k N	N=83.13 k N
W4	P d = 56.27 k N	N=80.62 k N
荷重に差が生じてい	るが、データの比較	においては大きな影響がない

と思われる。

② 壁の変形は下記となっていた。

W1	0.0059rad	1/170
W4	0.0073rad	1/137

変形は、大きくなっているが1/120以下の変形であることから、

ルート1でW2を耐力壁として用いても、支障は生じることが無いと思われる。

③ ひずみより算定したせん断応力度は、下記となっている。

W1	上部 4 250 想定位置	E 1=	0.00200	
W4	上部 Ф 250 位置	E 4=	0. 00202 $\epsilon 4/\epsilon 1 = 1$.012
W1	下部 4 250 想定位置	E 1=	0.00091	
W4	Φ250位置壁下端から	E 4=	0.00226 $\epsilon 4/\epsilon 1 = 2$.478
	開口芯まで1220mm			
W1	壁中央部	E 1=	0.00146	

W4 壁中央部 **E 4**= 0.00175 **ε 4**/**ε**1= 1.194

④ 考察

無開口壁W1と比較した場合は、せん断ひずみは大きくなる傾向がみられ るが、最も大きな比となる下部開口Φ250の想定位置において耐力壁とし て支障がないかを考えるとき、せん断応力度がひずみに比例すると仮定し た場合は、W1に対して約2.48倍が、有開口壁W4のせん断応力度と想定さ れ、次の値となる。

・せん断応力度は、壁の幅方向に等分布と仮定するとき

 $\tau_{w4} = (56.77 \times 1000) / (90 \times 1000) \times 2.48 = 1.56 \text{N/mm}^2$

・放物線分布と仮定するとき

 $\tau_{w4fx} = 1.5 \times (56.77 \times 1000) / (90 \times 1000) \times 2.47 = 2.35 \text{N/mm}^2$

等分布と仮定した場合は、せん断基準強度 F s = 2.04N/mm²以下となって いるが、W4の開口 Φ 250位置における放物線分布の場合は、 \angle 0.31N/mm² が超えることになった。

しかし、試験における観察では、脚部金物部分で破壊を生じて加力を止めた最大加力 P=91.53 k N までの間で、せん断応力の集中などによる開口 周辺のひび割れが発生することはなかった。

このことは、最大荷重のときに最も不利な数値となる放物線分布として せん断応力度を想定すると91.53/56.77×2.35=3.79N/mm²となり、基準 せん断応力度の約1.86倍が作用していたと考えられる。

しかし、開口周辺に損傷が発生していないことから考えると、試験体の CLTの強度が、基準よりかなり高い値となっていたと想定される。 1つの要因としては、もともとの基準値Fsに安全率が考慮されている こと、もう1つは試験体にラミナの強度が高いものが用いられていたこと

によって強度が高い状況になったと思われる。

上記のことを考慮すると、実際に製造されるCLTは、かなり余裕のある 応力状態にあると判断されるため、ルート1でW4を有開口耐力壁として 扱うことに構造上の支障はないと思われる。

3.5.1 4点曲げ試験結果W1

W1 有開口耐力壁せん断曲げ試験

右上加力;右下支点 左上加力;左下支点

計測ステッ フ [°]	測定日時	(CH0)荷 重	(CH01)S DP-50CT	(CH02)S DP-50CT	(CH03)S DP-50CT	(CH04)S DP-50CT	(CH05)C DP-50	(CH06)C DP-50	(CH07)C DP-50	(CH08)C DP-50	(CH09)C DP-100
		kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
10	2019/2/26 15:52	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
66	2019/2/26 15:53	52.046	-0.160	-0.430	0.220	0.220	-0.530	-0.025	-0.085	-0.200	1.050
83	2019/2/26 15:53	101.816	-0.200	-0.640	0.360	0.270	-0.550	-0.070	-0.030	-0.305	1.050
97	2019/2/26 15:53	150.735	-0.180	-0.760	0.450	0.200	-0.695	-0.100	-0.035	-0.370	1.650
111	2019/2/26 15:53	202.281	-0.130	-0.890	0.540	0.100	-0.850	-0.120	-0.050	-0.435	2.140
124	2019/2/26 15:54	251.401	-0.050	-1.010	0.630	0.000	-1.035	-0.145	-0.065	-0.490	2.670
137	2019/2/26 15:54	301.020	0.000	-1.120	0.710	-0.110	-1.215	-0.150	-0.085	-0.530	3.230
150	2019/2/26 15:54	350.890	0.070	-1.240	0.790	-0.220	-1.440	-0.155	-0.120	-0.555	3.840
163	2019/2/26 15:54	400.535	0.150	-1.360	0.870	-0.340	-1.685	-0.155	-0.165	-0.580	4.520
176	2019/2/26 15:54	449.805	0.220	-1.480	0.950	-0.470	-1.970	-0.155	-0.230	-0.590	5.240
190	2019/2/26 15:55	501.976	0.300	-1.610	1.050	-0.610	-2.340	-0.135	-0.315	-0.590	6.100
204	2019/2/26 15:55	552.046	0.400	-1.750	1.150	-0.760	-2.885	-0.100	-0.425	-0.560	7.160
219	2019/2/26 15:55	602.716	0.550	-1.930	1.330	-1.030	-3.505	-0.040	-0.555	-0.530	8.310
236	2019/2/26 15:55	650.535	0.750	-2.040	1.430	-1.350	-4.785	0.105	-0.855	-0.385	10.510
257	2019/2/26 15:56	701.731	1.090	-2.150	1.560	-1.870	-6.510	0.310	-1.355	-0.180	13.510
302	2019/2/26 15:56	740.871	2.040	-1.400	1.290	-3.320	-13.240	1.320	-3.575	0.795	24.210
332	2019/2/26 15:57	701.155	2.570	-0.420	0.610	-4.330	-18.595	2.275	-5.820	1.705	31.600
402	2019/2/26 15:58	656.187	2.700	-0.170	0.430	-4.470	-19.075	2.265	-5.980	1.715	32.120
410	2019/2/26 15:58	601.315	2.640	-0.160	0.420	-4.310	-18.340	2.095	-5.700	1.590	30.540
422	2019/2/26 15:59	549.070	2.520	-0.160	0.420	-4.090	-17.440	1.905	-5.385	1.445	28.620
428	2019/2/26 15:59	501.000	2.390	-0.170	0.420	-3.860	-16.595	1.750	-5.105	1.330	26.910
434	2019/2/26 15:59	453,181	2.240	-0.210	0.420	-3.590	-15.705	1.610	-4.825	1.220	25.170
440	2019/2/26 15:59	405.387	2.070	-0.260	0.410	-3.290	-14.770	1.485	-4.545	1.125	23,440
447	2019/2/26 15:59	349.465	1.840	-0.300	0.400	-2.920	-13.660	1.355	-4.220	1.030	21.420
453	2019/2/26 15:59	302.021	1.650	-0.320	0.390	-2.600	-12.750	1.255	-3.950	0.965	19.750
460	2019/2/26 15:59	247.449	1.420	-0.350	0.360	-2.220	-11.660	1.145	-3.650	0.895	17.830
466	2019/2/26 15:59	201.831	1.220	-0.360	0.330	-1.900	-10.740	1.060	-3.390	0.835	16,180
473	2019/2/26 16:00	150.460	0.980	-0.380	0.270	-1.560	-9.670	0.965	-3.070	0.780	14,290
480	2019/2/26 16:00	102.566	0.760	-0.380	0.230	-1.230	-8.585	0.885	-2.755	0.745	12,400
489	2019/2/26 16:00	48.845	0.500	-0.370	0.180	-0.850	-7.295	0.865	-2.430	0.740	10,100
512	2019/2/26 16:00	0.000	0.200	-0.480	0.160	-0.350	-6.590	0.780	-1.785	0.665	5,580
569	2019/2/26 17:00	53,922	-0.010	-0.530	-0.040	-0.440	-3.850	0.040	-2.210	-0.105	5.290
576	2019/2/26 17:00	101.466	0.050	-0.530	0.010	-0.580	-4.050	0.045	-2.355	-0.145	6,150
583	2019/2/26 17:00	152.486	0.180	-0.530	0.050	-0.790	-4.600	0.055	-2.510	-0.180	7.150
590	2019/2/26 17:00	205.232	0.310	-0.570	0.100	-1.010	-5.145	0.060	-2.670	-0.205	8.180
596	2019/2/26 17:00	251.350	0.420	-0.610	0.160	-1.220	-5.585	0.060	-2.810	-0.220	9.110
603	2019/2/26 17:01	305.522	0.570	-0.680	0.240	-1.460	-6.130	0.060	-2.975	-0.225	10.120
609	2019/2/26 17:01	351.816	0.700	-0.740	0.320	-1.690	-6.625	0.070	-3.125	-0.230	11.040
616	2019/2/26 17:01	405.537	0.860	-0.800	0.410	-1.970	-7.805	0.105	-3.300	-0.230	12,180
622	2019/2/26 17:01	451,205	1.000	-0.840	0.480	-2.220	-8.350	0.140	-3.465	-0.225	13.170
629	2019/2/26 17:01	503 551	1 1 7 0	-0.840	0 560	-2 550	-9.045	0 195	-3 655	-0.200	14 440
636	2019/2/26 17:01	554 397	1 350	-0.860	0.620	-2 890	-9 785	0 260	-3 865	-0 170	15 770
644	2019/2/26 17:01	601.290	1.510	-0.850	0.690	-3.240	-10.535	0.325	-4.085	-0.135	17,160
654	2019/2/26 17:01	653.586	1.710	-0.760	0.750	-3.680	-11.500	0.425	-4.355	-0.095	18.930
664	2019/2/26 17:02	701.180	1,900	-0.640	0.810	-4.150	-12.550	0.545	-4.645	-0.035	20.720
676	2019/2/26 17:02	750.825	2,160	-0.430	0.890	-4.790	-13,965	0.755	-5.035	0.060	23,180
688	2019/2/26 17:02	780.687	2.510	0.000	0.910	-5.670	-16,110	1.050	-5.425	0.175	26.530
689	2019/2/26 17:02	780 312	2 540	0.070	0.940	-5 770	-16 385	1 075	-5 450	0 190	26 970
690	2019/2/26 17:02	771.433	2.610	0.330	0.840	-6.140	-16.955	1.100	-5.390	-0.355	19.850

計測ステッ フ [°]	測定日時	(CH0)荷 重	上側 相 対平均 (CH1,3)	下側 相 対平均 (CH2,4)	伸縮絶対 値の平均	ひずみ	せん断応 力度 N/mm ²
		kN	mm	mm			
10	2019/2/26 15:52	0.000	0.000	0.000	0.000	0.000	0.0000
66	2019/2/26 15:53	52.046	0.030	-0.105	0.068	0.000	0.1516
83	2019/2/26 15:53	101.816	0.080	-0.185	0.133	0.001	0.2975
97	2019/2/26 15:53	150.735	0.135	-0.280	0.208	0.001	0.4659
111	2019/2/26 15:53	202.281	0.205	-0.395	0.300	0.001	0.6736
124	2019/2/26 15:54	251.401	0.290	-0.505	0.398	0.002	0.8925
137	2019/2/26 15:54	301.020	0.355	-0.615	0.485	0.002	1.0890
150	2019/2/26 15:54	350.890	0.430	-0.730	0.580	0.003	1.3023
163	2019/2/26 15:54	400.535	0.510	-0.850	0.680	0.003	1.5268
176	2019/2/26 15:54	449.805	0.585	-0.975	0.780	0.004	1.7513
190	2019/2/26 15:55	501.976	0.675	-1.110	0.893	0.004	2.0039
204	2019/2/26 15:55	552.046	0.775	-1.255	1.015	0.005	2.2789
219	2019/2/26 15:55	602.716	0.940	-1.480	1.210	0.005	2.7168
236	2019/2/26 15:55	650.535	1.090	-1.695	1.393	0.006	3.1265
257	2019/2/26 15:56	701.731	1.325	-2.010	1.668	0.007	3.7440
302	2019/2/26 15:56	/40.8/1	1.665	-2.360	2.013	0.009	4.5186
332	2019/2/26 15:5/	/01.155	1.590	-2.375	1.983	0.009	4.4512
402	2019/2/26 15:58	656.187	1.565	-2.320	1.943	0.009	4.3614
410	2019/2/26 15:58	601.315	1.530	-2.235	1.883	0.008	4.2267
422	2019/2/26 15:59	549.070	1.4/0	-2.125	1./98	0.008	4.0359
428	2019/2/26 15:59	501.000	1.405	-2.015	1./10	0.008	3.8394
434	2019/2/26 15:59	453.181	1.330	-1.900	1.615	0.007	3.6261
440	2019/2/26 15:59	405.387	1.240	-1.//5	1.508	0.007	3.3847
447	2019/2/26 15:59	349.465	1.120	-1.610	1.305	0.006	3.0648
453	2019/2/26 15:59	302.021	1.020	-1.460	1.240	0.006	2.7841
460	2019/2/26 15:59	247.449	0.890	-1.285	1.088	0.005	2.4417
400	2019/2/26 15:59	201.831	0.775	-1.130	0.953	0.004	2.1380
4/3	2019/2/26 16:00	100.400	0.025	-0.970	0.798	0.004	1.7900
480	2019/2/26 16:00	102.000	0.495	-0.805	0.000	0.003	1.4094
489	2019/2/20 10:00	48.840	0.340	-0.610	0.475	0.002	1.0000
560	2019/2/20 10:00	52 022	-0.025	-0.415	0.298	0.001	0.0080
576	2019/2/20 17.00	101 466	-0.025	-0.465	0.200	0.001	0.3723
502	2019/2/20 17.00	152,400	0.030	-0.660	0.293	0.001	0.0307
500	2019/2/20 17.00	205 222	0.115	-0.000	0.300	0.002	1 1 1 7 0
506	2019/2/20 17:00	203.232	0.200	-0.015	0.490	0.002	1 2529
603	2019/2/20 17:00	201.000	0.230	-1 070	0.003	0.003	1.6550
600	2019/2/20 17:01	351 816	0.400	-1 215	0.750	0.003	1 0365
616	2019/2/20 17:01	405 537	0.010	-1 385	1 010	0.004	2 2877
622	2019/2/20 17:01	451 205	0.000	-1 530	1 1 3 5	0.005	2 5484
629	2019/2/26 17:01	503 551	0.865	-1.695	1 280	0.006	2 8730
636	2019/2/26 17:01	554 397	0.000	-1.875	1 4 3 0	0.000	3 2107
644	2019/2/26 17:01	601 290	1 100	-2 045	1 573	0.000	3 5307
654	2019/2/26 17:01	653 586	1 230	-2 220	1 7 2 5	0.008	3 8731
664	2019/2/26 17:07	701 180	1 355	-2 395	1 875	0.000	4 2099
676	2019/2/26 17:02	750 825	1 525	-2 610	2 068	0.009	4.6421
688	2019/2/26 17:02	780 687	1 710	-2 835	2 273	0.010	5.1024
689	2019/2/26 17:02	780.312	1.740	-2.850	2.295	0.010	5,1529
690	2019/2/26 17:02	771.433	1.725	-2.905	2.315	0.010	5.1978

加力前

加力後

3.5.2 4点曲げ試験結果 W4

W4 有開口耐力壁せん断曲げ試験

右上加力点 右下支点 左上加力点 左下支点

計測ステッ	测定日時	(CH0)荷重	(CH01)SDP	(CH02)SDP	(CH03)SDP	(CH04)SDP	(CH05)CDP	(CH06)CDP	(CH07)CDP	(CH08)CDP	(CH09)CDP
7 [°]		(010)同主	-50CT	-50CT	-50CT	-50CT	-50	-50	-50	-50	-100
		kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
13	2019/2/26 13:46	0	0	0	-0.01	0	-0.015	0	0	-0.005	0.130
32	2019/2/26 13:46	51.020	-0.010	-0.350	0.090	0.100	-0.620	-0.065	-0.820	-0.375	0.630
49	2019/2/26 13:46	102.116	0.060	-0.550	0.190	0.030	-0.815	-0.130	-1.105	-0.470	1.260
64	2019/2/26 13:46	150.260	0.130	-0.720	0.310	-0.070	-0.950	-0.195	-1.170	-0.550	1.730
79	2019/2/26 13:47	200.430	0.200	-0.910	0.430	-0.170	-1.090	-0.245	-1.225	-0.620	2.200
94	2019/2/26 13:47	251.551	0.270	-1.110	0.560	-0.280	-1.245	-0.275	-1.280	-0.675	2.680
109	2019/2/26 13:47	302.871	0.340	-1.310	0.710	-0.400	-1.410	-0.295	-1.340	-0.730	3.210
123	2019/2/26 13:47	350.865	0.390	-1.510	0.860	-0.500	-1.575	-0.295	-1.390	-0.765	3.730
138	2019/2/26 13:48	401.761	0.470	-1.770	1.070	-0.610	-1.775	-0.295	-1.460	-0.805	4.350
153	2019/2/26 13:48	452.256	0.530	-2.000	1.240	-0.700	-1.975	-0.285	-1.525	-0.815	4.930
168	2019/2/26 13:48	501.100	0.620	-2.310	1.500	-0.810	-2.205	-0.260	-1.600	-0.820	5.640
184	2019/2/26 13:48	552.446	0.740	-2.620	1.800	-0.950	-2.475	-0.215	-1.690	-0.795	6.350
200	2019/2/26 13:49	600.515	0.910	-3.010	2.160	-1.130	-2.770	-0.165	-1.785	-0.755	7.190
218	2019/2/26 13:49	651.310	1.110	-3.430	2.570	-1.330	-3.140	-0.090	-1.925	-0.685	8.270
240	2019/2/26 13:49	701.055	1.330	-4.000	3.190	-1.490	-3.855	0.135	-2.270	-0.445	10.420
265	2019/2/26 13:50	745.173	1.850	-4.740	4.120	-1.880	-4.695	0.415	-2.685	-0.175	13.090
266	2019/2/26 13:50	743.197	1.980	-4.680	4.100	-1.920	-4.720	0.440	-2.785	-0.160	13.940
267	2019/2/26 13:50	743.622	1.960	-4.710	4.220	-2.020	-4.655	0.465	-2.825	-0.135	14.030
268	2019/2/26 13:50	742.722	2.100	-4.770	4.240	-2.000	-4.680	0.485	-2.860	-0.125	14.160
269	2019/2/26 13:50	743.397	2.160	-4.800	4.300	-2.020	-4.705	0.505	-2.890	-0.110	14.330
270	2019/2/26 13:50	743.422	2.220	-4.840	4.370	-2.050	-4.730	0.520	-2.930	-0.100	14.380
271	2019/2/26 13:50	743.222	2.320	-4.940	4.500	-2.070	-4.745	0.535	-2.965	-0.110	14.440
070	0010 /0 /06 10-EC	700.004	15 100	-6 400	19.300	-2.230	-14.180	4.625	-4 125	-4.375	18.590
212	2019/2/20 13:50	/36.294	15.130	0.430							
212	2019/2/20 13:50	/36.294	15.130	0.450							
272	2019/2/20 13:50	/36.294	15.130	下側 相対	伯統統計		せん断応				
272 計測ステッ フ [°]	2019/2/2013:50 測定日時	/36.294 (CH0)荷重	15.130 上側 相対 平均	0.450 下側 相対 平均	伸縮絶対	ひずみ	せん断応 力度				
272 計測ステッ フ [°]	2019/2/2013:30 測定日時	/36.294 (CH0)荷重	上側 相対 平均 (CH1,3)	 下側 相対 平均 (CH2,4) 	伸縮絶対 値の平均	ひずみ	せん断応 力度 N/mm ²				
272 計測ステッ プ	2019/2/2613:50 測定日時	736.294 (CH0)荷重 kN	上側 相対 平均 (CH1,3) mm	下側 相対 平均 (CH2,4) mm	伸縮絶対 値の平均 mm	ひずみ	せん断応 力度 N/mm ²				
ンフィン 計測ステッ フ [°] 13	2019/2/26 13:30 測定日時 2019/2/26 13:46	/36.294 (CH0)荷重 kN 0.000	上側 相対 平均 (CH1,3) mm -0.005	下側 相対 平均 (CH2,4) mm 0.000	伸縮絶対 値の平均 mm 0.003	ひずみ 1.123E-05	せん断応 力度 N/mm ² 0.0056				
ンフィン 計測ステッ フ [°] 13 32	2019/2/26 13:30 測定日時 2019/2/26 13:46 2019/2/26 13:46	/36.294 (CH0)荷重 kN 0.000 51.020	上側 相対 平均 (CH1,3) mm -0.005 0.040	下側 相対 平均 (CH2,4) mm 	伸縮絶対 値の平均 mm 0.003 0.083	ひずみ 1.123E-05 0.0004	せん断応 力度 N/mm ² 0.0056 0.1852				
ンフェン 計測ステッ フ [°] 13 32 49	2019/2/26 13:30 測定日時 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:46	/36.294 (CH0)荷重 kN 0.000 51.020 102.116	上側 相対 平均 (CH1,3) mm -0.005 0.040 0.125	下側 相対 平均 (CH2,4) mm 0.000 -0.125 -0.260	伸縮絶対 値の平均 mm 0.003 0.083 0.193	ひずみ 1.123E-05 0.0004 0.0009	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322				
ンフィン 計測ステッ フ [*] 13 32 49 64	2019/2/26 13:30 測定日時 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:46	/36.294 (CH0)荷重 kN 0.000 51.020 102.116 150.260	上側 相対 平均 (CH1,3) mm -0.005 0.040 0.125 0.220	下側 相対 平均 (CH2,4) mm 0.000 -0.125 -0.260 -0.395	伸縮絶対 値の平均 mm 0.003 0.083 0.193 0.308	ひずみ 1.123E-05 0.0004 0.0009 0.0014	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322 0.6904				
ンフェン 計測ステッ プ 13 32 49 64 79	2019/2/26 13:40 測定日時 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:47	/36.294 (CH0)荷重 kN 51.020 102.116 150.260 200.430	上側 相対 平均 (CH1,3) mm -0.005 0.040 0.125 0.220 0.315	下側 相対 平均 (CH2,4) mm -0.125 -0.260 -0.395 -0.540	伸縮絶対 値の平均 mm 0.003 0.193 0.308 0.308 0.428	ひずみ 1.123E-05 0.0004 0.0009 0.0014 0.0019	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322 0.6904 0.9599				
計測ステッ フ [*] 13 32 49 64 79 94	2019/2/26 13:30 測定日時 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47	736.294 (CH0)荷重 kN 51.020 102.116 150.260 200.430 251.551	上側 相対 平均 (CH1,3) mm -0.005 0.220 0.315 0.415	0.430 下側 相対 平均 (CH2,4) mm -0.125 -0.260 -0.395 -0.540 -0.695	伸縮絶対 値の平均 mm 0.003 0.193 0.308 0.308 0.428 0.555	ひずみ 1.123E-05 0.0004 0.0009 0.0014 0.0019 0.0025	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322 0.6904 0.9599 1.2461				
計測ステッ プ 13 32 49 64 79 94 109	2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47	(CH0)荷重 kN 0.000 51.020 102.116 150.260 200.430 251.551 302.871	上側 相対 平均 (CH1,3) mm -0.005 0.220 0.315 0.415 0.525	下側 相対 平均 (CH2,4) mm 0,000 -0,125 -0,260 -0,395 -0,540 -0,695 -0,855	伸縮絶対 値の平均 mm 0.003 0.083 0.193 0.308 0.428 0.555 0.690	ひずみ 1.123E-05 0.0004 0.0019 0.0014 0.0019 0.0025 0.0031	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322 0.6904 0.9599 1.2461 1.5492				
計測ステッ フ [*] 13 32 49 64 79 94 109 123	2019/2/26 13:40 測定日時 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47	(CH0)荷重 (CH0)荷重 kN 0.000 51.020 102.116 150.260 200.430 251.551 302.871 350.865	上側 相対 平均 (CH1,3) mm -0.005 0.040 0.125 0.220 0.315 0.415 0.525 0.625	下側 相対 平均 (CH2,4) mm 0.000 -0.125 -0.260 -0.395 -0.540 -0.855 -1.005	伸縮絶対 値の平均 mm 0.003 0.083 0.193 0.308 0.428 0.555 0.690 0.815	ひずみ 1.123E-05 0.0004 0.0019 0.0025 0.0031 0.0037	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322 0.6904 0.9599 1.2461 1.5492 1.8299				
計測ステッ フ [*] 13 32 49 64 79 94 109 123 138	2019/2/26 13:40 測定日時 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:48	(CH0)荷重 kN 51.020 102.116 150.260 200.430 251.551 350.865 401.761	上側 相対 平均 (CH1,3) mm -0.005 0.220 0.315 0.415 0.525 0.525 0.625 0.770	^{0.430} 下側 相対 平均 (CH2,4) mm 0.000 -0.125 -0.260 -0.395 -0.540 -0.695 -0.855 -1.005 -1.190	伸縮絶対 値の平均 mm 0.003 0.193 0.308 0.428 0.555 0.690 0.815 0.980	ひずみ 1.123E-05 0.0004 0.0019 0.0025 0.0031 0.0037 0.0044	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322 0.6904 0.9599 1.2461 1.5492 1.8299 2.2004				
計測ステッ プ 13 32 49 64 79 94 109 123 138 138	2019/2/26 13:40 2019/2/26 13:40 2019/2/26 13:40 2019/2/26 13:40 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:48 2019/2/26 13:48	(CH0)荷重 kN 0.000 51.020 102.116 150.260 200.430 251.551 302.871 350.865 401.761 452.256	上側 相対 平均 (CH1.3) mm -0.005 0.220 0.315 0.225 0.225 0.225 0.255 0.	下側 相対 平均 (CH2,4) mm 0.000 -0.125 -0.260 -0.395 -0.540 -0.695 -0.855 -1.005 -1.190 -1.350	伸縮絶対 値の平均 mm 0.003 0.193 0.308 0.428 0.555 0.690 0.815 0.980 1.118	ひずみ 1.123E-05 0.0004 0.0009 0.0014 0.0025 0.0031 0.0037 0.0044 0.0050	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322 0.6804 0.9599 1.2461 1.5492 1.8299 2.2004 2.5091				
計測ステッ プ 13 32 49 64 79 64 109 123 138 153 168	2019/2/26 13:30 測定日時 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:48 2019/2/26 13:48 2019/2/26 13:48	(CH0)荷重 kN 0.000 51.020 102.116 150.260 200.430 251.551 302.871 350.865 401.761 452.256 501.100	上側 相対 平均 (CH1,3) mm -0.005 0.220 0.315 0.525 0.625 0.770 0.885 1.060	下側 相対 平均 (CH2,4) mm 0.000 -0.125 -0.260 -0.395 -0.540 -0.695 -0.855 -1.005 -1.190 -1.350 -1.560	伸縮絶対 値の平均 mm 0.003 0.083 0.193 0.308 0.428 0.555 0.690 0.815 0.980 1.118 1.310	ひずみ 1.123E-05 0.0004 0.0019 0.0019 0.0025 0.0031 0.0037 0.0044 0.0050 0.0059	せん断応 カ度 N/mm ² 0.0056 0.1852 0.4322 0.6904 0.9599 1.2461 1.5492 1.8299 2.2004 2.5091 2.9413				
計測ステッ 7 ³ 13 32 49 64 79 94 109 123 138 153 168 184	2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:48 2019/2/26 13:48 2019/2/26 13:48	(CH0)荷重 kN 0.000 51.020 102.116 150.260 205.1551 302.871 350.865 401.761 452.256 501.100 552.446	上側 相対 平均 (CH1,3) mm -0.005 0.220 0.315 0.415 0.525 0.625 0.770 0.885 1.060 1.270	下側 相対 平均 (CH2,4) mm 0,000 -0,125 -0,260 -0,395 -0,540 -0,695 -1,005 -1,190 -1,350 -1,560 -1,785	伸縮絶対 値の平均 mm 0.003 0.193 0.308 0.428 0.555 0.690 0.815 0.980 1.118 1.310 1.528	ひずみ 1.123E-05 0.0004 0.0019 0.0019 0.0025 0.0031 0.0037 0.0044 0.0050 0.0059 0.0069	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322 0.6904 0.6904 0.6909 1.2461 1.5492 1.8299 2.2004 2.2001 2.9413 3.4296				
計測ステッ 7 ³ 13 32 49 64 79 94 109 123 138 153 168 184 200	2019/2/26 13:40 測定日時 2019/2/26 13:46 2019/2/26 13:46 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:48 2019/2/26 13:48 2019/2/26 13:48 2019/2/26 13:48 2019/2/26 13:48	(CH0)荷重 (CH0)荷重 kN 0.000 51.020 102.116 150.260 200.430 251.551 302.871 350.865 401.761 452.256 501.100 552.446 600.515	上側 相対 平均 (CH1,3) mm -0.005 0.040 0.125 0.220 0.315 0.415 0.525 0.625 0.770 0.885 1.060 1.270 1.535	下側 相対 平均 (CH2,4) mm 0,000 -0,125 -0,260 -0,395 -0,540 -0,695 -0,855 -1,005 -1,190 -1,350 -1,560 -1,785 -2,070	伸縮絶対 値の平均 mm 0.003 0.193 0.308 0.428 0.555 0.690 0.815 0.980 1.118 1.310 1.528 1.803	ひずみ 1.123E-05 0.0004 0.0019 0.0025 0.0031 0.0037 0.0044 0.0050 0.0059 0.0069 0.0069	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322 0.6904 0.9599 1.2461 1.5492 1.8299 2.2004 2.5091 2.9413 3.4296 4.0471				
計測ステッ プ 13 32 49 64 109 123 138 138 153 168 184 200 218	2019/2/26 13:40 測定日時 2019/2/26 13:40 2019/2/26 13:40 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:47 2019/2/26 13:48 2019/2/26 13:48 2019/2/26 13:48 2019/2/26 13:48 2019/2/26 13:49	(CH0)荷重 kN 0.000 51.020 102.116 150.260 200.430 251.551 302.871 350.865 401.761 452.256 501.100 552.446 600.515 651.310	上側 相対 平均 (CH1.3) mm -0.005 0.220 0.315 0.525 0.770 0.885 1.060 1.270 1.535 1.840	下側 相対 平均 (CH2,4) mm 0.000 -0.125 -0.260 -0.395 -0.540 -0.695 -1.005 -1.005 -1.190 -1.350 -1.560 -1.785 -2.070 -2.380	伸縮絶対 値の平均 mm 0.003 0.193 0.308 0.428 0.555 0.690 0.815 0.980 1.118 1.310 1.528 1.803 2.110	ひずみ 1.123E-05 0.0004 0.0019 0.0019 0.0025 0.0031 0.0037 0.0044 0.0050 0.0059 0.0069 0.0081 0.0095	せん断応 力度 N/mm ² 0.0056 0.1852 0.4322 0.6904 0.9599 1.2461 1.5492 1.8299 2.2004 2.5091 2.9413 3.4296 4.0471 4.7375				

加力前

試験後

(1) 載荷荷重とひずみの比較

①W1の荷重とひずみ

荷重No	(CH0)荷重	上側 相 対平均 (CH1,3)	下側 相 対平均 (CH2,4)	伸縮絶対 値の平均 <i>△</i>	ひずみ	せん断応 力度
		mm	mm	mm		$\mathrm{N/mm}^2$
100	101.816	0.080	-0.185	0.133	0.001	0. 297
200	202.281	0.205	-0.395	0.300	0.001	0.674
300	301.020	0.355	-0.615	0.485	0.002	1.089
400	400. 535	0.510	-0.850	0.680	0.003	1.527
500	501.976	0.675	-1.110	0.893	0.004	2.004
600	601.290	1.100	-2.045	1.573	0.007	3. 531
700	701.180	1.355	-2.395	1.875	0.008	4.210
750	750. 825	1.525	-2.610	2.068	0.009	4.642
Pmax	780.687	1.710	-2.835	2.273	0.010	5.102

②W4の荷重とひずみ

荷重No	(CHO)荷重	上側 相 対平均 (CH1,3)	下側 相 対平均 (CH2,4)	伸縮絶対 値の平均 	ひずみ	せん断応 力度
		mm	mm	mm		$\mathrm{N/mm}^2$
100	102.116	0.125	-0.260	0.193	0.0009	0. 432
200	200. 430	0.315	-0.540	0.428	0.0019	0.960
300	302.871	0.525	-0.855	0.690	0.0031	1.549
400	401.761	0.770	-1.190	0.980	0.0044	2.200
500	501.100	1.060	-1.560	1.310	0.0059	2.941
600	600.515	1.535	-2.070	1.803	0.0081	4.047
700	701.055	2.260	-2.745	2.503	0.0112	5. 619
Pmax	745.173	2.985	-3.310	3.148	0.0141	7.067

③W1とW4の荷重とタスキ測定の変形の比較

荷重No	W1の変形 の平均値 mm	W4の変形 の平均値 mm	W変形/W1変形	
100	0.133	0. 193	1.453	
200	0.300	0. 428	1.425	
300	0.485	0.690	1.423	
400	0.680	0. 980	1.441	No100~No500の平均
500	0.893	1.310	1.468	1.442
600	1.573	1.803	1.146	
700	1.875	2. 503	1.335	
750	2.068	3.148	1.522	W4はPmaxの値を設定

無開口W1と比較して有開口W4は、およそ1.45倍のひずみが生じている。 荷重Noの600と700は、W1の試験において試験体が外側に湾曲してきたため 試験体を740kNから除荷し、鉛直に再セットして加力再開したことから W1の変形数値が正しく測定されていないことで小さくなっていると考えられる。 荷重No750では、正常に復帰したと思われる。

有開口W4は、無開口W1に対して変形が平均で1.44倍で推移していること から、せん断応力度は、W1の1.44倍と想定される。 ここで、有開口W4のせん断破壊時のPmax=745.17kNにおけるせん断応力度を

算定すると以下の値となる。

 $\tau = P \max/(2A) = (745.17 \times 1000) / (2 \times 90 \times (1000-250)) = 5.520 N/mm²$ 従って、W1のせん断強さは、5.52×1.44=7.95N/mm²と想定され 対角の変形からひずみ ϵ を算定し、せん断弾性係数を求めると

 $(h^{2}+L^{2})^{-0.5}/(h \times L) \times = (250^{2}+490^{2})^{-0.5}/(250 \times 490) \times 2.068$ ひずみ $\epsilon = -0.00929$

G=7.95/0.00929=855.8N/mm²となる。 せん断弾性係数は、約1.71倍であることが想定される。

3.6 CLT の圧縮試験

参考として供試 CLT の圧縮強度を短柱圧縮試験で求めた。

1. 試験体

試験体は、CLT構造試験体から切り出した試験片で外観及び寸法等を写真 1.1 に示す。試験体数は全 10 体である。

樹種	:スギ
強度等級	: S60-3-3
長さ	: 400mm
断面幅	: 120mm
断面厚さ	: 90mm

写真1.1 試験体の外観と概要

2. 試験方法

試験は万能試験機(UH-2000kNC,株式会社島津製作所製)により1000kN/5Vのレンジで加 力を行った。加力に際しては,最大荷重に達した後,その最大荷重の7割程度に荷重が低下 した時点で実験を終了した。

荷重と変位の計測に当たっては万能試験機の電圧出力を使用すると共に,定格出力 30mm (5,000 µ)のひずみ変換型変位計(DTK-A-30,株式会共和電業製)を用いて試験体表層ラミ ナの表面(右)と裏面(左)の圧縮方向の変位量を計測した。標点間距離は試験体長の2分の 1 (200mm)とした。併せて,表面及び裏面のそれぞれ中央部の圧縮方向のひずみをひずみ ゲージ(PFL-30-11-3LJCT-F,株式会社東京測器研究所製)にて計測した。

いずれのデータも、データロガー (DTH-A-100,株式会社共和電業製)を介してパーソナル コンピュータにて収録を行った。試験体の設置状況を写真 2.1 に示す。

写真 2.1 試験体の設置状況

3. 試験結果

試験結果を表 3.1 に一括して掲げると共に,各数値の関係を図 3.1 に示す。各試験体の応力度-ひずみ度曲線は図 3.2 に示すとおりである。各試験体の最終状況を写真 3.3~3.12 に示す。

				圧縮ヤング係数 E _c	
試験体名	密度 ρ	圧縮強度 σ c	ひずみゲージ	ひずみ変換型	加力機
	(kg/m^3)	(N/mm^2)		変位計	変位出力
			$(10^{3}N/mm^{2})$	$(10^{3}N/mm^{2})$	$(10^{3}N/mm^{2})$
W1-2	429	30.4	5.15	5.37	4.18
W1-③	395	29.2	7.21	6.94	5.15
W2-①	421	28.0	5.11	4.69	4.05
W2-2	416	30.4	4.88	5.65	4.22
W2-③	393	26.9	4.70	4.67	3.57
W3-①	400	26.1	4.45	4.02	3.28
W3-2	432	33.0	5.98	6.06	3.49
W3-③	419	25.6	4.44	4.38	3.70
W4-2	422	25.7	4.61	4.49	3.46
W4-③	407	28.4	5.24	5.39	4.29
平均值	413	28.4	5.18	5.17	3.94
標準偏差	13.7	2.41	0.85	0.89	0.56
変動係数	3.31%	8.49%	16.4%	17.2%	14.1%

表 3.1 試験結果の一覧

【備考】圧縮ヤング係数の算出に当たっては、最大荷重の10%時と40%時の応力度とひずみ度を 用いた。

写真 3.3 試験体 W1-②の最終破壊状況

写真 3.4 試験体 W1-③の最終破壊状況

写真 3.5 試験体 W2-①の最終破壊状況

写真 3.6 試験体 W2-②の最終破壊状況

写真 3.7 試験体 W2-③の最終破壊状況

写真 3.8 試験体 W3-①の最終破壊状況

写真 3.9 試験体 M3-2の最終破壊状況

写真 3.10 試験体 W3-③の最終破壊状況

写真 3.11 試験体 W4-2の最終破壊状況

写真 3.12 試験体 W4-③の最終破壊状況

第4章プログラムでの解析結果と柱脚金物耐力を考慮した断面検定

4.1 プログラムによる解析結果とまとめ

4.1.1 開口低減率による壁の挙動比較報告-

(1)検討方法

壁長が異なる3層3プライのCLT壁パネルの水平力作用時の挙動を解析的に検討する。壁長さは1.0m、1.5m、2m(壁高さは3m)とし、壁上には集成梁があるものとする。壁の四隅には引きボルト接合をモデル化した非線形バネを設定し、CLT壁下部には土台があるものとし、その土台へのめり込み、並びにCLT壁上部には集成梁へのめり込み挙動も考慮したモデルについて荷重増分解析を行った。荷重増分解析においては、鉛直荷重を壁頂部に載荷するものと載荷しないものの2種類の荷重条件に対して、開口低減率0.7、0.8、0.9の3段階を適用したものと開口低減率を適用しないものについて壁の挙動の違いを比較した。なお、載荷する鉛直荷重はMx60-3-3の高さ3mにおける長期圧縮座屈荷重80kN/mを用いた。

(2)解析モデル

壁パネルは壁の厚さ・幅を持つ梁要素と上下に壁幅に相当する剛梁で構成し、壁上に集成梁 が配置されるモデルとし、集成梁は90×240のスギ集成材 E65-F225 とした。基礎天端を支持層と し、そこから土台高さ105mm、壁パネル高さは3000mmとした。加力は集成梁芯高さとし、壁パネル の四隅には引きボルトによる引張バネと土台や床パネルへのめり込み挙動を圧縮バネとして配置 し、せん断バネを壁パネル上下中央に設けた。

図 2.1 1m 壁解析モデル

図 2.2 1.5m 壁解析モデル

図 2.3 2m 壁解析モデル

(3)CLT 弾性係数

<u>単位:kN/mm²</u>

部位				面内方向			面外	方向	
	ラミナ構成	強度等級	E		G	E		G	
			強軸	弱軸	共通	強軸	弱軸	強軸	弱軸
壁	3層3プライ	Mx60-3-3	4.000	1.000	0.500	5.777	0.111	0.0238	0.0625

水平加力試験はS60-3-3 により行われているが、面内方向の基準強度、弾性係数はM×60-3-3 に等しいことから、解析内容は同一となる。

表 3.1 弹性係数(単位:kN/mm²)

(4) 接合部特性

1) 引張バネ

平成 29 年度建築研究所委託事業 低層用 CLT パネルの引きボルト接合部の引張試験業務報告書 (公財)日本住宅・木材技術センターより算出された ABR490 M16 の特性値 (剛性平均)からバネ特性を算出した。なお、Lb の算出方法は図 4.1 参照のこと。引張バネの応力変形特性は終局耐力を折れ点とした完全バイリニアモデルとした。解析上、壁パネルの隅角部に引張バネを配置するため、R=0.83 d/D とし弾性剛性に R²を乗じ、非線形 応力変形特性の耐力には R を乗じ、変形を R で除し補正を行った。

壁-床/壁-梁/壁-基礎 引張バネ Mx60-3-3(M16/ABR490)

部位	バネ記号	Lb	パネル幅	縁距離	d	R				
		(mm)	Dw(mm)	dc(mm)	(mm)					
	W-1.0-T-S	597	1000	135	865	0.718	Lb=小座金4.5+	+座金12+床厚	210	
壁−床	W-1.5-T-S	597	1500	135	1365	0.755	+CLT穴の長さ	350+座金16+	小座金4.5=	597mm
	W-2.0-T-S	597	2000	135	1865	0.774				
	W-1.0-T-B	627	1000	135	865	0.718	Lb=小座金4.5+	+座金12+梁せ	tu240	
壁−梁	W-1.5-T-B	627	1500	135	1365	0.755	+CLT穴の長さ	350+座金16+	小座金4.5=	627mm
	W-2.0-T-B	627	2000	135	1865	0.774				
	W-1.0-T-F	475.5	1000	135	865	0.718	実験と整合させて基礎天端高さとした。			
壁−基礎	W-1.5-T-F	475.5	1500	135	1365	0.755	Lb=小座金4.5+座金16+CLT穴の長さ350			
	W-2.0-T-F	475.5	2000	135	1865	0.774	+土台せい105=475.5mm			
		kı.	⊳k1	Pv	δv	⊳Pv	Pu	δv	ьPu	⊳би
部位	バネ記号	(kN/mm)	(kN/mm)	(kN)	(mm)	(kN)	(kN)	(mm)	(kN)	(mm)
	W-1.0-T-S	25.2	12.98	51	2.02923	36.61	59.3	2.34848	42.57	83.15
壁−床	W-1.5-T-S	25.2	14.37	51	2.02923	38.52	59.3	2.34848	44.78	79.04
	W-2.0-T-S	25.2	15.09	51	2 0 2 9 2 3	20 / 7	59.3	2 3/8/8	45.89	77 13
				• •	2.02320	00.47	00.0	2.34040	10.00	
	W-1.0-T-B	24.63	12.69	51	2.07693	36.61	59.3	2.40368	42.57	87.33
壁−梁	W-1.0-T-B W-1.5-T-B	24.63 24.63	12.69 14.05	51 51	2.07693 2.07693	36.61 38.52	59.3 59.3	2.40368	42.57	87.33 83.01
壁−梁	W-1.0-T-B W-1.5-T-B W-2.0-T-B	24.63 24.63 24.63	12.69 14.05 14.75	51 51 51	2.07693 2.07693 2.07693 2.07693	36.61 38.52 39.47	59.3 59.3 59.3	2.40368 2.40368 2.40368 2.40368	42.57 44.78 45.89	87.33 83.01 81.01
壁-梁	W-1.0-T-B W-1.5-T-B W-2.0-T-B W-1.0-T-F	24.63 24.63 24.63 27.86	12.69 14.05 14.75 14.36	51 51 51 51 51	2.07693 2.07693 2.07693 1.836045	36.61 38.52 39.47 36.61	59.3 59.3 59.3 59.3 59.3	2.40368 2.40368 2.40368 2.12492	42.57 44.78 45.89 42.57	87.33 83.01 81.01 66.23
壁-梁 壁-基礎	W-1.0-T-B W-1.5-T-B W-2.0-T-B W-1.0-T-F W-1.5-T-F	24.63 24.63 24.63 27.86 27.86	12.69 14.05 14.75 14.36 15.89	51 51 51 51 51 51	2.07693 2.07693 2.07693 1.836045 1.836045	36.61 38.52 39.47 36.61 38.52	59.3 59.3 59.3 59.3 59.3 59.3	2.40368 2.40368 2.40368 2.12492 2.12492	42.57 44.78 45.89 42.57 44.78	87.33 83.01 81.01 66.23 62.95

Lb:ナット間距離 Dw:パネル幅 dc:縁距離 d=Dw-dc R:調整係数(=0.83d/Dw) k₁:初期剛性 Rk₁:補正初期剛性(=R²k₁) Py:降伏耐力 RPy:補正降伏耐力(=R×Py) Pu:終局耐力 RPu:補正終局耐力(=RPu) R &u:補正終局変位(=0.1L/R)

図 4.1 引張バネ特性

E縮バネ

圧縮バネの応力変形特性は、CLT 床には Mx60-5-7 を、梁・土台にはスギ集成材 E65-F225 を用いるとし、降伏耐力を折れ点としたバイリニアモデルとした。降伏耐力 Py、弾 性剛性 K₁、降伏後剛性 K₂ (= k $_1/8$) は設計施工マニュアル 3.1.2 (3) 接合部のモデル 化 (P.68) より算出した。解析上、壁パネルの隅角部に圧縮バネを配置するため、R=0.83 d/D とし弾性剛性に R²を乗じ、非線形応力変形特性の耐力には R を乗じ、変形は R で除 し補正を行った。

壁−床/壁-	-梁/壁−土台
圧症バス	My60_2_2

部位	バネ記号	パネル厚 tw(mm)	パネル幅 Dw(mm)	縁距離 dc(mm)	d(mm)	Ae(mm ²)	R
	W-1.0-C-S	90	1000	135	865	19462.5	0.718
壁−床	W-1.5-C-S	90	1500	135	1365	30712.5	0.755
	W-2.0-C-S	90	2000	135	1865	41962.5	0.774
壁−梁	W-1.0-C-B	90	1000	135	865	19462.5	0.718
	W-1.5-C-B	90	1500	135	1365	30712.5	0.755
	W-2.0-C-B	90	2000	135	1865	41962.5	0.774
	W-1.0-C-D	90	1000	135	865	19462.5	0.718
壁−土台	W-1.5-C-D	90	1500	135	1365	30712.5	0.755
	W-2.0-C-D	90	2000	135	1865	41962.5	0.774

部位	バネ記号	Fcv (N/mm ²)	E ₉₀ (N/mm)	Z ₀ (mm)	k1 (kN/mm)	_R k1 (kN/mm)	Py(kN)	_R Py(kN)	k2 (kN/mm)	剛性 低下率
	W-1.0-C-S	6	200	210	18.53	9.55	116.77	83.83	1.19	0.125
壁−床	W-1.5-C-S	6	200	210	29.25	16.68	184.27	139.17	2.08	0.125
	W-2.0-C-S	6	200	210	39.96	23.93	251.77	194.86	2.99	0.125
	W-1.0-C-B	6	216	240	17.51	9.02	116.77	83.83	1.12	0.125
壁−梁	W-1.5-C-B	6	216	240	27.64	15.76	184.27	139.17	1.97	0.125
	W-2.0-C-B	6	216	240	37.76	22.61	251.77	194.86	2.82	0.125
	W-1.0-C-D	6	216	105	40.03	20.63	116.77	83.83	2.57	0.125
壁−土台	W-1.5-C-D	6	216	105	63.18	36.04	184.27	139.17	4.5	0.125
	W-2.0-C-D	6	216	105	86.32	51.7	251.77	194.86	6.46	0.125

*梁、土台はスギ集成材E65-F225

図 4.2 圧縮バネ特性

3) せん断バネ

せん断バネは引きボルトで降伏させることを前提に剛性は無限大、耐力は十分高い値を設 定し、予備解析により CLT 壁の下部が水平挙動していないことを確認した。またせん断 バネはせん断力のみ伝達し、せん断バネ位置でモーメントは発生しない。 (5)解析結果

1) 無載荷

CLT 壁端部の引き抜き力が引きボルトの終局耐力に達するときの壁頂部水平力と、ほぼ等しい荷 重で解析終了となっていた。面内のせん断変形と曲げ変形を低減させるように開口低減率を適用 したが、金物が先行降伏するモードに変化はなかった。開口低減率が 0.9~0.7 に変化していくと 変形がわずかに大きくなり、剛性が低下していることがわかる。

①1.0m 壁解析モデル

図 5.1.1 X-Z 変形図 (1.0mCLT 壁結果例 開口低減率 0.7) 単位:mm

②1.5m 壁解析モデル

図 5.1.3 X-Z 変形図 (1.5mCLT 壁結果例 開口低減率 0.7)単位:mm

図 5.1.4 解析結果(1.5mCLT 壁)

図 5.1.5 X-Z 変形図 (2.0mCLT 壁結果例 開口低減率 0.7) 単位:mm

図 5.1.6 解析結果(2.0mCLT 壁)
_	1.0m壁						
開口低減率	0.7	0.8	0.9	1.0			
初期剛性 (kN/mm)	0.623	0.650	0.673	0.693			
剛性低下率	0.101	0.062	0.028	-			

表 5.1.1 無載荷 開口低減適用の解析結果比較(1.0m 壁)

表 5.1.2 無載荷 開口低減適用の解析結果比較(1.5m 壁)

-	1.5m壁					
開口低減率	0.7	0.8	0.9	1.0		
初期剛性 (kN/mm)	1.769	1.852	1.922	1.982		
剛性低下率	0.108	0.066	0.030	-		

表 5.1.3 無載荷 開口低減適用の解析結果比較(2.0m 壁)

_						
開口低減率	0.7	0.8	0.9	1.0		
初期剛性 (kN/mm)	3.459	3.633	3.780	3.907		
剛性低下率	0.115	0.070	0.033	-		

2) 有載荷

鉛直荷重が載荷されているため、次のような挙動が確認できた。左から右に水平力を増分させると 壁右下の圧縮力増加及び壁左下の鉛直荷重分の圧縮力の減少が起こる。その後、壁左下の圧縮 力が壁の浮き上がりによりキャンセルされ圧縮力ゼロ、すなわち抑え荷重ゼロの状態になり、引き 抜き力が発生し始める。その後、壁右下の圧縮力の増加及び壁左下の引き抜き力が増加していく が、壁右下の圧縮バネが一次降伏し、グラフの第一折れ点ができる。さらに荷重を増加させると壁 左下の引きボルトが降伏し、第二折れ点となり金物が終局耐力を迎えた段階で解析終了となった。 なお、1.5m、2.0m 壁で特にこのような挙動が顕著であり、1m 壁では壁の転倒が大きいため、圧縮 降伏する第一折れ点を視覚的に判別しにくい。また開口低減率が0.9~0.7 に変化していくと変形 がわずかに大きくなり、剛性が低下していることがわかる。 ①1.0m 壁解析モデル

図 5.2.1 X-Z 変形図(1.0mCLT 壁結果例 開口低減率 0.7) 単位:mm

図 5.2.2 解析結果(1.0mCLT 壁)

②1.5m 壁解析モデル

図 5.2.3 X-Z 変形図(1.5mCLT 壁結果例 開口低減率 0.7) 単位:mm

図 5.2.4 解析結果(1.5mCLT 壁)

③2.0m 壁解析モデル

図 5.2.5 X-Z 変形図(2.0mCLT 壁結果例 開口低減率 0.7) 単位:mm

図 5.2.6 解析結果(2.0mCLT 壁)

_	1.0m壁					
開口低減率	0.7	0.8	0.9	1.0		
初期剛性 (kN/mm)	0.698	0.733	0.763	0.788		
剛性低下率	0.114	0.070	0.032	-		

表 5.2.1 有載荷 開口低減適用の解析結果比較(1.0m 壁)

表 5.2.2 有載荷 開口低減適用の解析結果比較(1.5m 壁)

-	1.5m壁						
開口低減率	0.7	0.8	0.9	1.0			
初期剛性 (kN/mm)	2.179	2.306	2.416	2.512			
剛性低下率	0.133	0.082	0.038	-			

表 5.2.3 有載荷 開口低減適用の解析結果比較(2.0m 壁)

_	2.0m壁						
開口低減率	0.7	0.8	0.9	1.0			
初期剛性 (kN/mm)	4.435	4.725	4.979	5.201			
剛性低下率	0.147	0.092	0.092 0.043				

(6) まとめ

鉛直荷重の有無について水平荷重増分解析を行ったが、開口低減率によって剛性がわずかに低下することは見られたが、開口低減率1.0と同一の降伏モードを示していた。実際の設計では CLT壁には無載荷以上、長期圧縮座屈荷重以下の鉛直荷重が載荷されており、無載荷と有載荷の剛性低下率を勘案すると、開口低減率0.9程度の小開口であれば、概ね3~4%程度の剛性低下となり、開口低減率0.8程度の小開口であれば、概ね6~9%程度の剛性低下率に留まることが確認できた。

4.1.2 有開ロシェルモデル解析結果とまとめ

(1) 検討方法

小開口を有する3層3プライの1mCLT壁パネルに鉛直荷重を載荷させた状態で水平荷重増 分解析を行い、挙動の確認を行った。壁長さは1.0m、壁高さは3.0mとし、壁上には集成梁がある ものとする。壁の四隅には引きボルト接合をモデル化した非線形バネを設定し、CLT壁下部には 土台があるものとし、その土台へのめり込み、並びに CLT壁上部には集成梁へのめり込み挙動も 考慮したモデルとした。なお、載荷する鉛直荷重は Mx60-3-3の高さ3mにおける長期圧縮座屈 荷重80kN/mを用いた。

(2) 解析モデル

図 2.1 に示したように3.0m壁の中心に \$ 250 の開口を2か所設けたものをモデル化する。モデル 形状は図 2.2 に示したように、設計施工マニュアルに示されるモデルと同様とし各種バネ特性につ いては「開口低減率による壁の挙動比較報告」で使用したものと同一とし、メッシュ間隔は 50mm と した。解析時間が膨大に掛かったが 25mm のメッシュ間隔についても参考までに解析したが、応力 分布に変化が見られなかったため、メッシュ間隔は 50mm とした。

図 2.1 開口位置図

図 2.2 解析モデル図

(3) 增分解析結果

梁要素でCLT壁をモデル化したものと全く同様な挙動を示しており、壁右下の圧縮バネ の降伏、その後、壁左下の引張バネが降伏し、引張バネが終局耐力を迎えて解析終了となっ た。有開ロシェルモデルと無開ロシェルモデルを比較すると、圧縮バネや引張バネが先行し て降伏するため、両者の応力状態に大きな差は見られず、また開ロ廻りに引張破断を生じさ せるような大きな主応力が発生しておらず、短期以下の応力度であった。また最小主応力も 同様な傾向のため、割愛した。

- (4) 静解析結果
- 1) 実験仕様に合わせた解析

増分解析では圧縮や引張バネが先行降伏したため、パネル自体の応力状態の予測として予備的に壁脚部をすべてピン拘束した 50mm メッシュモデルで静解析を行った。鉛直荷重は 80kN/m、水平荷重は1m壁の実験時の荷重 28kN を載荷して静解析を行った。なお、壁上 部の梁は荷重載荷用のため、ダミー部材とした。解析対象は図 4.1.2 に示したφ150×2、φ 250×1、φ250×2、無開口の4パターンとした。なお無開口のみは応力は無視し、頂部水 平変位のみ出力することとした。

図 4.1.1 静解析用モデル図

① $\phi 150 \times 2$

最大主応力図を図 4.1.3 に最小主応力図を図 4.1.4 に示した。CLT パネル脚部をピン支持 とし浮き上がりを拘束しているため、開口周辺に引張や圧縮応力が発生しているものの、 短期以下の応力度であった。

開口廻りの応力精査

1) 左 *ϕ* 150

引張:1.8<8×2/3=5.33…OK 圧縮:3.18<10.8×2/3=7.2…OK 2) 右 φ 150 引張:2.29<8×2/3=5.33…OK

压縮: $5.3 < 10.8 \times 2/3 = 7.2 \cdots OK$

図 4.1.4 最小主応力図

最大主応力図を図 4.1.5 に最小主応力図を図 4.1.6 に示した。CLT パネル脚部をピン支持 とし浮き上がりを拘束しているため、開口周辺に引張や圧縮応力が発生しているものの、 短期以下の応力度であった。

 $\bigcirc \phi 250 \times 2$

最大主応力図を図 4.1.9 に最小主応力図を図 4.1.10 に示した。CLT パネル脚部をピン支持 とし浮き上がりを拘束しているため、開口周辺に引張や圧縮応力が発生しているものの、 短期以下の応力度であった。

開口廻りの応力精査

小開口(上側)
 引張: 2.19<8×2/3=5.33···OK
 圧縮: 4.49<10.8×2/3=7.2···OK
 2)小開口(下側)
 引張: 2.11<8×2/3=5.33···OK
 圧縮: 5.32<10.8×2/3=7.2···OK

図 4.1.9 最大主応力図

参考までに図 4.1.11 に最大せん断応力分布を比較したものを示した。開口の高さ、大きさ によって最大せん断応力が変化しており、開口廻りの最大せん断応力は主応力と同様な傾 向を示していることがわかる。

水平荷重 28kN 載荷したときの水平変位を表 4.1.1 に示したが、無開口と概ね同一の変 形、剛性を示しているのがわかる。

表 4.1.1	1 28kN	時点の変位	•
---------	--------	-------	---

ZOKIN時点の多位							
-	ϕ 150 × 2	ϕ 250 × 1	ϕ 250 × 2	無開口			
変位(mm)	10.653	10.704	10.835	10.397			
岡性(kN/mm)	2.628	2.616	2.584	2.693			

28kN時点の変位

(2) φ150×2の開口位置を拡張した解析

図 4.2.1 に φ150×2 の開口位置を変化させた5パターンを示した。開口位置の違いにより応力の 違いが発生するか解析的に検討を行った。

図 4.2.1 拡張仕様

1) 拡張仕様 A

最大主応力図を図 4.2.2 に最小主応力図を図 4.2.3 に示した。実験仕様の開口位置と対称となる仕様で、実験仕様と同様に開口廻りの応力は短期以下の応力度であった。

図 4.2.3 最小主応力図

2) 拡張仕様 B

最大主応力図を図 4.2.4 に最小主応力図を図 4.2.5 に示した。実験仕様の開口を中段に設けた仕様で、開口廻りの応力で短期をわずかに超える箇所があった。

図 4.2.5 最小主応力図

3) 拡張仕様 C

図 4.2.7 最小主応力図

4) 拡張仕様 D

最大主応力図を図 4.2.8 に最小主応力図を図 4.2.9 に示した。実験仕様の開口を下段に設け た仕様で、開口廻りの応力で短期に近いまたは短期を超える応力度の箇所があった。

開口廻りの応力精査 1) 左 \ 0 150 引張: 5.26<8×2/3=5.33····OK 压縮:2.46<10.8×2/3=7.2···OK 2) 右 φ 150 引張: 3.16<8×2/3=5.33···OK 压縮:10.79>10.8×2/3=7.2···NG

midas iGen POST-PROCESSOR

SIG-MAX 両面

1.2346E+001

表示-方向

図 4.2.9 最小主応力図

5) 拡張仕様 E

最大主応力図を図 4.2.10 に最小主応力図を図 4.2.11 に示した。拡張仕様 D の対称仕様で、 開口廻りの応力で短期に近いまたは短期を超える応力度の箇所があった。

midas iGen POST-PROCESSOR 開口廻りの応力精査 PLN STS/PLT STRS 1) 左 \ 0 150 SIG-MAX 両面 引張: 5.46>8×2/3=5.33····NG 压縮:1.86<10.8×2/3=7.2···OK 2) 右 φ 150 引張: 3.35<8×2/3=5.33···OK 压縮:10.47>10.8×2/3=7.2···NG 倍率 = 1.2370E+001 ST: DL ELEMENT MAX : 1260 MIN : 1261 FILE: 拡張仕様E UNIT: N/mm2 DATE: 02/22/2019 表示-方向 X: 0.000 Y:-1.000 Z: 0.000 図 4.2.10 最大主応力図 midas iGen POST-PROCESSOR PLN STS/PLT STRS SIG-MIN 両面 倍率 = 1.2370E+001 ST: DL ELEMENT MAX : 1260 MIN : 8 FILE: 拡張仕様E[~] UNIT: N/mm2 DATE: 02/22/2019 表示-方向 X: 0.000

図 4.2.11 最小主応力図

Y:-1.000 Z: 0.000 開口廻りで短期許容応力度以下となった開口位置を重ねて表したものを図 4.2.12 に示した。 赤色の点線範囲では最上部、最下部に φ250 を各 1 箇所、または中間部分に開口を設けた い場合は中間部に 1 箇所、青色の点線範囲では φ150 の開口を 1 箇所設けても応力的には 問題がなさそうであることが、実験と同様な加力条件の解析結果より推察される。

図 4.2.12 短期許容応力度以下の開口位置重ね合わせと開口可能範囲

(5) まとめ

250 φの小開口を上下に設けた有開口 CLT 壁のシェルモデルについて鉛直荷重を載荷した 状態で水平荷重増分解析を行ったが、開口の有無にかかわらず剛体変形をしており、圧縮バ ネや引張バネが先行降伏するモードであった。バネの先行降伏により開口周辺に大きな応 力集中が見られないため、予備的に同荷重条件で CLT パネルの脚部をピン拘束して静解析 を行った。なお、解析対象とした開口パターンは、実験を行ったものと同一とした。開口周 辺に応力が発生するが、短期以下の応力度であり、水平変位も無開口と概ね同一であること から、金物が終局耐力を迎える水平荷重範囲(解析では 27.5kN であるが、実験に合わせ 28kN を載荷)であれば、小開口の影響が少ないことが確認できた。また φ 150 の開口位置 を拡張させた場合について解析的検討を行ったが、CLT 壁上段に φ 150×2 を設ける場合以 外は、開口廻りの応力が短期許容応力度を超えてしまうため、上段に開口を設けるのみ可と 考えた。また開口を設けても応力的に問題がなさそうな範囲が解析結果より推察できた。 4.2 柱脚金物終局耐力時の水平力による壁断面検定

Nt= (37.5×3.0) / (1.0-0.1) -80 85 k N σ t=85000/ (375×90) = 2.5 N/mm² $\leq 8.0 N/mm² OK$

以上より、W1は開口部分を除いた有効断面で構造上安全であることが判断される。 同様にW4も開口部分を除いた有効断面で構造上安全であることが判断される。 第5章 まとめ

5.1 検討結果の考察

5.1.1 定載荷水平加力試験結果と考察

試験においては、ルート1の許容せん断力28kNより、28×1.5×1.5 では63kN、28×1.5×1.5 では約56.5kNの水平加力を行い脚部金物破壊までの観察を実施した。各試験体は、 最大荷重になっても開口周辺に応力集中などによる亀裂などは発生していなかった。

クロス変位測定による有開口部分の変位からひずみを求め、せん断弾性係数G= 500N/mm²を乗じてせん断応力度を参考に算定したが、無開口と比較した場合、有開口の試 験体の値は大きくなりはしたが、各数値は、基準値Fs=2.04 N/mm² に対して余裕がある値と なっていた。

水平加力約 56kNで変形を無開口W1 と比較した場合には、有開口W2、W3、W4 ともに変 形に大きな差はなく、ルート1のクライテリア 1/120 を超えることはないと確認された。

したがって、各有開口試験体は、ルート1においては耐力壁として評価が可能と思われる。

5.1.2 4 点曲げ試験結果と考察

無開口W1の場合は、Q=2A/3×Fs=(2×1000×90)/3×2.04=122.4kNより、載荷最大 荷重はP=3×122.4=367.2kNと想定できたが、試験体CLTの強度が 1.2 倍~2.0 倍あると 考えられることから、載荷荷重は、P=440~730kNでせん断破壊すると想定した。

しかし、無開口W1 は、載荷荷重が 780.68kNでもせん断破壊せず、加力支点の局部的な めり込み破壊で終了し、そのためせん断強度は確認できなかった。試験の状況からは、パネ ル自体からパリパリと大きな異音が発生しており、破壊まではわずかだったと思われた。

有開口W4 は、載荷荷重 745.17kNで破壊した。開口廻りで応力集中が生じ、せん断破壊したと考えられた。

4 点曲げ試験結果から無開口壁W1 のせん断応力度およびせん断弾性係数を参考に求めたが、 $\tau = 7.95 \text{ N/mm}^2$ 、G=855.8 N/mm²となり、基準値と比較すると参考値ではあるが、せん断弾性係数は、基準値の 1.71 倍の値であった。試験体強度が基準より高かったと判断できた。

5.1.3 シェルモデルの解析結果と考察

各有開口の試験体をモデルで解析した結果は、無開口W1 に対して有開口壁W2, W3、W4 は、変形、剛性が近似であった。断面検定では、中間及び下部に 2 つの Φ150 を設けた場合 は、ルート1の許容せん断耐力の最大値 28kNの水平力で圧縮側がNGとなったが、他は、開 口が設けられていても安全性が確認できた。

前記の結果から、開口の大きさ、数と位置を特定しておけば、有開口耐力壁としてルート1 で採用することに問題はないと判断される。

5.2 有開口耐力壁の設計法の提案

前記の検討結果から有開口壁の試験体 CLT は、ルート1の許容せん断耐力の最大値 28k N/mの1.5×1.5~1.5×1.3 の範囲で、せん断応力度がFs=2.04N/mm²に対して余裕のある 値であったことから、開口の大きさ、数、位置などの条件を設定することで、ルート1 において 有開口耐力壁を採用することは構造上の安全性に問題は生じないと判断される。

ただし、開口周辺の垂れ壁、腰壁からの影響のない位置とするなどの付帯ルールを設けることで、下図の位置に開口が配置できるとして有開口耐力壁の設計法を提案する。

CLT等新たな木質建築部材利用促進・定着委託事業のうち国による開発

資料1 委員会議事録

議事 要旨(案)

件名	有開口耐力壁開発委員会	201	18年度 第1回			
日時	2018年7月24日(火)	場所	日本 CLT 協会 会	議室		
15 L 14	10時00分~12時00分	202721				
参加者	【委員長】 神谷 エンデ/セイホク 【委員】 五十田 博/京都大学、植松 武 信/森林総合研究所、鈴木 圭/ F	:是/北海学 本住宅・	空園大学、[荒木 康弘] 木材技術センター、[岡	/国土技術政第 別部 実]/ベタ	€総合研究所、野田 康 マーリビング	
	【協力委員】☆梅森 浩/大成建設、大橋	修/三井	ホーム、渡邉 須美樹	/木構研、車田	慎介/銘建工業	
	【コンリルクシド】干越 産道/干越建築設計事務別、<留山 怪和子ン[尸山 浮二]/干天設計 【行政】藤本 達之/林野庁 【事務局】河合 誠 「坂部 苦亚] 小玉 陽史 伴 勝彦					
	【新扬周】仍日 誠、[须即 万平]、乃五 陽叉、伴 開厚 ※敬称略、< >は代理出席者、[]は欠席者、☆は議事録作成者					
(内容・決	:定事項)					
1. 委員約	召介					
2. 趣旨詞	兑明					
・事務	局(伴氏)より、本委員会は林野	宁の補助	b事業に採択された	開発に対す	るものとして、資	
料18	-1-2に示す目的、事業内容、スケシ	ジュール	、報告書の作成等、	その他補足	こ的な内容に沿って	
進め	て行くとの説明があった。					
・今回	の開発内容は計算ルート1~3全て	こ適用し	、たい。			
・ルー	ト2、3については適用範囲をかな	り絞り辺	む必要があると予	測される。		
3. 有開口	コ耐力壁の計算合理化案の開発につ	いて				
・コン	サル(中越氏)より、資料18-1-3に	こ沿って	説明があり、その後	发質疑応答及	ひ議論が行われ	
た。						
• CLT	パネルに孔が空いたら何らかの耐た	カ低下が	あるとの共通認識	を持った。		
・ バレー	ト2、3でも接合部が先行破壊する	ことを前	前提に、CLTパネル	のせん断耐	力性能を超えない	
範囲	で開口を設けることができるとい	う理屈に	は成立つが、開口に	よる影響を	無視するとか低減	
すれ	ば良いとできるようにするには、	相当複雜	権な条件設定(仕様	規定等)が	必要になる。	
 資料 	のP.1の1.①に鉛直荷重に対して開	ロの大き	さ、位置に無関係	に断面欠損	部分を有効断面か	
ら除	外することは合理性に欠けている	とあるか	³ 、最新の規定では	部位により	座屈の影響の有無	
等を	考慮して検討することとなってお	り、現在	Eは合理的な検討方	法となって	いる。	
・実験	を行うのは資料のP.1③(面内せん	断実験)	のみとする。			
・実験	では開口の条件(寸法、位置、箇)	所数等)	によっては、ばら	つきの範囲	なのか開口の影響	
によ	るものなのか判断できない場合が	想定され	いる。また、実験可	能な試験体	数にも限りがあ	
る。						
 ・従っ 	て基本的には解析で検討を行い、	その結果	県が妥当なものかを	確認するこ	とが実験の目的と	
なる	ものと考えられる。					
• 貸料	のP.10~12に試験体リスト案を示し	してあり	、これを叩き台と	して試験体力	杉状等を決めて行	
きた						
• 設備	用の扎と引きホルト用の扎とは別	囫として	、検討する。なお、	引きホルト	用の扎の影響を確	
認す	認する実験ではその周囲に引きホルトによる応力が生じる状況にはしない。					
• 今回	 ・今回は引きホルトの礼が存在するバネルには設備用の孔は空けないことを前提に検討を行う。 					
・ 美际	の設計では例えばリンルームタイ	ノか业る	す 貢 貸 仕 毛 じ は 必 と 思 し 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	東 低限の幅の		
	ク回かめり、その耐刀壁に換気用、 ツェレカスト コジタン この上	、 ツ気用	」、 給水用、 クーフ	ースリーフ) 海ムマ 21 亜	用寺、3~673所の) ジェフ	
北が	必要となるケースか多い。このよ	りな実り ヘーフリ	てを踏まえて検討を) 理める必要) ス なった 亡	かめる。	
• 很 数	の北か接近する場合はそれらを包	古するよ	、フな扎として考え	る等の対応	か必要になる。	
 小さ 	いれは大さいれよりも耐刀性能に-	チ ス る 景	/響は小さいため、	てれを考慮	して加刀順序を次	
めて	行く宁疋。					

1 / 2

- 実験では水平加力時の長期鉛直荷重の影響を考慮する必要がある。即ち鉛直方向に一定の圧縮 力をかけてせん断力を上げる実験で性状を確認すべき。
- ・タイロッド式の加力では、脚部金物の影響が生じにくくなる。また、圧縮ストラットから離れた位置の開口では長期鉛直荷重の影響を考慮したことにならないし、圧縮ストラットとの位置関係によっては逆に実際よりもかなり厳しい応力状態になることも想定される。
- ・今回の試験体は壁厚150mmであり4層程度迄を想定しているのでこれに見合う鉛直荷重で考えれ ば良い(それ程大きな荷重にはならない筈)。
- ・ルート2、3になると鉄骨梁を用いるケース等も想定される。今回検討できる範囲を考えると、 ルート2、3でも構法を限定したものとする必要がある。
- ・資料のP.16に垂れ壁の支圧力と開口部側面の応力状態の把握をする旨を記載しているが、本日の議論を踏まえてこれは断念し、今回は垂れ壁の影響を受ける開口は設けないこととする。
- ・資料18-1-4のスケジュールは平成31年3月12日の開発完了日をから後追いして組立てており、実験は9月中旬~10月末に北林産試で48体行う予定としているため、先ずは北林産試で鉛直荷重をかけながら水平加力が可能か確認する。
- ・タイロッド式による実験とせざるを得ない場合は、それを前提にどうすれば実際の建物の中に ある有開口耐力壁の耐力性状等を適切に評価できるのかを考える必要がある。今後今回の内容 をスギ以外のCLTにも適用できるようにする場合等を考慮すると一般的な加力装置で実施可能 な方法で対応できるようにしておく必要もある。
- 実験スケジュール等に間に合う時期に本委員会をもう一度開くことは不可能なので、事務局が本日の議論の結果を整理して、実験方法等を含む開発内容案を再度作成し、Eメールのやり取りで委員間の合意を取る形を取ることとする。
- ・方針としては、取り敢えずルート1で必要な仕様規定を決めて、ルート2、3でもその知見がある 程度参考とできるレベル迄を今年度の成果目標とする。
- ・今年度内でルート2、3迄を網羅した内容を一足飛びに完成させることは無理なので、今年度の 結果を土台として来年度~再来年度に繋げて行けるように進めて行く。

以上

備考:	配布資料		
18-1-0	議事次第		
18-1-1	委員名簿		
18-1-2	林野庁提出仕様書		
18-1-3	小開口付パネルの計算合理化案の開発	ě	
18-1-4	開発スケジュール案		
次回 日程	2018年11月15日(木) 15時00分~17時00分	場所	日本 CLT 協会会議室

(一社)日本 CLT 協会

議事要旨(案)

件名	有開口耐力壁開発委員会	20	18年度第2回			
日時	2018年11月15日(木)	場所	日本 CLT 協会 会議室			
	15時00分~17時00分	3001771				
参加者	【委員】五十田 博/京都大学、植松 武是/北海学園大学、[荒木 康弘] /国土技術政策総合研究所、野田 康 信/森林総合研究所、鈴木 圭/日本住宅・木材技術センター、岡部 実/ベターリビング 【協力委員】梅森 浩/大成建設、[大橋 修] /三井ホーム、☆渡邉 須美樹/木構研、[車田 慎介] /銘建工業 【コンサルタント】中越 隆道/中越建築設計事務所、戸田 淳二/中央設計 【行政】福島 純/林野庁 【事務局】[河合 誠]、坂部 芳平、[小玉 陽史]、伴 勝彦 ※敬称略、< >は代理出席者、[]は欠席者、☆は議事録作成者 (内容・決定事項)					
(内容・決	た定事項)					
1.委員変	更による紹介					
・林野	庁福島さん自己紹介					
2.第1回有	f開口委員会議事録(案)確認					
・誤字	訂正:2/2、12行目「平成31年3月1	2日の開	発完了日をから・・」⇒(を)削除して「平成31年			
3月1	2日の開発完了日から・・」とする	0				
 その ・その 	他異議無く議事録は承認された。	,				
5 . 1 用 口 •	月生武鞅祥神、武鞅スクンユー/ 	V 876 1	8.2.7 18.2.8について説明右り			
- 貝作	10-2-2, 10-2-3, 10-2-4, 10-2-3, 1	0-2-0, I	10-2-7、10-2-01、20、20、205月9			
○試験	体の強度確認方法について					
・実際	の運用として実験と同じ材料(CLT)が使わ	れている保証方法はどのように検証するか?とい			
うこ	とについて例えば応力レベルを計	, 則して基	基準強度以下であることが確認されれば良いと思			
われ	るがどのように確認されますか。	列えば、	歪みゲージを試験体に貼って応力度を計測して			
はい	かがしょうか。特にCLTの基準強度	度は現状	低く抑えられているので実際の製品は強度が2倍			
程度	あるものもある。そのため実験結果	果で応力	」が基準強度を超えてしまっては検証できない。			
 ・試験 があ 	場の計測チャンネル数に限りがあ あ。	りこれじ	(上チャンネルを増やすことが困難である可能性			
 最近 	こ。 は画像計測が比較的簡易にできる。	ようにな	こっているので採用する方向で検討する。			
・合わ	せて試験体図面にあるように斜め	方向に変	で位計を取り付け対角線上の変位計測も必要であ			
る。	使用する50mm変位計の精度につい	て確認	あり。			
・合わ	せて要素実験(圧縮試験)も行う。要	要素は各	試験体から1体採取で良いと思われる。試験体の			
大き	さは鈴木さんに連絡をもらう。試験	験場は非	治学園大学でできそうなので段取りを組んでも			
らう = 1000	。	N T/ 1.1	、この地方際の決場の共手していったの			
 ・ 設正 ムナ 	これしいる何里についし軸刀が80k での乳詰風焼かと道をだしていた。	KN/mとい たみぎょのしょ	いうのは美院の建物の何里と考えてよいのか?			
(イ よ	守まぐの設計例等から導さたしていますか40kN/m程度は軸刀としてかかっている。					
○試験	○試験体と治具の取り付けが偏心していたいか?					
・荷重	がかかった時、面外方向にハラミ	出さない	いか?			
また	、治具と試験機(ジャッキ)との取り	付けに	偏心はないのか?試験場に確認する。			
・面外	のハラミについては鉛直方向の変化	立を計測	し確認する。計測は最初の1体のみで良い。			
・開口	周りの変位についてクロス方向+	沿直方向](開口部周りの変位)を計測できるチャンネル数か			
ある	か試験場に確認する。できれば計れ	則する。				

1 / 2

○試験スケジュールについて

・試験スケジュールは12/3~7、12/10~14で行う。各委員は都合の良い時に参加することとする。

- 4. 有開口解析結果
 - ・資料18-2-9、18-2-10について説明有り
 - ・脚部引きボルトは実験2本、解析1本で相違がある。
 - ・解析は引きボルトが降伏することで終了する設定になっている。
 - ・開口低減率の定義はなんですか?「CLTを用いた建築物の設計施工マニュアル」P.81のRoで す。そのためパネル巾が1m、1.5m、2mでは開口寸法は違っている。
 - ・実験では水平方向に65kN加力しているが解析は27.5kNとなっている。その差に関しては今後精 査する必要がある。FEM解析の特性もあるため。
 - ・解析結果からは開口周りの応力は短期許容応力以内であることを確認している。

5.まとめ

- ・試験体形状は図面通りで良い。
- ・測定は画像解析を導入する。計測チャンネル数を試験場に確認する。
- ・治具と試験体及び試験機の偏心については試験場に確認する。
- ・上記確認後、試験方法に変更等がある場合は委員にメールにて確認をとることとする。

備考:配	布資料			
18-2-0	議事次第			
18-2-1	第1回有開口委員会議事録(案)			
18-2-2	開口位置設定根拠			
18-2-3	試験の進め方			
18-2-4	CLT試験体加工図			
18-2-5	治具図			
18-2-6	金物図			
18-2-7	測定機器位置図			
18-2-8	試験スケジュール			
18-2-9	開口低減率解析結果			
18-2-10	有開ロシェルモデル解析結果林野庁	提出仕相	様書	
次回 日程	2019年1月24日(木) 10時00分~12時00分	場所	日本 CLT 協会会議室	
				(一社)日本 CLT 協会

2 / 2

議事 要旨 (案)

件名	有開口耐力壁開発委員会	2018年度第3回					
日時	2019年1月24日(木) 10時00分~12時00分	場所	日本 CLT 協会 会議室				
参加者	【委員長】神谷 文夫/セイホク 【委員】五十田 博/京都大学、[植松 〕 /森林総合研究所、鈴木 圭/日本 【協力委員】梅森 浩/大成建設、☆大橋 【コンサルタント】中越 隆道/中越建築 【行政】福島 純/林野庁 【事務局】坂部 芳平、河合 誠、[小玉 ※敬称略、< >は代理出席者、[]]は欠界	10分 :/セイホク 気都大学、[植松 武是]/北海学園大学、荒木 康弘/国土技術政策総合研究所、野田 康信 E所、鈴木 圭/日本住宅・木材技術センター、岡部 実/ベターリビング i/大成建設、☆大橋 修/三井ホーム、渡邉 須美樹/木構研、[車田 慎介]/銘建工業 地越 隆道/中越建築設計事務所、戸田 淳二/中央設計 予庁 5、河合 誠、[小玉 陽史]、伴 勝彦					

(内容・決定事項)

1.第2回有開口委員会議事録(案)の確認

・有開口耐力壁試験における設定荷重は、許容応力度から算定した最大軸力 80kN/m とする。設計 例等では 40kN/m の軸力がかかっている。という記述は適切でないため削除する。

2.開口付壁の面内せん断試験結果概要報告

- ・最大加力は耐力壁に両側から合計12枚の垂れ壁・腰壁が取り付くとした場合とし、告示611号に 基づき算出した短期許容せん断耐力を1.5倍し、さらに安全率1.5倍を乗じた65kNとする。加力は 65kNの1/4、1/2、1倍の正負サイクルとし、0.8Pmaxまで押し切ることを目標として加力するこ ととした。また壁軸力は、80kNを保つよう手動で調整した。
- ・壁面のひずみ計測は、ひずみゲージによると、幅はぎや節などの影響で正確な応力状態を計測 ができないことが考えられたためひずみゲージを代えて画像計測を計画していたが、試験場が 画像計測に対応できる状況でなかったため全て通常の変位計による計測とした。
- ・無開口壁(W1)の最大荷重は、3体平均で120kNと目標値の65kNに対しかなり大きい数値であった。破壊形態は、いずれの試験体においても脚部の浮き上がりによる接合部の破壊であった。
- ・上下に φ 250 穴を1か所ずつ開けた壁(W2)の試験体のうちNo.2は外層ラミナが早期(70kN時) に割裂が発生した。この試験体を含めた3体の最大荷重の平均値は、112kN。
- ・上部2-φ150穴を開けた壁(W3)の試験体のうちNo.2は60kN程度で脚部接合部に割裂が生じ、 全ての試験体のうち唯一、目標値の65kNを下回る結果となった。
- ・中央 φ 250 穴を1か所開けた壁(W4)は、前述の壁脚部接合部の割裂破壊が生ずるも各試験体とも目標値65kNを上回る結果であった。
- ・W2~W4全ての仕様、全ての試験体において開口周辺で亀裂等の損傷は全く発生していない。
- ・接合部の破壊の原因は試験中に生じた曲げ引張力がラミナの破壊応力レベルを超えていたことによるが、接合部が破壊する以前に開口周囲に損傷が生じていないことから今回の開口仕様は構造上の欠点にはならないと言える。
- ・柱脚金物固定式とタイロッド固定式では、開口周囲に生じる応力状態が異なるため、固定方法 により扱いが難しいが、今後実施予定の要素試験により無開口壁からの耐力低下率が明らかに なればその評価の整理も可能といえる。
- ・今後斜めクロスに設置した変位計の結果を整理し、FEM解析と検証することにより開口周囲の 応力状況を詳細に把握することが可能となる見込み。

3.4点曲げ試験について

・W1およびW4仕様について4点曲げ試験を行う。

・加力点、支持点のめり込み対策の検討を要す。

 $1 \, / \, 2$

・目標最大荷重は、W1で185kN、W4で140kNとする。

・試験は富山県農林水産総合技術センターで実施予定。

4.有開ロシェルモデル解析結果

- ・実験仕様のW1~W4について壁脚部を接点ピン支持として解析を実施したところ、全てのケース において開口周囲の応力は短期許容応力度以下となっている。
- ・28kN時の水平変位を解析値と実験値で比較すると概ね一致することが確認された。

5. 圧縮試験

・植松委員が準備を進めているが、試験装置等に調整を要するため現段階で日程は確定できない 状況。

6.その他(今年度事業の成果と今後について)

・有開口耐力壁の試験においては、想定荷重を十分上回る強度が確認され、試験後の全ての試験
 体において開口周囲には損傷は確認されなかった。

また試験仕様W1-3(開口無し)、W2-1(開口有り)について28kN時の真の変形角変形角を比較するとW1-3で1/344rad、W2-1で1/301rad(見かけの変形角においては、W1-3で1/244、W2-1で1/237)と開口有りの方が剛性は若干低下するが許容範囲内と評価できる。

以上のことから、現段階では、実験仕様の壁パネルと同サイズ(以下)の開口が同様の位置 に配置された壁パネルに限り、特段の低減係数など乗ずることなく無開口壁と同様に構造上扱 うことが可能であるとして、有開口耐力壁の設計法を作成することとする。

・将来的には小開口のサイズバリエーション増加や自由な配置に対応していくことが望まれる。
 これに対して、例えば計算ルート1に限定した上で適正な安全率や荷重上限値などを設定する
 などにより実現は十分可能であり、今後の課題として検討する。

11	
レム	
~ ~ ~	

備考:酉	備考:配布資料					
18-3-0	議事次第					
18-3-1	第2回有開口委員会議事録(案)					
18-3-2	8-3-2 開口付壁の面内試験結果概要報告ほか					
18-3-3	有開ロシェルモデル解析結果					
次回	2019年2月25日(月)	場所	日本 CLT 協会会議室			
日程	10 時 00 分~12 時 00 分					

(一社)日本 CLT 協会

議事 要旨(案)

件名	有開口耐力壁開発委員会	20	18年度 第4回					
日時	2019年2月25日(月)	場所	日本 CLT 協会 会	議室				
	10時00分~12時00分							
参加者	【委員長】神谷 文夫/セイホク 【委員】五十田 博/京都大学、植松 武是/北海学園大学、荒木 康弘/国十技術政策総合研究所、野田 康信/							
	森林総合研究所、鈴木 圭/日本住宅・木材技術センター、[岡部 実]/ベターリビング							
	【協力委員】梅森 浩/大成建設、☆大橋 修/三井ホーム、[渡邉 須美樹]/木構研、☆車田 慎介/銘建工業							
	【コンリルクント】 甲越 陸道/ 甲越建 (宅道/ 甲越建 (設置) 1 単 傍一/ 甲央設計 【行政】 猪島 明久、福島 純/林野庁							
	【事務局】坂部 芳平、[河合 誠]、小玉 陽史、伴 勝彦							
(内容・決	※ 奴称略、 < >は代埋出席者、 []は 欠席者、 ☆は 議事録作成者 (内 茨・ 決 完 事項)							
○第3回	有開口委員会議事録(案)の確認							
• 2 ~~-	ジ目の富山の実験の目標はせん断強	渡を測	定する事である。					
・6.その	他の現段階では実験仕様の~可能で	ごあると	いうところは最終的	的には要素	実験の結果を確認し			
て検討	する必要がある。「今後の試験結果	を確認	して実現可能か検討	する」に訂	正する。			
・実験仕	様の壁パネルと同サイズ(以下)の	り開口は	、開口の大きさが同*	サイズ以下。	という事で良いか。			
→その	通り。							
〇有開口	面内試験の解析について							
 ・ 孔の径 	が 1000 幅に対して最大どの程度の	開口率。	となるのか。					
$\rightarrow \phi 250$	のため、25%となる。 、の素実に貼っていて NL 10.11 ト N	1 00 00	のハギスは、バの	はいふせんしい	レアロンのマはない。			
• W1,W2	2の衣表に貼つている No.10,11 とい ふすると W1-00 W2-005 租産と	10.22,23	のいうみクーンの	しは半均化 病価とわる	して良いのではない			
い。て	うりるとWI-0.9、W2-0.93 住皮と ひずひの関係が分かるガラフけかし	なり、 ⁻	てれいよこ恋くない多	い他となる。	ビの上らた米動にた			
「何里こ	こう かの関係がなってい ひとない	·//•° //			こりような手動にな			
→ <i>グ</i> ラフ	を作成する予定							
 ・荷重が 	5.56kN 程度で止まっている理由は?							
→先方の	実験装置に対する経験が少なかった	この、タ	イムラグ等が生じ	たかもしれ	ない。			
→そうい	うところも含めてグラフがあると	えい。						
・せん断	応力度と言っているところはどこい	こなるか	?					
→対角のところ								
→開口の	→開口のある部分も含めて同じように扱っているので、開口の影響のある部分についてはせん断弾性							
係数 5	係数 500N/mm2 を乗じるだけでは参考値にしかならないかもしれない。							
○有開ロシェルモデルの解析について								
・解析上でせん断応力度をアウトブットする事は出来ないか								
→コッター図は算出可能であるかその中で最も高い値を確認する事は難しいかもしれない。								
 ・ 表映か月持ら状態で美施していると思われるか、逆対家囲けを考慮すると囲け応刀度分布が変わる のではも地鉄が変換えまえままま。 								
ので応刀状態が変わる事も考慮した方が良い。								
 ・ 実际の建物上では 単壁と床と 常結され しいることで 逆対家 囲けの 状態になっている 可能性は あると 田 われ て 								
応4/46分。 ・ 毎時が防けいた際の加構け合同確認していないので今後検証ナスツ亜がちス								
⁻ 坐堂か → どのト	= 王王// 秋川/ に际の木油はフロ狸 心して、ないのくて 彼便証り る 必安/ のる。 _ びのような 絵誌になるが、 粉結な 印座に 確認 子 て 車 に 離し いの づけ							
→45°の影響高積など粉値化去ス以亜がなスが、スのようなルールにしてしまると関ロがにぼかける								
れなくなるため、垂壁の直線上にない筈のルールを決められれげと思っている								
思われ ・垂壁が →どのよ →45°の れなく	 思われる。 ・垂壁が取付いた際の架構は今回確認していないので今後検証する必要がある。 →どのような検証になるか。数値を明確に確認する事は難しいのでは。 →45°の影響面積など数値化する必要があるが、そのようなルールにしてしまうと開口がほぼ空けられなくなるため、垂壁の直線上にない等のルールを決められればと思っている。 							

1/2

・最終的に事業報告書内で提案する必要があるので、何かしら成果物が欲しい。

 ・実際の性能を考慮するとこの程度の孔は運用上問題ないと思っているが、根拠となる資料を整えて おくとよい。

例えば、ルート1で接合部の性能が規定されているので、それらに対して必要有効断面積を算出し て開口の空けられる位置を決めてしまえばよい。

○圧縮試験結果報告

- ・結果として高い値が出ていた。既往の実験結果と比べてもそれほどばらつきもなく良い結果だった
 と思われる。
- この実験結果は今回の事業の中でどのように取り扱うか。要素実験で確認した応力度と設計応力度の比の分だけ低減した値で検証する方法が良いのか。
- →試験で実際にその破壊が生じているのであればその理論も検討する必要があるが、実験は接合部で 破壊しているので単純に比率分低減すれば良いというものでもない。あくまで参考程度で良いので はないか。

○4 点曲げ試験について

- ・パネリードが開口部のせん断補強になる可能性があるので、影響が出るかもしれない。
- ・開口がない試験体も実施するのか。 →実施する。
- ・試験状況の動画を撮影しておいてほしい。 →実施する。

○今後のスケジュール、その他

- ・委員会は本日で終了。最終的に本事業の内容をマニュアルに反映させることとなる。
- ・期限はあるのか。 →明確な期限はない。来年度となる予定。
- ・CLT 関連林野庁事業成果報告会があるので時間があれば参加して欲しい。

備考:配布資料						
資料 18-4-0	議事次第					
資料 18-4-1	第2回有開口委員会議事録	(案)				
資料 18-4-2	有開口面内試験解析					
資料 18-4-3	有開ロシェルモデル解析					
資料 18-4-4	圧縮試験結果					
資料 18-4-5	4 点曲げ試験装置図					
次回日程		場所				
日1土						

(一社)日本 CLT 協会