

CLT – European Experience Properties & Design Research & Testing

Prof. G. Schickhofer
Institute of Timber Engineering and Wood Technology
Graz University of Technology

Presentation in the frame of the CLT Forum 2013 in TOKYO

Tokyo, 24nd October 2013

Properties & Design

- Modification Factors and Characteristic Values
- Methods of Design

Research & Testing

- Material
- Connections
- Structures
- Conclusions

Properties & Design

- Modification Factors and Characteristic Values
- Methods of Design

Research & Testing

- Material
- Connections
- Structures
- Conclusions

Characteristic values of CLT | introduction

reference cross-section

partial factor

modification factor

deformation factor

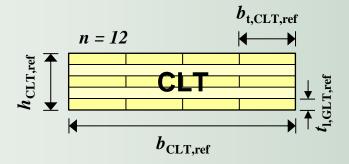
shrinkage and swelling

strength

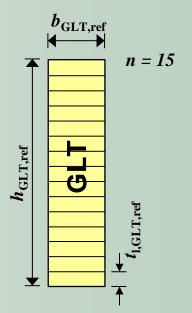
- current regulations
 - national and international technical approvals
 - development of a standard for CLT (prEN 16351)
- approach for determining material properties acc. to EN 1995-1-1
 - EN 1995-1-1 3.1.1 Strength and stiffness parameters:
 "(1)P Strength and stiffness parameters shall be determined
 - on the basis of tests for the types of action effects to which the material will be subjected in the structure, or
 - on the basis of comparisons with similar timber species and grades or wood-based materials, or
 - on well established relations between the different properties."
- definition of strength classes with consideration of a reference cross section for CLT (similar to GLT)
- definition of standardized test configurations to compare determined material properties

reference
cross-section

partial factor


modification factor

deformation factor


shrinkage and swelling

strength

	height/depth/ thickness	width
GLT	$h_{GLT,ref}$ = 600 mm	$b_{GLT,ref}$ = 150 mm
basic material – boards	$t_{I,GLT,ref} = 40 \text{ mm}$	<i>b_{I,GLT,ref}</i> = 150 mm
CLT	$h_{CLT,ref}$ = 150 mm	$b_{CLT,ref}$ = 600 mm
basic material – boards	$t_{l,CLT,ref} = 30 \text{ mm}$	<i>b_{I,CLT,ref}</i> = 150 mm

- → bearing models for CLT mostly based on GLT
- → comparability of the demanded reference volumes
- \rightarrow n_{top layer} \ge 4 for consideration of the system effect

reference cross-section

partial factor

modification factor

deformation factor

shrinkage and swelling

strength

Fundamental combinations	γм
Solid timber	1.3
Glued laminated timber	1.25
Cross laminated timber	1.25
LVL, plywood, OSB	1.2

- → classification like GLT
- → lower dispersion of material data in comparison to basic material (boards)

reference cross-section

partial factor

modification factor

deformation factor

shrinkage and swelling

strength

stiffness

			k _{mod} - Load-duration class				
Material	Standard	SC	Perm.	Long	Medium	Short	Inst.
	EN 14081-1 EN 14080	1	0.60	0.70	0.80	0.90	1.10
ST GLT		2	0.60	0.70	0.80	0.90	1.10
		3	0.50	0.55	0.65	0.70	0.90
CLT1)	CLT ¹⁾ prEN 16351	1	0.60	0.70	0.80	0.90	1.10
OLI /		2	0.60	0.70	0.80	0.90	1.10
1) It is proposed, that the use of CLT in service class 3 is not allowed.							

→ classification like GLT

reference cross-section

partial factor

modification factor

deformation factor

shrinkage and swelling

strength

Material	al Standard		<i>k</i> _{def} - S	ervice o	class
Maleriai			1	2	3
ST GLT	EN 14081-1 EN 14080		0.60	0.80	2.00
		type EN 636-1	0.80	-	-
Plywood	EN 636	type EN 636-2	0.80	1.00	-
		type EN 636-3	0.80	1.00	2.50
CLT ¹⁾	prEN 16251	> 7s	0.80	1.00	-
DLI 7 PIEN	prEN 16351	≤ 7s	0.85	1.10	-
1) It is proposed that the use of CLT in service class 3 is not allowed					

 $^{^{\}prime\prime}$ It is proposed, that the use of GLT in service class 3 is not allowed.

- → classification as **plywood** due to crossed lay-up and stress towards rolling shear
- \rightarrow consideration of the lay-up is necessary: >7s | \leq 7s
- → for simplification: classification as plywood, type 2

reference cross-section

partial factor

modification factor

deformation factor

shrinkage and swelling

strength

Material		Shrinkage and swelling coef. in % per % change in the m. c. below fibre saturation
CLT	in plane (IP)	0.02-0.04
CLI	out of plane (OP)	0.24

- → coefficient in-plane is depending on the CLT lay-up
- → ratio of layers in and perpendicular to span with regard to the CLT thickness

reference cross-section

partial factor

modification factor

deformation factor

shrinkage and swelling

strength

base material	T14		
CV [ft, 0, l]	25 % ± 5 % 35 % ± 5 %		
	CLT strength class		
property	CL 24h	CL 28h	
$f_{m,CLT,k}$	24	28	

reference cross-section

partial factor

modification factor

deformation factor

shrinkage and swelling

strength

base material	T14		
CV [ft, 0, l]	25 % ± 5 % 35 % ± 5 %		
	CLT strength class		
property	CL 24h	CL 28h	
$f_{m,CLT,k}$	24	28	

$$f_{m,CLT,k} = k_{m,CLT} \cdot f_{t,0,l,k}^{0,8}$$

$k_{m,CLT}$	CV [ft,0,l]
3.0	25 % ± 5 %
3.5	35 % ± 5 %

reference cross-section

partial factor

modification factor

deformation factor

shrinkage and swelling

strength

stiffness

base material	T14		
CV [ft,0,l]	25 % ± 5 %	35 % ± 5 %	
	CLT stren	igth class	
property	CL 24h	CL 28h	
$f_{m,CLT,k}$	24	28	
$f_{t,0,CLT,net,k}$	16	18	
$f_{t,90,CLT,k}$	0.5		
$f_{c,0,\mathit{CLT},\mathit{net},\mathit{k}}$	24	28	
$f_{c,90,CLT,k}$	2.85		
$f_{v,\mathit{CLT},\mathit{IP},k}$	5.5		
$f_{T,node,k}$	2.5		
$f_{v,\mathit{CLT},\mathit{OP},k}$	3.0		
$f_{r,CLT,k-} b/t \ge 4:1$	1.25		
$\int_{r,CLT,k-} b/t < 4:1$	0.70		

... research work is needed

base material

reference cross-section

partial factor

modification factor

deformation factor

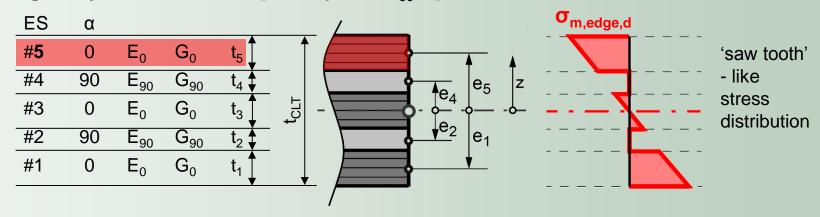
shrinkage and swelling

strength

25 % ± 5 % $35\% \pm 5\%$ *CV* [ft, 0, l] CLT strength class **CL 24h CL 28h** property 11,000 $E_{0,CLT,mean}$ 9,167 $E_{0,CLT,05}$ 300 $E_{90,CLT,mean}$ 250 $E_{90,CLT,05}$ 450 $E_{c,90,CLT,mean}$ 375 $E_{c,90,CLT,05}$ $G_{\mathit{CLT},\mathit{mean}}$ 650 $G_{CLT,05}$ 540 $G_{r,CLT,mean}$ 65 $G_{r,CLT,05}$ 54

T14

... research work is needed



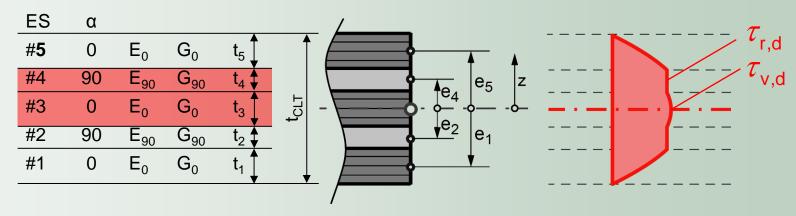
Properties & Design

- Modification Factors and Characteristic Values
- Methods of Design
- Research & Testing
 - Material
 - Connections
 - Structures
- Conclusions

Bending

e.g.: 5-layered CLT element [assumption : $E_{90}=0$]

$$\sigma_{\text{m,i=5},\text{edge,d}} = \frac{M_{\text{max,d}}}{K_{\text{CLT}}} \cdot \frac{t_{\text{CLT}}}{2} \cdot E_{\text{i=5}}$$


$$K_{CLT} = \sum_{i=1}^{n} (J_i \cdot E_i) + \sum_{i=1}^{n} (A_i \cdot e_i^2 \cdot E_i)$$

normally very low utilization ratio → seldom relevant

<u>Shear</u>

e.g.: 5-layered CLT element [assumption : $E_{90}=0$]

$$\tau(z_0)_d = \frac{V_{z,d} \cdot \int_{A_0} E(z) \cdot z \cdot dA}{K_{clt} \cdot b(z_0)}$$

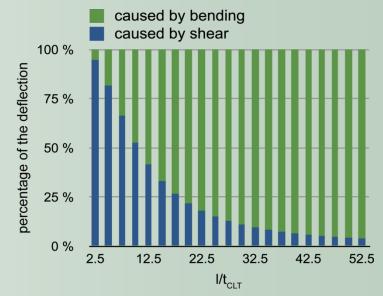
 $\tau_{\text{v,d}}$ (longitudinal) und $\tau_{\text{r,d}}$ (transverse)

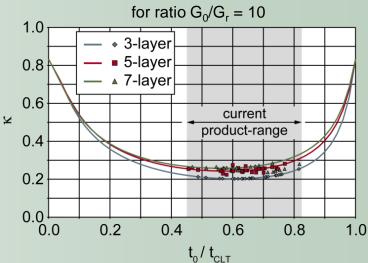
$$\frac{\tau_{\rm v,d}}{f_{\rm v,clt,d}} \le 1.0$$

$$\frac{\tau_{\rm r,d}}{f_{\rm r,clt,d}} \le 1.0$$

Deflections (loads out-of-plane)

$$w_{\text{ges}} = \frac{1}{K_{\text{CLT}}} \int \! \left(M \cdot \overline{M} \right) \; dx + \frac{1}{S_{\text{CLT}}} \int \! \left(V \cdot \overline{V} \right) dx$$


single-span beam


$$w(1/2) = \frac{5 \cdot q \cdot l^4}{384 \cdot K_{CLT}} + \frac{q \cdot l^2}{8 \cdot S_{CLT}}$$

Shear Stiffness

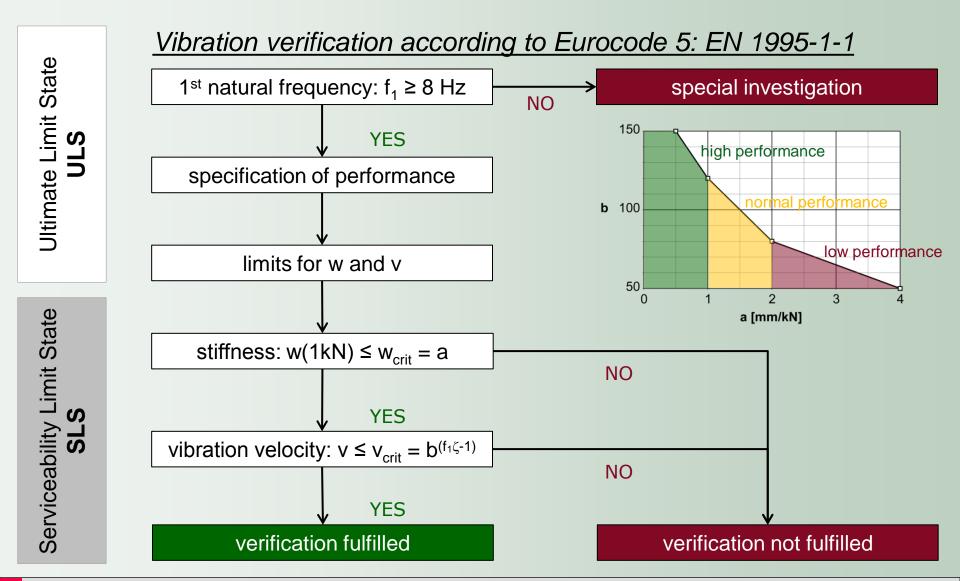
$$\boldsymbol{S}_{\text{CLT}} = \boldsymbol{\kappa} \cdot \boldsymbol{S}_{\text{tot}} = \boldsymbol{\kappa} \cdot \sum \left(\boldsymbol{G}_{i} \cdot \boldsymbol{b}_{i} \cdot \boldsymbol{t}_{i}\right) = \boldsymbol{\kappa} \cdot \sum \left(\boldsymbol{G}_{i} \cdot \boldsymbol{A}_{i}\right)$$

For $G_0/G_r = 10$ nearly constant and about $\frac{1}{4}$ of an unidirectional rectangular cross section.

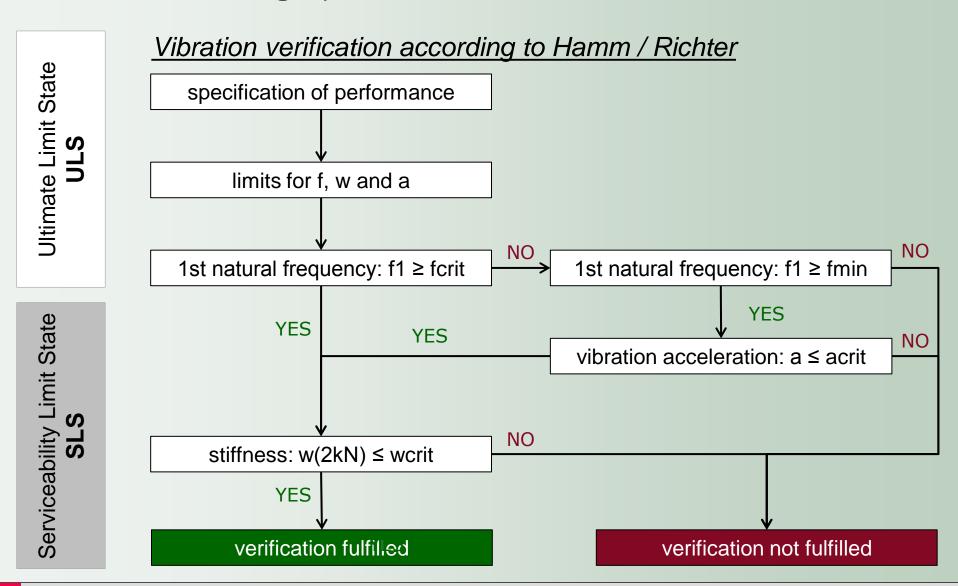
Deflections (loads out-of-plane)

Long-term effects due to creep

- due to the cross layers (rolling shear) higher values than for solid timber or glued laminated timber
- combinations of actions for instantaneous (t = 0), final and net final (t = ∞) deflections from EN 1990 and EN 1995-1-1


			combination	W _{lim}
instantaneous	t = 0	W _{inst}	W _{inst,G} + W _{inst,Q}	1/300
final	t = ∞	W_{fin}	W _{inst} + W _{creep}	l/150
net final	t = ∞	W _{net,fin}	W _{fin} + W _c	1/250

$$\frac{w_{inst}}{w_{lim,inst}} \le 1.0$$

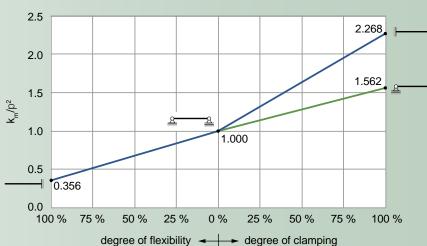

$$\frac{w_{fin}}{w_{lim,fin}} \le 1.0$$

$$\frac{W_{\text{net,fin}}}{W_{\text{lim,net,fin}}} \le 1.0$$

Fundamental natural frequency

single span beam

$$f_{1,beam} = \left(\frac{k_m}{2p \cdot l^2}\right) \sqrt{\frac{\left(El\right)_{l,ef}}{\overline{m}}} \left[Hz\right]$$


Stiffness criterion

deflection of a single span girder with a single force F at midspan

$$w(F,b_F) = \frac{F \times I^3}{48 \times (EI)_{l,ef} \times b_F} + \frac{F \times I}{4 \times (GA)_{ef} \times b_F}$$

effective width b_F

$$b_{F} = \frac{I}{1.1} \times \sqrt[4]{\frac{\left(EI\right)_{b,ef}}{\left(EI\right)_{l,ef}}}$$

Gerhard SCHICKHOFER

Vibration acceleration

$$a = \frac{0.4 \cdot \left(\frac{F_0 \cdot a_{i,f_1}}{M_{gen}}\right)}{\sqrt{\left(\left(\frac{f_1}{f_f}\right)^2 - 1\right)^2 + \left(2 \cdot Z \cdot \frac{f_1}{f_f}\right)^2}} \left[m/s^2\right]$$

$$M_{gen} = \overline{m} \cdot \frac{1}{2} \cdot b_F \left[kg/m^2 \right]$$
 with $b_F \le \frac{b}{2}$

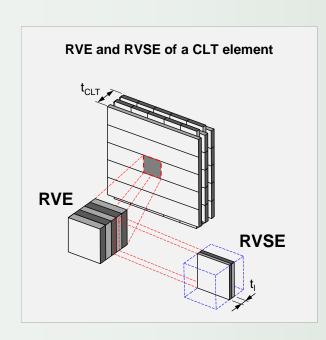
Fourier coefficient
mass and self weight of excitatory person
span and effective width
frequeny and frequency of excitation
damping ratio

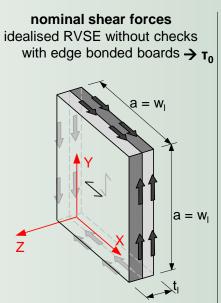
frequency [Hz]	Fourier coefficient $\alpha_{i,f1}$ [-]	frequency of excitation f _f [Hz]
$4.5 < f_1 \le 5.1$	0.20	f ₁
$5.1 < f_1 \le 6.9$	0.06	f ₁
$6.9 < f_1 < 8.0$	0.06	6.9

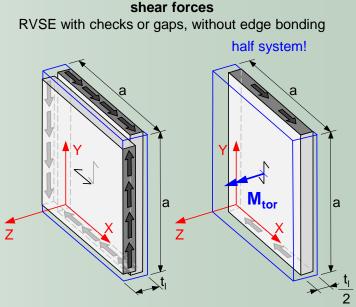
tune of floor construction	damping ratio ζ			
type of floor construction	supported on 2 sides	supported on 4 sides		
CLT floors with a light or without floor construction	2.0 %	2.5 %		
CLT floors with heavy floor construction	2.5 %	3.0 %		

Properties & Design

- Modification Factors and Characteristic Values
- Methods of Design

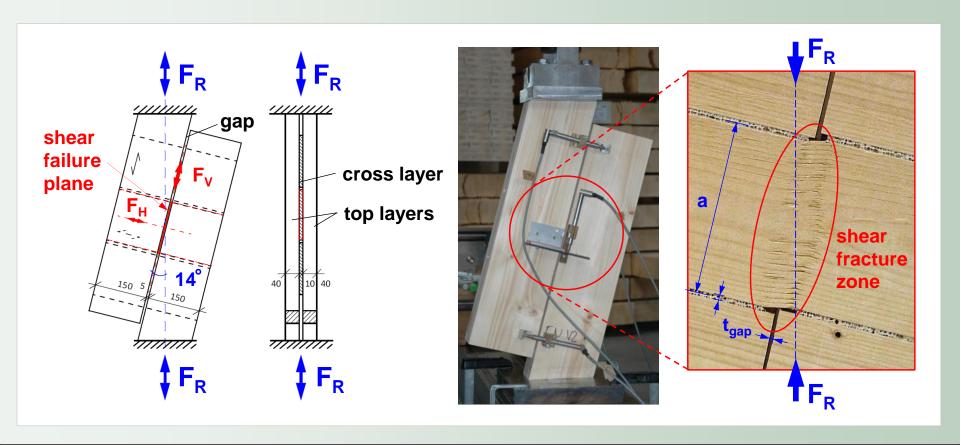

Research & Testing


- Material
- Connections
- Structures
- Conclusions


Shear Mechanisms on a RVSE

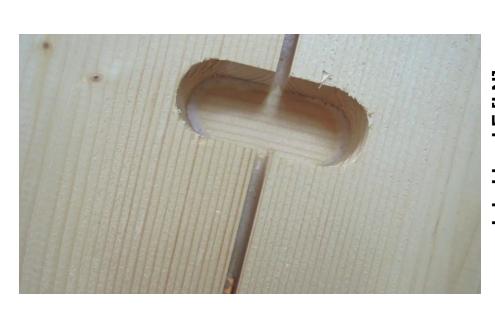
- Mechanism I "net-shear"
 transfer of shear via board's cross sections τ_{net} = 2 · τ₀
- Mechanism II "torsion" torsional shear stresses in gluing interface $\tau_{tor} = 3 \cdot \tau_0 \cdot (t_1 / a)$

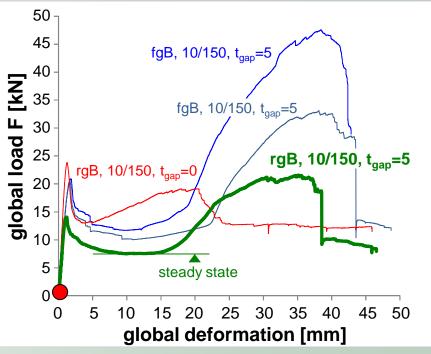
mechanism I mechanism II



Shear Strength Test – [Mechanism I `Shear']

Master Thesis B. Hirschmann (2011)


- based on Jöbstl et al. (2008), EN 789 & EN 408
- loading in compression or tension (14° angle) → no significant influence!

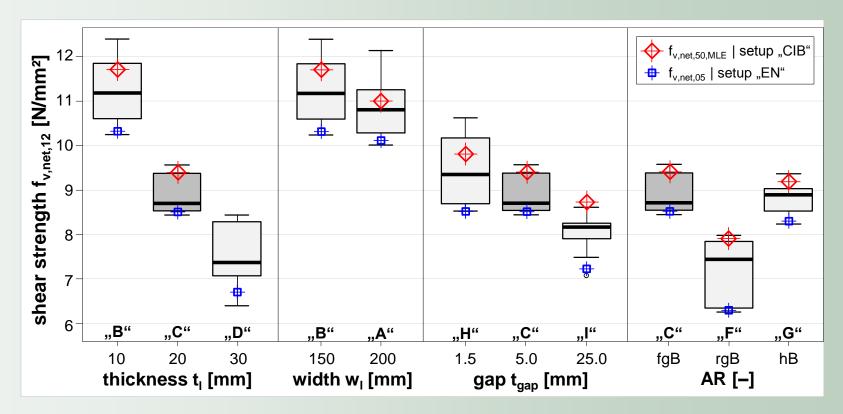


Failure Process – Sequence of Fracturing

- l linear elastic (≈ 20 to 80 % of F_{max})
- II regressive, non-linear until $F_{max} \rightarrow locally mech. I & II$
- III softening, steady state (≈ 40 to 50 % of F_{max}) → loading in bending & tension
- shearing parallel to grain & successive dissolution by separation of annual rings

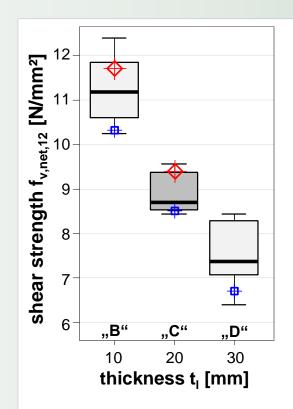
Failure Process

- shear forces perpendicular to grain lead to shear failures parallel to grain!
- F_{max} (1st peak) governed by interacting mech. I & II
 - confirmed by numerical model
- tremendous possibilities for load redistribution (steady state)
- successive dissolution, separation of annual rings at transition zone of early- and latewood → fixed-end beams active in bending & tension
 - confirmed by simple engineering model

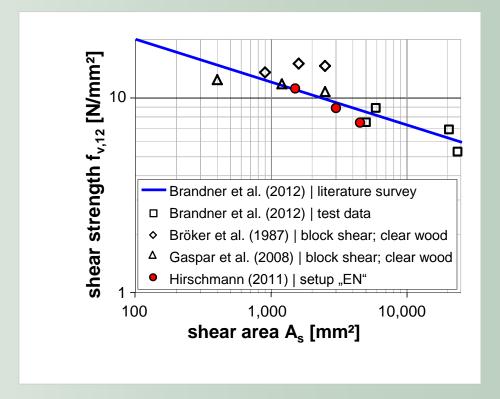


Tests

- Norway spruce | C24 | u = 12 % | density matched samples
- top layers w₁ x t₁ = 150 x 40 mm²
- fracture zones free of knots, checks, reaction wood, ...
- test parameters (core layers)
 - width w_i 150 mm vs. 200 mm
 - thickness t₁ 10 mm vs. 20 mm vs. 30 mm
 - annual ring orientation AR flat grain (fgB), rift grain (rgB), heart boards (hB)
 - gap width t_{gap} 1.5 mm vs. 5.0 mm vs. 25.0 mm
- 10 tests per series
- comparison of configurations "EN" (Hirschmann, 2011) and "CIB" (Jöbstl et al., 2008)



J J RESULI



constant base parameters	w _i =	150 t _{ga} fgB	_{ip} = 5	t _i = 10 fg	t _{gap} = 5 B	w _i =	150 t _i : fgB	= 20	w _i =	150 t _l = 5	= 20
ρ _{mean} [kg/m³]	401	399	395	401	396	413	399	419	399	397	443
f _{v,net,mean} [N/mm²]	11.2	8.9	7.5	11.2	10.8	9.5	8.9	8.0	8.9	7.2	8.8
CV[f _{v,net}] [%]	6.3	4.9	9.3	6.3	6.0	8.5	4.9	5.6	4.9	10.1	4.2
f _{v,net,05} [N/mm²]	10.3	8.5	6.7	10.3	10.1	8.5	8.5	7.2	8.5	6.3	8.3

constant base parameters	w _I = 150 t _{gap} = 5 fgB			
ρ _{mean} [kg/m³]	401	399	395	•
f _{v,net,mean} [N/mm²]	11.2	8.9	7.5	
CV[f _{v,net}] [%]	6.3	4.9	9.3	
f _{v,net,05} [N/mm²]	10.3	8.5	6.7	

high significant influence!

- two reasons
 - size effect on shear strength (+)
 - locking effect (+)
- decrease with power ≥ 0.2

Results

- significantly influencing parameters
 - lamella thickness t_I → decreasing f_{v,net} with increasing t_I
 - gap width t_{gap} → decreasing f_{v,net} with increasing t_{gap}
 - annual ring orientation AR \rightarrow $f_{v,net,rgB} \le f_{v,net,hB} \le f_{v,net,fgB}$
- not significant parameter
 - lamella width $w_i \rightarrow 150 \text{ mm} \le w_i \le 200 \text{ mm}$

Proposed Reference Material and Geometric Parameters

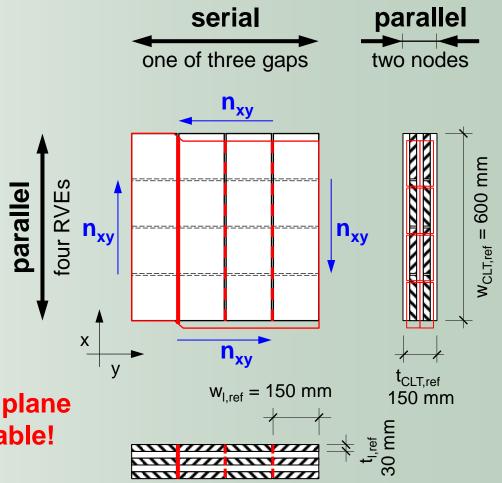
- $\mathbf{t_{l,ref}} = 30 \text{ mm} (t_{l,st} = 20, 30, 40 \text{ mm})$
- $\mathbf{w}_{l,ref} = 150 \text{ mm} (100 \text{ mm} \le w_l \le 240 \text{ mm})$
- $t_{gap} \le 5 \text{ mm} (0 \text{ mm} \le t_{gap} \le 4 (6) \text{ mm})$
- AR = fgB

Results

- proposal for test configuration net-shear on single nodes
- shear perpendicular to grain ...
 - failure in shear parallel to grain | interaction mech. I & II
 - high potential of load redistribution
 - analogies with shear parallel to grain, e.g. AR, t_l, w_l
- proposal for net-shear of single nodes for ...
 - $t_1 \le 40 \text{ mm}, w_1 = 150 \text{ mm}, AR = fgB, t_{gap} \le 6 \text{ mm}$
 - assuming $CV[f_{v,net}] = 15 \%$, $f_{v,net} \sim 2pLND$
 - \rightarrow f_{v.net.05} = 5.5 N/mm²

latest series 2013 (12 #)

30 x 150 mm², fgB, $t_{gap} = 0$ mm, $\rho_{12,mean} = 438$ kg/m³ \rightarrow $f_{v,net,05} = 6.4$ N/mm²

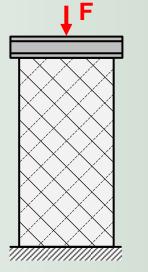


Proposed Reference CLT Diaphragm

- reference lamella w_i x t_i = 150 x 30 mm²
- reference CLT element
 - 5 layers | t_{CLT} = 150 mm
 - 4 x 4 nodes | w_{CLT} = 600 mm

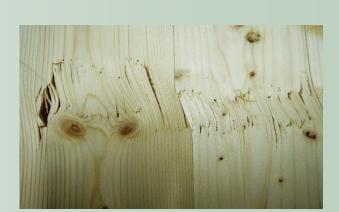
Net Shear in CLT Element

- net shear failure only if all nodes in x-direction fail (parallel)
- serial system action in y-direction
- high potential for load transfer
- current verification of shear in plane on single nodes judged as reliable!



3 Tests on CLT Elements

- Norway spruce C24
- w₁ = 105 mm | layup 20 | 30 | 20 | 30 | 20 mm
- CLT element 120 x 600 x 1,200 mm³
- config. & analysis acc. to Kreuzinger (2013)
- → failure acc. to mechanism I "net-shear"


→ interaction compression perp. to grain and shear considered

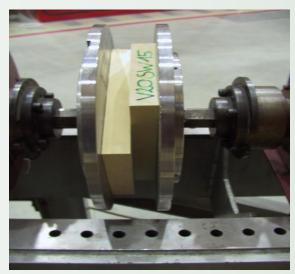
	T _{gross,12} [N/mm²]	f _{v,net,12} [N/mm ²]
test 1	3.95	7.89
test 2	4.16	8.32
test 3	4.20	8.40

Shear Strength Test - [Mechanism II `Torsion']

Diploma Thesis G. Jeitler (2004)

torsional shear stresses in the gluing interface

$$\tau_{\mathsf{T,max}} = \frac{M_{\mathsf{T}}}{I_{\mathsf{P}}} \cdot \frac{1}{2} \cdot a = \frac{3 \cdot M_{\mathsf{T}}}{a^3}$$


with
$$J_P = \frac{a^4}{6}$$

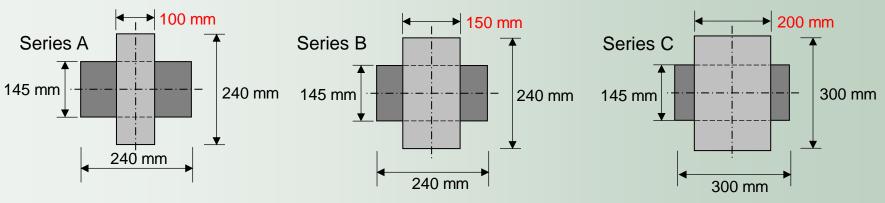
M_T ... torsional moment

J_P ... polar sectional moment

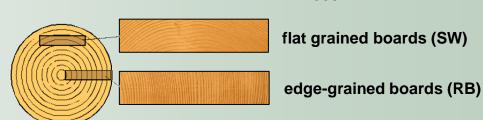
... of gluing interface

a ... dimension of RVE

test specimen



torsional test configuration



Shear Strength Test – [Mechanism II `Torsion']

Diploma Thesis G. Jeitler (2004)

annual ring gradient spruce

shear stresses in the gluing interface

series	annual ring orientation	5%-quantile [N/mm²]		
•				
Α	edge grained	3.67		
Α	flat grained	2.79		
В	edge grained	3.20		
В	flat grained	2.69		
С	edge grained	2.98		
С	flat grained	3.10		

$$\tau_{\mathsf{T,max}} = \frac{3 \cdot \mathsf{M_T}}{\mathsf{a}^3}$$

$$f_{T,clt,k} = 2.5 \text{ N/mm}^2$$

remark:

Value generally accepted!

Design Value for Compression Stress Perp. to Grain

$$\sigma_{\text{c,clt,90,d}} = \frac{F_{\text{d}}}{A_{\text{c,90}}}$$

with: A_{c,90} ... contact area

point supported

point supported

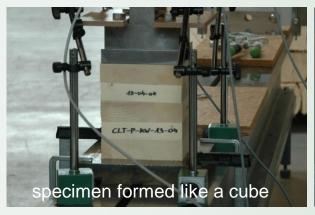
line supported

© Picture: DI R. Salzer (AUT)

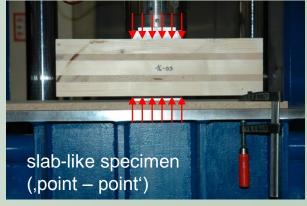
© Picture: Architect Reinberg (AUT)

© Picture: TU Graz (AUT)

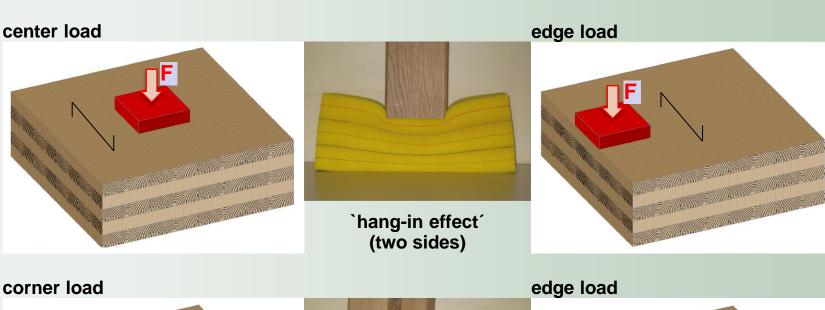
Material Resistance against Compression Perp. to Grain (f_{c,clt,90,d})

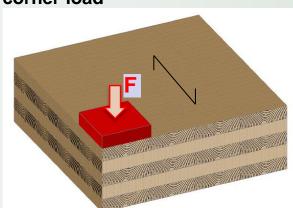

publications regarding CLT:

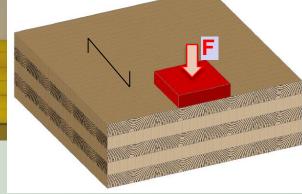
- Y. Halili | TU Graz, 2008
- E. Serrano | Linnæus University, 2010
- C. Salzmann | TU Graz, 2010


characteristic parameters:

- f_{c,clt,90,d} | cube | slab-like specimen
- k_{c,clt,90} (`hang-in effect')
- E_{c,clt,90,mean}

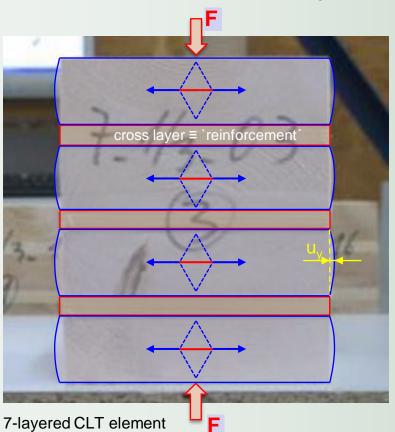






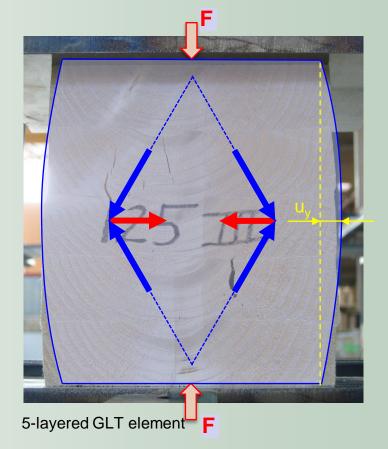
Different Loading Situations | Configurations on CLT Elements

`hang-in effect' (one side)



`Framework Model´

CLT cubes


failure mode:

deformation at defined failure stage

GLT cubes failure mode:

e.g. tension perp. to grain

The cross layers cause a `locking effect' and therefore a reduction of deformation.

comparison of CLT to GLT at the same load level

- ✓ CLT shows reduced deformation perp. to grain (u_y) concentrated on each single layer
- ✓ CLT shows higher stiffness and lower stresses in tension perp. to grain

result:

lower failure probability at the same load level and higher load bearing capacity perpendicular to the grain

Strength determined on standardised full-loaded Prismatic Specimen

GLT

 $f_{c,glt,90,k} = 2.1 \dots 2.4 \text{ N/mm}^2 \text{ [res. publ.]}$

 $f_{c,glt,90,k} = 2.5 \text{ N/mm}^2$ (prEN 14080)

$$f_{c,clt,90,k} = ... 3.0 ... 3.1 N/mm^2$$

Bearing Capacity in Constructions

GLT

CLT

edge
`line supported´

centric
`point supported´

GLT

$$k_{c,qlt,90} = 1.0 \dots | 1.5 | \dots 1.75$$

$$f_{c,glt,90,k} - k_{c,glt,90} = 3.75 \text{ N/mm}^2$$

proposal TU Graz

$$k_{c,clt,90} = \sim 1.5$$

$$f_{c,clt,90,k} - k_{c,clt,90} = 4.5 \dots 6.0 \text{ N/mm}^2$$

+ 20 %

+ 60 %

Properties & Design

- Modification Factors and Characteristic Values
- Methods of Design

Research & Testing

- Material
- Connections
- Structures
- Conclusions

Transport | Assembling

storage of CLT elements (production site)

charging and transport

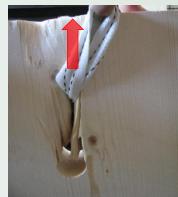
discharging (building site)

mounting parts for roof elements

mounting parts for ceiling elements

mounting parts for wall elements

Mounting Parts for Transport and Assembling


for walls:

- ball-shaped head connected with self-tapping screws
- textile hanger with high strength and ductility

mounting part at the narrow side of a 3-layered CLT element

tension test configuration

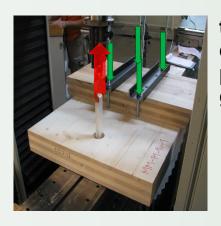
failure mode with high deformation [safety factor:7]

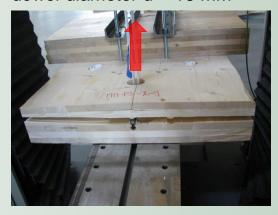
`shear'

`pull out'

failure modes

out of plane

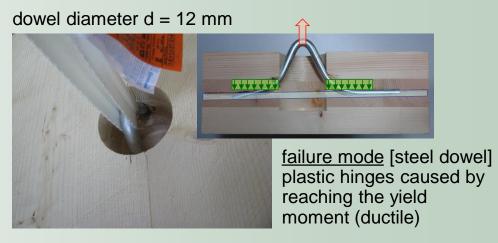

`shear'


Mounting Parts for Transport and Assembling

for ceiling and roof elements:

tapped blind hole connection with dowel and textile hanger

tension test configuration perp. to the grain dowel diameter d = 16 mm

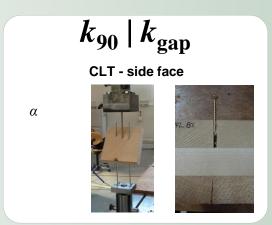


<u>failure mode</u> [timber] caused by tension perp. to the grain [rigid]

NOTE:

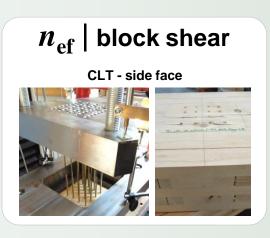
Extension of knowledge regarding the load carrying behavior of mounting parts is required!

→ Research activities are important!



Screwed connections in CLT elements

6 main research projects


single screws

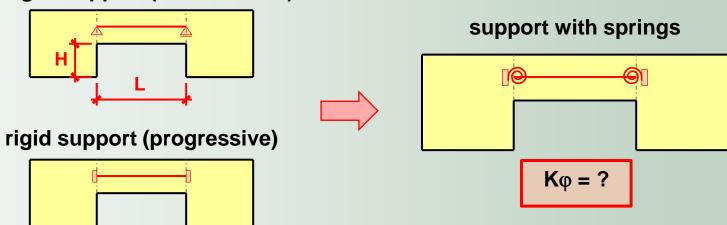
groups and ine connections

ONGOING ONGOING

Properties & Design

- Modification Factors and Characteristic Values
- Methods of Design

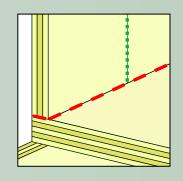
Research & Testing


- Material
- Connections
- Structures
- Conclusions

CLT Lintels

Master Thesis A. Reichhart (2013)

- 3-layered CLT elements
- tests with varying L/H ratio (5 ÷ 10)
- proposed degree of clamping: 65% if L/H ≥ 7.5
- high variance of F_{max}
 - partially very low ultimate loads caused by knots in middle layer
 - → therefore: no high stressed lintels in 3-layered CLT elements



Seismic Tests

3-steps

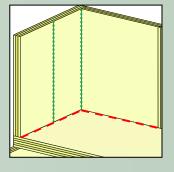
I – connections

- angle brackets, hold downs and screws
- CLT/CLT and CLT/concrete/steel
- shear and tension | monotonic and cyclic
- about 200 tests

CLT-Forum 2013 | TOKYO

Seismic Tests

3-steps


- I connections
- II walls
 - 5 configurations 17 tests
 - variation of connections, vertical loads and geometries
 - walls with and without vertical joints with and without door opening

Seismic Tests

3-steps

- I connections
- II walls
- III building
 - shaking table tests on a three-storey building
 - EU-project ,SERIES' (Seismic Engineering Research Infrastructures for European Synergies)

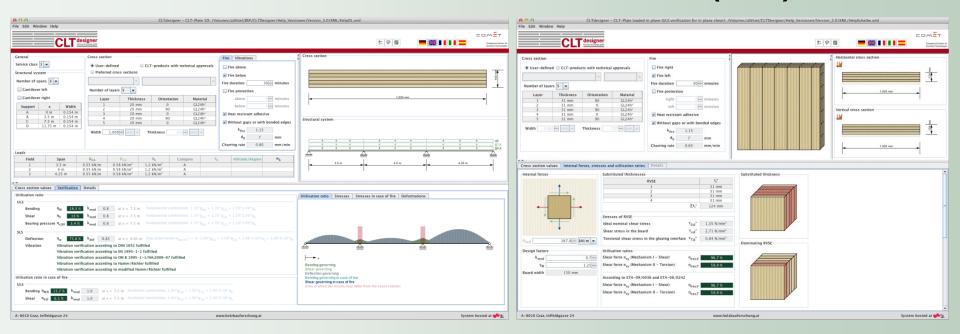
Properties & Design

- Modification Factors and Characteristic Values
- Methods of Design

Research & Testing

- Material
- Connections
- Structures

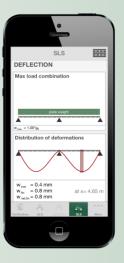
Conclusions



Conclusions

- 1. The development of CLT about 25 years ago provides a panel-like product for timber constructions. Combined with one-dimensional GLT members, it was and still is possible to open up new markets for timber products.
- 2. Enhanced by the simultaneously occurring development of screw technology for innovative connection concepts, new possibilities regarding construction and spans were created, increasing the market of timber products.
- 3. An ongoing trend concerning both solid timber construction with CLT and connection systems with screws is to be expected.
- 4. An increasing competition for resources, also affecting forest and timber industry, can be noticed too. This will lead to a selective and resource-friendly use of wood diversity.
- 5. An intelligent mix of solutions in solid and lightweight construction combined with the use of regionally available wood diversity, will gain more visibility in future timber engineering.

CLTdesigner – The software tool for designing cross laminated timber elements (CLT)


- based on the design concepts of Eurocode 5 and numerous research works
- built up of modules
- developed and provided by the Centre of Competence holz.bau forschungs gmbh and the Institute of Timber Engineering and Wood Technology of Graz University of Technology
- available in DE, EN, FR, IT and ES at www.cltdesigner.at

CLTcalculator - First CLT App for iPhone and iPad

developed by <u>A. Mikara</u>
in corp. with the
Institute of Timber Engineering and Wood Technology

Available on App Store!

