A Status Report from the CLT Hot Spot in Europe | Austria

* Institute of Timber Engineering and Wood Technology, Graz University of Technology
** Centre of Competence holz.bau.forschung gmbh, Graz

CLT Seminar
sola city Conference Center, Tokyo
March 21st 2017

INTRODUCTION

- TIMBER at Graz University of Technology – Teaching and R&D
- Data & Facts about CLT

SELECTED SUB- AND PROJECTS

- “CLT+GLT_ribbed plates” for large spans
- “PREFAB_modules” for densification
- “CLT_follows_form” | house of bread

SUMMARY AND FUTURE PROSPECTS
INTRODUCTION

Graz University of Technology
7 faculties | 13,800 students | 3,270 staff (2016/17)
budget: € 236 Mil. (1/3 is 3rd party budget)

Faculty of Civil Engineering Sciences
15 institutes | about 1,500 students (2016/17)
Institute of Timber Engineering
and Wood Technology
1991: Chair for Timber Engineering
10/2004: Institute of Timber Engineering and Wood Technology
Scientific staff: 8.0 FTE | 3rd party budget: € 270,000 (2016)

Competence Centre
holz.bau forschungs gmbh
12/2002: Competence Centre holz.bau forschungs gmbh
2013-2016: 4-year funded programme:
COMET-Project “focus sts” [budget: € 3 millions]
Scientific staff: 8.3 FTE | budget: € 810,000 (2016)

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

R&D topics regarding Timber Engineering and Wood Technology at TU Graz

- Shell and Spatial Timber Constructions (SSTC)
- Innovative and Intelligent Connection Systems (IICS)
- Lightweight and Hybrid Hardwood Applications (LHHA)
- Evaluation and Maintenance of Historic Structures (EMHS)

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

INTRODUCTION

- TIMBER at Graz University of Technology – Teaching and R&D
- Data & Facts about CLT

SELECTED SUB- AND PROJECTS

- “CLT+GLT_ribbed plates” for large spans
- “PREFAB_modules” for densification
- “CLT_follows_form” | house of bread

SUMMARY AND FUTURE PROSPECTS

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

CLT plants

Europe 2016 2017 2018
- 29 ~ 32 ~ 37
NA, JP, AUS/NZ 2016 2017 2018
- 15 ~ 16 ~ 17
Total 2016 2017 2018
- 44 ~ 48 ~ 54

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology
INTRODUCTION

CLT production

Phase 1: niche product
- Idea | Patent | Prototype
- Market entry

Phase 2: pilot projects
- Regional | National competition
- Market entry
- SET | BBS | MM

Phase 3: mass production (?)
- Global | International competition
- Market entry
- SET | BBS | MM

CLT production 2016
- ~ 89 % in Europe
- ~ 65 % in Austria

important future markets in Europe
- Scandinavia (SE, FI, NO)
- United Kingdom
- France

Hot Spot - Austria
- CLT production 2016
 - ~ 65 % of total production in Austria
 - ~ 500,000 m³/year

- reasons for the success in Austria
 - “fast forward” sawmill industry
 - Efficient forestry and timber industry
 - Innovation-friendly environment
 - Strong tradition in solid constructions (concrete, bricks)
 - Fast integration of new topics in teaching and research
 - Application-oriented R&D at universities
 - Tireless and constant cooperation between architects and civil engineers

www.cltdesigner.at
- Software tool for the design of CLT
- 5 modules
- ~ 7,800 users from 66 nations

requests in total
- 120,000
- 600 / week

users
- Engineers 3108 (40%)
- R&D 2094 (27%)
- Carpenters 1418 (18%)
- Architects 545 (7%)
- N.A. 602 (8%)
INTRODUCTION
- TIMBER at Graz University of Technology – Teaching and R&D
- Data & Facts about CLT

SELECTED SUB- AND PROJECTS
- “CLT+GLT_ribbed plates” for large spans
- “PREFAB_modules” for densification
- “CLT_follows_form” | house of bread

SUMMARY AND FUTURE PROSPECTS

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

CLT+GLT_ribbed plates | large spans

Austrian pavilion in Venice
completed backyard of the pavilion, 1934

- first intention to build the “Austria pavilion” in 1910
- the initiative was interrupted by the outbreak of the first world war
- Austria continued to exhibit in the central pavilion in 1920
- plans were drafted by architects Josef Hoffmann and Robert Kramreiter in 1933
- officially inaugurated in 1934

source: www.austrianpavilion.at

figure: adaption based on "JOSEF HOFFMANN – 50 Jahre österreichischer Pavillon"

requirements of the architect
- flawless surface (no visible cracks or joints)
- inherently stable at unfavorable weather conditions
- easy transport of the elements
- simply to assemble and disassemble
- no connection to the existing building
- barrier-free entrance

span = 10 [m]
CLT+GLT_ribbed plates | large spans

assembly steps

- step 1: column base and bearing plates
- step 2: CLT floor elements
- step 3: ribbed wall elements and temporary securing
- step 4: disassembling of securing
- step 5: lift-in ribbed ceiling elements
- step 6: entrance and ramp

structure | layers:
- 1st sealing layer
- CLT (20|20|20|20|20)
- GLT-rib
- 2nd sealing layer
- soffit (matt white colour)
- planking (matt white colour)
- CLT (30|20|30)
- GLT-rib
- paint finish (matt white colour)

values in [cm]
- ceiling element
- wall element

middle floor element

- variation of rib-design
 - GLT
 - TRIO
 - CLT
 - double TRIO

edge floor element

- combined GLT

cross-section

- clear height = 450
- total height = 525

benefits of CLT + GLT-RBP

- enables large span elements
- adjustable bending stiffness due to geometry
- further improvement with high strength lamellas at lower edge possible
- combined GLT | LVL
- CLT+CLT_ribbed plate for ribs with openings (inherent reinforcement)
SELECTED SUB- AND PROJECTS

21

<table>
<thead>
<tr>
<th>CLT+GLT_ribbed plates</th>
<th>large spans</th>
</tr>
</thead>
</table>

benefits
- ordinary support conditions
- no cutouts for ribs
- ordinary building physics
- space for indoor installation
- less height of the floor construction

source: SHERPA

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

SELECTED SUB- AND PROJECTS

22

<table>
<thead>
<tr>
<th>CLT+GLT_ribbed plates</th>
<th>large spans</th>
</tr>
</thead>
</table>

mechanical model for the interface
- perpendicular stresses, caused by the notch die away within a short distance \(l_0 \) to the notch
- sum of tensile stress perpendicular to the grain must be secured with reinforcement
- position of reinforcement as close as possible to end grain (within first 10 cm)

\[
F_{t,90,d} \leq F_{ax,Rd}
\]

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

SELECTED SUB- AND PROJECTS

23

<table>
<thead>
<tr>
<th>CLT+GLT_ribbed plates</th>
<th>large spans</th>
</tr>
</thead>
</table>

verification of mechanical model
- 3- and 4-point-bending-tests:
 - different spans
 - small and large scale specimens
 - variation of distance between support and notch
 - different types of reinforcement

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

SELECTED SUB- AND PROJECTS

24

<table>
<thead>
<tr>
<th>CLT+GLT_ribbed plates</th>
<th>large spans</th>
</tr>
</thead>
</table>

verification of mechanical model
- measurements at notch:
 - vertical and horizontal displacement between GLT-rib and CLT-plate
 - force within the reinforcement at the level of the glue joint

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology
SELECTED SUB- AND PROJECTS

CLT+GLT_ribbed plates | large spans

verification of mechanical model

- **comparison of test results with analytic solution and FEM-calculation:**
 - **mean deviation** (four samples of small specimens)

 | Function | Measurement | Reference | +5% | +28% | | |
|---|---|---|---|---|---|---|
 | $F_{L90,measurement}$ | $F_{L90,model}$ | $F_{L90,FEM}$ |
 | mean deviation | 0% | 10% | 20% | 30% | 40% | 50% |

- analytic solution in **good accordance** with measurements and FEM-calculation
- **conservative** overestimation of F_{L90}
- verification with large scale specimen in progress

PREFAB_modules

basic module and construction systems

- **basic size** for geometric classification system
- **unit of measurement:**
 - $1 [M] \equiv $ e.g. $100, 900 [mm]$ or $62.5, 12.5 [cm]$
- all component measures must be an integer multiple of the basic module $n \times [M]$
- **basis for planning, production and assembly**

source: G. Staib, Elemente und Systeme, 2008

<table>
<thead>
<tr>
<th>position:</th>
<th>axis grid</th>
<th>strip grid</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>size:</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

inflexible system
- no exchange with different systems

flexible system
- exchange with different subsystems

types of modules

- **standardised width, length and height**
- **but possible steps in length**
 - small = "s"
 - medium = "m"
 - large = "l"

types according to their position

- edge module (e)
- middle module (m)

SUMMARY AND FUTURE PROSPECTS

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

REFERENCES

H. Landsberg, Holzsysteme für den Hochbau, 1999

G. Staib, Elemente und Systeme, 2008

W. Neufert, Entwurfslehre 2015
Types of Modules

- **Structure**
 - closed on all sides (A)
 - open on one side (B)
 - open on two sides (C)
 - open on three sides (D)
 - open on all sides (E)

Prefab Modules for Retirement Homes

Retirement home “Hallein”

- 140 modules (completely equipped)
- Dimension: 4 x 8 [m] (w/l)
- Only vertically routed pipelines
- Every single module has its own shaft for building services

Source: Kaufmann Bausysteme | architect: sps-architekten zf gmbh, 2013
SELECTED SUB- AND PROJECTS

PREFAB_modules for day-care centers and schools

European School Frankfurt

- Classroom
- 3 modules

Source: Kaufmann Bausysteme | architect: nikbak Nicole K. Berganski & A. Krawczyk, 2015

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

PREFAB_modules for temporary events

Modules for the Olympic Village of the Winter Olympics in Turin 2006

- Complete prefabrication at the plant
- Assembling and fixing on the construction site

Source: F. de Monte

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

SELECTED SUB- AND PROJECTS

PREFAB_modules for day-care centers and schools

- 90 modules (completely equipped)
- Dimension: 3 x 9 [m] (w/l)
- One classroom consists of three modules
- Building services are integrated in sanitary modules
- Only vertically routed pipes

European School Frankfurt

Source: Kaufmann Bausysteme | architect: nkbak Nicole K. Berganski & A. Krawczyk, 2015

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

PREFAB_modules for temporary events

- Assembling: module by module and storey by storey
- Benefits: clean construction site, rapid and dry construction method and easy to disassemble for possible changes of use

Modules for the Olympic Village of the Winter Olympics in Turin 2006

Source: F. de Monte

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology
SELECTED SUB- AND PROJECTS

PREFAB_modules
for smart city densification

4 methods of urban densification
- horizontal extension to the existing buildings
- closing gaps and vacant lots between buildings
- dismantling existing and reconstructing new buildings
- adding stories on the rooftops of the existing buildings (“roof stacking”)

source: G. Schickhofer, Tokyo 2016

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

SELECTED SUB- AND PROJECTS

PREFAB_modules
for smart city densification

closing gaps and vacant lots between buildings

source: G. Schickhofer, Tokyo 2016

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

SELECTED SUB- AND PROJECTS

PREFAB_modules
for smart city densification

building with modules implies sustainable buildings as well as clean construction sites

closing gaps and vacant lots between buildings

source: G. Schickhofer, Tokyo 2016

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology
PREFAB_modules for smart city densification

Adding stories on the rooftops of the existing buildings

- Roof stacking can be a very efficient and attractive method for redensification

Source: G. Schickhofer, Graz

Architect: Arch. D. Koch, 2009

SUMMARY AND FUTURE PROSPECTS

INTRODUCTION

- TIMBER at Graz University of Technology – Teaching and R&D
- Data & Facts about CLT

SELECTED SUB- AND PROJECTS

- “CLT+GLT_ribbed plates” for large spans
- “PREFAB_modules” for densification
- “CLT_follows_form” | house of bread

SUMMARY AND FUTURE PROSPECTS
“CLT_follows_form” | house of bread

- composition in layers of CLT
- joining single layers with screw-press gluing
- reinforcement with self-tapping screws

Source: coop-himmelblau.at

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology
house of bread II

- CLT raw material: 600 m³
 - 3-, 5-, 7-layered CLT elements

- CLT final structure: 400 m³
 - 80 “rings” → total height 10.56 m

- m = 0.40 m

- applying adhesive
- applying CLT element(s)
- introduce secondary screws
- introduce primary (load-carrying) screws
“CLT_follows_form” | house of bread

- applying adhesive
- applying CLT element(s)
- introduce secondary screws
- introduce primary (load-carrying) screws
 → totally applied screws ~ 120,000 (!)
SELECTED SUB- AND PROJECTS

“CLT_follows_form” | house of bread

house of bread II

- customers’ request
- architects’ idea
- engineers’ plan
- statics/design
- production
- assembly
- product

Source: O. Wolf, 2017

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology

Selected Sub- and Projects

“CLT_follows_form” | house of bread

house of bread II

- customers’ request
- architects’ idea
- engineers’ plan
- statics/design
- production
- assembly
- product

Source: O. Wolf, 2017

G. Schickhofer, G. Flatscher, K. Ganster, R. Sieder, S. Zimmer
Institute of Timber Engineering and Wood Technology, Graz University of Technology
INTRODUCTION

- TIMBER at Graz University of Technology – Teaching and R&D
- Data & Facts about CLT

SELECTED SUB- AND PROJECTS

- “CLT+GLT_ribbed plates” for large spans
- “PREFAB_modules” for densification
- “CLT_follows_form” | house of bread

SUMMARY AND FUTURE PROSPECTS

CLT_systems and solutions advanced applications

application possibilities

- “CLT enables 1D- and 2D-elements as well as 3D-modules and even free-form surfaces

1D-element: beam or column
2D-element: wall or ceiling
3D-module: free-form surface

PREFAB_modules

future prospects

- prefabrication and modularization will play an important role for CLT
 - prefabricated modules for habitation, building services and development reduces assembly time and flaws during constructions on-site

SUMMARY AND FUTURE PROSPECTS

CLT storey development

M. Green: “The race is on!”*

- Green, M. „Why we should build wooden skyscrapers“ TED2013

14 storeys 18 storeys 10 storeys 18 storeys 24 storeys
18 storeys

2016 outlook 2018
CLT storey development

Statements regarding "storey race"

- sole focus on maximising the number of storeys or building heights ignores the necessity of thinking and acting interdisciplinary
- such competitions miss any foresight and follow the principle of “Johnny head-in-the-air”
- CLT is a building product and NOT a building system
- NOTE: a building system...
 - ... is more than the sum of its products!
 - ... comprises adequate combinations of building products to building structures being able to fulfil all requirements without increasing the risk of structural damage
- “superlatives” should be thought with focus on application diversity and quality instead of the number of storeys

Thank you for your attention!

Contact:
Univ.-Prof. DI Dr.techn. Gerhard Schickhofer
Institute of Timber Engineering and Wood Technology, TU Graz
Infeldgasse 24/1
A-8010 Graz
gerhard.schickhofer@tugraz.at
tel.: +43 316 873 4600

www.tugraz.at